首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The norepinephrine (NET) and dopamine (DAT) transporters are highly homologous proteins, displaying many pharmacological similarities. Both transport dopamine with higher affinity than norepinephrine and are targets for the psychostimulants cocaine and amphetamine. However, they strikingly contrast in their affinities for tricyclic antidepressants (TCA). Previous studies, based on chimeric proteins between DAT and NET suggest that domains ranging from putative transmembrane domain (TMD) 5 to 8 are involved in the high affinity binding of TCA to NET. We substituted 24 amino acids within this region in the human NET with their counterparts in the human DAT, resulting in 22 different mutants. Mutations of residues located in extra- or intracytoplasmic loops have no effect on binding affinity of neither TCA nor cocaine. Three point mutations in TMD6 (F316C), -7 (V356S), and -8 (G400L) induced a loss of TCA binding affinity of 8-, 5-, and 4-fold, respectively, without affecting the affinity of cocaine. The triple mutation F316C/V356S/G400L produced a 40-fold shift in desipramine affinity. These three residues are strongly conserved in all TCA-sensitive transporters cloned in mammalian and nonmammalian species. A strong shift in TCA affinity (IC(50)) was also observed for double mutants F316C/D336T (35-fold) and S399P/G400L (80-fold for nortriptyline and 1000-fold for desipramine). Reverse mutations P401S/L402G in hDAT did not elicit any gain in TCA affinities, whereas C318F and S358V resulted in a 3- and 10-fold increase in affinity, respectively. Our results clearly indicate that two residues located in TMD6 and -7 of hNET may play an important role in TCA interaction and that a critical region in TMD8 is likely to be involved in the tertiary structure allowing the high affinity binding of TCA.  相似文献   

2.
Mutations in leucine-rich repeat kinase 2 (LRRK2) are a frequent cause of late-onset autosomal dominant Parkinson’s disease (PD). Some disease-associated mutations directly affect LRRK2 kinase activity and inhibition of LRRK2 is viewed as a potential therapeutic treatment for PD. We demonstrate by both binding and enzymatic assays that alterations in the kinase activity of the PD-associated mutants I2020T and G2019S are due in part to altered ATP affinity. In binding assays, G2019S and I2020T have approximately 2-fold lower and 6-fold higher ATP affinity, respectively, than wild-type LRRK2. Furthermore, using an in vitro kinase activity assay, we demonstrate that at ATP concentrations close to cellular levels (1 mM) I2020T is approximately 10-fold more resistant to ATP-competitive kinase inhibitors than wild-type whereas G2019S is 1.6-fold more sensitive. These results predict that LRRK2 status may impact kinase inhibitor potencies in vivo or in cellular models.  相似文献   

3.
Three G protein-coupled receptors (Edg-1, Edg-3, and Edg-5) for the lysolipid phosphoric acid mediator sphingosine 1-phosphate have been described by molecular cloning. Using a similar sequence that we found in the expressed sequence tag data base, we cloned and characterized of a fourth, high affinity, rat brain sphingosine 1-phosphate receptor, Edg-8. When HEK293T cells were co-transfected with Edg-8 and G protein DNAs, prepared membranes showed sphingosine 1- phosphate-dependent increases in [(35)S]guanosine 5'-(3-O-thio)triphosphate binding with an EC(50) of 90 nm. In a rat hepatoma Rh7777 cell line that exhibits modest endogenous responses to sphingosine 1-phosphate, this lipid mediator inhibited forskolin-driven rises in cAMP by greater than 90% when the cells were transfected with Edg-8 DNA (IC(50) 0.7 nm). This response is blocked fully by prior treatment of cultures with pertussis toxin, thus implicating signaling through G(i/o)alpha proteins. Furthermore, Xenopus oocytes exhibit a calcium response to sphingosine 1-phosphate after injection of Edg-8 mRNA, but only when oocytes are co-injected with chimeric G(q/i)alpha protein mRNA. Membranes from HEK293T and Rh7777 cell cultures expressing Edg-8 exhibited high affinity (K(D) = 2 nm) binding for radiolabeled sphingosine 1-phosphate. Rat Edg-8 RNA is expressed in spleen and throughout adult rat brain where in situ hybridization revealed it to be associated with white matter. Together our data demonstrate that Edg-8 is a high affinity sphingosine 1-phosphate receptor that couples to G(i/o)alpha proteins and is expressed predominantly by oligodendrocytes and/or fibrous astrocytes in the rat brain.  相似文献   

4.
To identify residues of the rat AT1A angiotensin II receptor involved with signal transduction and binding of the non-peptide agonist L-162,313 (5,7-dimethyl-2-ethyl-3-[[4-[2(n-butyloxycarbonylsulfonamido)-5-isobutyl-3-thienyl]phenyl]methyl]imidazol[4,5,6]-pyridine) we have performed ligand binding and inositol phosphate turnover assays in COS-7 cells transiently transfected with the wild-type and mutant forms of the receptor. Mutant receptors bore modifications in the extracellular region: T88H, Y92H, G1961, G196W, and D278E. Compound L-162,313 displaced [125I]-Sar1,Leu8-AngII from the mutants G196I and G196W with IC50 values similar to that of the wild-type. The affinity was, however, slightly affected by the D278E mutation and more significantly by the T88H and Y92H mutations. In inositol phosphate turnover assays, the ability of L-162,313 to trigger the activation cascade was compared with that of angiotensin II. These assays showed that the G196W mutant reached a relative maximum activation exceeding that of the wild-type receptor; the efficacy was slightly reduced in the G1961 mutant and further reduced in the T88H, Y92H, and D278E mutants. Our data suggest that residues of the extracellular domain of the AT1 receptor are involved in the binding of the non-peptide ligand, or in a general receptor activation phenomenon that involves conformational modifications for a preferential binding of agonists or antagonists.  相似文献   

5.
6.
Glycoprotein hormone receptors are G protein-coupled receptors with ligand-binding ectodomains consisting of leucine-rich repeats. The ectodomain is connected by a conserved cysteine-rich hinge region to the seven transmembrane (TM) region. Gain-of-function mutants of luteinizing hormone (LH) and thyroid-stimulating hormone receptors found in patients allowed identification of residues important for receptor activation. Based on constitutively active mutations at Ser-281 in the hinge region of the thyroid-stimulating hormone receptor, we mutated the conserved serine in the LH (S277I) and follicle-stimulating hormone receptors (S273I) and observed increased basal cAMP production and ligand affinity by mutant receptors. For the LH receptor, conversion of Ser-277 to all natural amino acids led to varying degrees of receptor activation. Hydropathy index analysis indicated that substitution of neutral serine with selective nonpolar hydrophobic residues (Leu>Val>Met>Ile) confers constitutive receptor activation whereas serine deletion or substitution with charged Arg, Lys, or Asp led to defective receptor expression. Furthermore, mutation of the angular proline near Ser-273 to flexible Gly also led to receptor activation. The findings suggest the ectodomain of glycoprotein hormone receptors constrain the TM region. Point mutations in the hinge region of these proteins, or ligand binding to these receptors, could cause conformational changes in the TM region that result in G(s) activation.  相似文献   

7.
The human gonadotropin-releasing hormone (GnRH) receptor is evolutionarily configured for high affinity binding of GnRH I ([Tyr(5),Leu(7),Arg(8)]GnRH) but at lower affinity for GnRH II ([His(5),Trp(7),Tyr(8)]GnRH). GnRH I is more potent in the activation of the G(q/11) protein in the gonadotrope; however, GnRH II is more potent in the stimulation of apoptosis and antiproliferative effects through activating G(i) protein-mediated signaling, implying that GnRH I and II selectively stabilize different receptor-active conformations that preferentially couple to different signaling pathways. Receptor activation involves ligand induction or conformational selection, but the molecular basis of the communication between ligand-binding sites and receptor allosteric sites remains unclear. We have sought conformational coupling between receptor-ligand intermolecular interactions and intramolecular interaction networks in the human GnRH receptor by mutating remote residues that induce differential ligand binding affinity shifts for GnRH I and II. We have demonstrated that certain Ala mutations in the intracellular segments of transmembrane domains 3 (Met(132)), 5 (Met(227)), 6 (Phe(272) and Phe(276)), and 7 (Ile(322) and Tyr(323)) of the human GnRH receptor allosterically increased ligand binding affinity for GnRH II but had little effect on GnRH I binding affinity. We examined the role of the three amino acids that differ in these two ligands, and we found that Tyr(8) in GnRH II plays a dominant role for the increased affinity of the receptor mutants for GnRH II. We propose that creation of a high affinity binding site for GnRH II accompanies receptor conformational changes, i.e."induced fit" or "conformational selection," mainly determined by the intermolecular interactions between Tyr(8) and the receptor contact residues, which can be facilitated by disruption of particular sets of receptor-stabilizing intramolecular interactions. The findings suggest that GnRH I and II binding may selectively stabilize different receptor-active conformations and therefore different ligand-induced selective signaling described previously for these ligands.  相似文献   

8.
Takano K  Yamagata Y  Yutani K 《Biochemistry》2001,40(15):4853-4858
It has been generally believed that polar residues are usually located on the surface of protein structures. However, there are many polar groups in the interior of the structures in reality. To evaluate the contribution of such buried polar groups to the conformational stability of a protein, nonpolar to polar mutations (L8T, A9S, A32S, I56T, I59T, I59S, A92S, V93T, A96S, V99T, and V100T) in the interior of a human lysozyme were examined. The thermodynamic parameters for denaturation were determined using a differential scanning calorimeter, and the crystal structures were analyzed by X-ray crystallography. If a polar group had a heavy energy cost to be buried, a mutant protein would be remarkably destabilized. However, the stability (Delta G) of the Ala to Ser and Val to Thr mutant human lysozymes was comparable to that of the wild-type protein, suggesting a low-energy penalty of buried polar groups. The structural analysis showed that all polar side chains introduced in the mutant proteins were able to find their hydrogen bond partners, which are ubiquitous in protein structures. The empirical structure-based calculation of stability change (Delta Delta G) [Takano et al. (1999) Biochemistry 38, 12698--12708] revealed that the mutant proteins decreased the hydrophobic effect contributing to the stability (Delta G(HP)), but this destabilization was recovered by the hydrogen bonds newly introduced. The present study shows the favorable contribution of polar groups with hydrogen bonds in the interior of protein molecules to the conformational stability.  相似文献   

9.
Fusidic acid (FA) is a steroid antibiotic commonly used against Gram positive bacterial infections. It inhibits protein synthesis by stalling elongation factor G (EF-G) on the ribosome after translocation. A significant number of the mutations conferring strong FA resistance have been mapped at the interfaces between domains G, III and V of EF-G. However, direct information on how such mutations affect the structure has hitherto not been available. Here we present the crystal structures of two mutants of Thermus thermophilus EF-G, G16V and T84A, which exhibit FA hypersensitivity and resistance in vitro, respectively. These mutants also have higher and lower affinity for GTP respectively than wild-type EF-G. The mutations cause significant conformational changes in the switch II loop that have opposite effects on the position of a key residue, Phe90, which undergoes large conformational changes. This correlates with the importance of Phe90 in FA sensitivity reported in previous studies. These structures substantiate the importance of the domain G/domain III/domain V interfaces as a key component of the FA binding site. The mutations also cause subtle changes in the environment of the "P-loop lysine", Lys25. This led us to examine the conformation of the equivalent residue in all structures of translational GTPases, which revealed that EF-G and eEF2 form a group separate from the others and suggested that the role of Lys25 may be different in the two groups.  相似文献   

10.
Vagin O  Denevich S  Munson K  Sachs G 《Biochemistry》2002,41(42):12755-12762
Inhibition of the gastric H,K-ATPase by the imidazo[1,2-alpha]pyridine, SCH28080, is strictly competitive with respect to K+ or its surrogate, NH4+. The inhibitory kinetics [V(max), K(m,app)(NH4+), K(i)(SCH28080), and competitive, mixed, or noncompetitive] of mutants can define the inhibitor binding domain and the route to the ion binding region within M4-6. While mutations Y799F, Y802F, I803L, S806N, V807I (M5), L811V (M5-6), Y928H (M8), and Q905N (M7-8) had no effect on inhibitor kinetics, mutations P798C, Y802L, P810A, P810G, C813A or -S, I814V or -F, F818C, T823V (M5, M5-6, and M6), E914Q, F917Y, G918E, T929L, and F932L (M7-8 and M8) reduced the affinity for SCH28080 up to 10-fold without affecting the nature of the kinetics. In contrast, the L809F substitution in the loop between M5 and M6 resulted in an approximately 100-fold decrease in inhibitor affinity, and substitutions L809V, I816L, Y925F, and M937V (M5-6, M6, and M8) reduced the inhibitor affinity by 10-fold, all resulting in noncompetitive kinetics. The mutants L811F, Y922I, and I940A also reduced the inhibitor affinity up to 10-fold but resulted in mixed inhibition. The mutations I819L, Q923V, and Y925A also gave mixed inhibition but without a change in inhibitor affinity. These data, and the 9-fold loss of SCH28080 affinity in the C813T mutant, suggest that the binding domain for SCH28080 contains the surface between L809 in the M5-6 loop and C813 at the luminal end of M6, approximately two helical turns down from the ion binding region, where it blocks the normal ion access pathway. On the basis of a model of the Ca-ATPase in the E2 conformation (PDB entry 1kju), the mutants that change the nature of the kinetics are arranged on one side of M8 and on the adjacent side of the M5-6 loop and M6 itself. This suggests that mutations in this region modify the enzyme structure so that K+ can access the ion binding domain even with SCH28080 bound.  相似文献   

11.
Two Drosophila myosin II point mutations (D45 and Mhc(5)) generate Drosophila cardiac phenotypes that are similar to dilated or restrictive human cardiomyopathies. Our homology models suggest that the mutations (A261T in D45, G200D in Mhc(5)) could stabilize (D45) or destabilize (Mhc(5)) loop 1 of myosin, a region known to influence ADP release. To gain insight into the molecular mechanism that causes the cardiomyopathic phenotypes to develop, we determined whether the kinetic properties of the mutant molecules have been altered. We used myosin subfragment 1 (S1) carrying either of the two mutations (S1(A261T) and S1(G200D)) from the indirect flight muscles of Drosophila. The kinetic data show that the two point mutations have an opposite effect on the enzymatic activity of S1. S1(A261T) is less active (reduced ATPase, higher ADP affinity for S1 and actomyosin subfragment 1 (actin · S1), and reduced ATP-induced dissociation of actin · S1), whereas S1(G200D) shows increased enzymatic activity (enhanced ATPase, reduced ADP affinity for both S1 and actin · S1). The opposite changes in the myosin properties are consistent with the induced cardiac phenotypes for S1(A261T) (dilated) and S1(G200D) (restrictive). Our results provide novel insights into the molecular mechanisms that cause different cardiomyopathy phenotypes for these mutants. In addition, we report that S1(A261T) weakens the affinity of S1 · ADP for actin, whereas S1(G200D) increases it. This may account for the suppression (A261T) or enhancement (G200D) of the skeletal muscle hypercontraction phenotype induced by the troponin I held-up(2) mutation in Drosophila.  相似文献   

12.
Abstract

We have used a combination of sequence comparisons, computer-based modeling and site-directed mutagenesis to investigate the molecular interactions involved in ligand binding and signal transduction of the human 5-HT1B receptor. Two amino acid residues, S212 in transmembrane region (TM) V and F331 in TM VI, were replaced by alanines. These amino acids are conserved in many G protein-coupled receptors and therefore likely to be important for receptor function. The mutant receptors were expressed in Chinese hamster ovary cells. The 5-HT-like agonist 5-carboxamido-tryptamine (5-CT) bound with 15-fold lower affinity to the S212A mutant as compared to wild-type receptor and the antagonist methiothepin bound with 17-fold lower affinity to the F331A mutant. No reduction in the affinity of 5-HT was seen for the S212A mutant, although an equivalent mutation in the 5-HT1A receptor resulted in a 100-fold reduction of 5-HT binding. The inhibition of forskolin-stimulated cyclic AMP production by 5-HT was significantly reduced in cells expressing the F331A mutant, even though the endogenous ligand 5-HT bound with somewhat increased affinity. Methiothepin acted as an inverse agonist and increased the forskolin-stimulated cyclic AMP production at both the wild-type receptor and the mutants, and the effect was stronger on the F331A mutant. These results suggest that F331 is involved in the conformational changes necessary for signal transduction.  相似文献   

13.
Zhong L  Skafar DF 《Biochemistry》2002,41(13):4209-4217
Mutation of tyrosine 537 (Y537) of the human estrogen receptor-alpha (hERalpha) produces receptors having a range of constitutive activity, which suggests that this residue modulates the conformational changes of the receptor. We investigated the effect of several mutations at this position, to phenylalanine (Y537F), to serine (Y537S), and to glutamic acid (Y537E), on the hormone-binding properties of the receptor. The affinities of the wt, the Y537F mutant, and the Y537S mutant for estradiol were similar: K(a) = 2.2 +/- 0.2, 3.9 +/- 0.5, and 2.8 +/- 0.4 nM(-1), respectively. By contrast, the affinity of the Y537E mutant for estradiol was reduced 10-fold, K(a) = 0.2 +/- 0.1 nM(-1). All proteins bound [(3)H]estradiol with a positive cooperative mechanism (n(H) = 1.7-1.9), indicating they can form dimers. The wt receptor and the Y537S and Y537E mutants exhibited biphasic dissociation kinetics, which is also indicative of dimerization. Surprisingly, the half-lives of the slow component of the wt and the Y537E mutant were indistinguishable, 118 +/- 3.4 and 122 +/- 4.5 min, respectively, even though the affinity of the Y537E mutant for hormone was reduced 10-fold. The half-life of the slow component of the Y537S mutant was reduced to 96.5 +/- 3.8 min. Molecular models were constructed and compared to identify changes in the structure that correlate with the observed effects on hormone binding. Local alterations in hydrogen bonding, the position of side chains, and the position of the peptide backbone were observed. Taken together, these results show that mutations at Y537 selectively alter the affinity and kinetics of hormone binding to the receptor, and are consistent with the idea that the estradiol-estrogen receptor interaction can follow more than one pathway.  相似文献   

14.
In this study of the Saccharomyces cerevisiae G protein-coupled receptor Ste2p, we present data indicating that the first extracellular loop (EL1) of the alpha-factor receptor has tertiary structure that limits solvent accessibility and that its conformation changes in a ligand-dependent manner. The substituted cysteine accessibility method was used to probe the solvent exposure of single cysteine residues engineered to replace residues Tyr(101) through Gln(135) of EL1 in the presence and absence of the tridecapeptide alpha-factor and a receptor antagonist. Surprisingly, many residues, especially those at the N-terminal region, were not solvent-accessible, including residues of the binding-competent yet signal transduction-deficient mutants L102C, N105C, S108C, Y111C, and T114C. In striking contrast, two N-terminal residues, Y101C and Y106C, were readily solvent-accessible, but upon incubation with alpha-factor labeling was reduced, suggesting a pheromone-dependent conformational change limiting solvent accessibility had occurred. Labeling in the presence of the antagonist, which binds Ste2p but does not initiate signal transduction, did not significantly alter reactivity with the Y101C and Y106C receptors, suggesting that the alpha-factor-dependent decrease in solvent accessibility was not because of steric hindrance that prevented the labeling reagent access to these residues. Based on these and previous observations, we propose a model in which the N terminus of EL1 is structured such that parts of the loop are buried in a solvent-inaccessible environment interacting with the extracellular part of the transmembrane domain bundle. This study highlights the essential role of an extracellular loop in activation of a G protein-coupled receptor upon ligand binding.  相似文献   

15.
Structure-activity relationships of recombinant human interleukin 2   总被引:4,自引:0,他引:4  
Structure-activity relationships of recombinant human interleukin 2 were investigated by preparation, purification, and characterization of 21 missense mutants. A key role for residue Phe42 in the high-affinity interaction with receptor was indicated by (a) the reduction of 5-10-fold in binding affinity and bioactivity upon mutation of this residue to Ala and (b) the lack of evidence for conformational perturbation in Phe42----Ala in comparison with the wild-type protein as investigated by intrinsic fluorescence, second-derivative UV spectroscopy, electrophoresis, and reversed-phase HPLC, suggesting that the drop in binding is a direct effect of removal of the aromatic ring. In contrast, the conservative mutations Phe42----Tyr and Phe42----Trp did not cause significant reductions in bioactivity. UV and fluorescence spectra indicated approximately 60% overall exposure to solvent of tyrosines in the wild-type molecule, the tryptophan (residue 121) being buried; fluorescence data also showed that Trp42 in Phe42----Trp is likely to be within 1 nm of Trp121 and about 50% exposed to solvent. Phe44----Ala, Cys105----Ala, and Trp121----Tyr also exhibited reduced bioactivity, but these mutants are conformationally perturbed relative to wild type. None of the remaining mutants had detectably reduced bioactivity, even though several showed signs of altered conformation. Four mutants were recovered in very low yield, probably because of defective refolding.  相似文献   

16.
Lin JC  Duell K  Saracino M  Konopka JB 《Biochemistry》2005,44(4):1278-1287
The alpha-factor receptor (Ste2p) stimulates mating of the yeast Saccharomyces cerevisiae. Ste2p belongs to the large family of G protein-coupled receptors that are characterized by seven transmembrane alpha-helices. Receptor activation is thought to involve changes in the packing of the transmembrane helix bundle. To identify residues that contribute to Ste2p activation, second-site suppressor mutations were isolated that restored function to defective receptors carrying either an F204S or Y266C substitution which affect residues at the extracellular ends of transmembrane domains 5 and 6, respectively. Thirty-five different suppressor mutations were identified. On their own, these mutations caused a range of phenotypes, including hypersensitivity, constitutive activity, altered ligand binding, and loss of function. The majority of the mutations affected residues in the transmembrane segments that are predicted to face the helix bundle. Many of the suppressor mutations caused constitutive receptor activity, suggesting they improved receptor function by partially restoring the balance between the active and inactive states. Analysis of mutations in transmembrane domain 7 implicated residues Ala281 and Thr282 in receptor activation. The A281T and T282A mutants were supersensitive to S. cerevisiae alpha-factor, but were defective in responding to a variant of alpha-factor produced by another species, Saccharomyces kluyveri. The A281T mutant also displayed 8.7-fold enhanced basal signaling. Interestingly, Ala281 and Thr282 are situated in approximately the same position as Lys296 in rhodopsin, which is covalently linked to retinal. These results suggest that transmembrane domain 7 plays a role in receptor activation in a wide range of G protein-coupled receptors from yeast to humans.  相似文献   

17.
Serines 64 and 79 are homologous residues that are juxtaposed to the autoinhibitory pseudosubstrate site in cGMP-dependent protein kinase type Ialpha and type Ibeta (PKG-Ialpha and PKG-Ibeta), respectively. Autophosphorylation of this residue is associated with activation of type I PKGs. To determine the role of this conserved serine, point mutations have been made in PKG-Ialpha (S64A, S64T, S64D, and S64N) and PKG-Ibeta (S79A). In wild-type PKG-Ialpha, basal kinase activity ratio (-cGMP/+cGMP) is 0.11, autophosphorylation increases this ratio 3-fold, and the K(a) and K(D) values for cGMP are 127 and 36 nm, respectively. S64A PKG-Ialpha basal kinase activity ratio increases 2-fold, cGMP binding affinity increases approximately 10-fold in both K(a) and K(D), and activation by autophosphorylation is slight. S64D and S64N mutants are nearly constitutively active in the absence of cGMP, cGMP binding affinity in each increases 18-fold, and autophosphorylation does not affect the kinase activity of these mutants. Mutation of the homologous site in PKG-Ibeta (S79A) increases the basal kinase activity ratio 2-fold and cGMP binding affinity 5-fold over that of wild-type PKG-Ibeta. The combined results demonstrate that a conserved serine juxtaposed to the pseudosubstrate site in type I PKGs contributes importantly to enzyme function by increasing autoinhibition and decreasing cGMP binding affinity.  相似文献   

18.
The Saccharomyces cerevisiae pheromone, alpha-factor (WHWLQLKPGQPMY), and Ste2p, its G protein-coupled receptor, were studied as a model for peptide ligand-receptor interaction. The affinities and activities of various synthetic position-10 alpha-factor analogs with Ste2p expressing mutations at residues Ser47 and Thr48 were investigated. All mutant receptors were expressed at a similar level in the cytoplasmic membrane, and their efficacies of signal transduction were similar to that of the wild-type receptor. Mutant receptors differed in binding affinity (Kd) and potency (EC50) for gene induction by alpha-factor. One mutant receptor (S47K,T48K) had dramatically reduced affinity and activity for [Lys10]- and [Orn10]alpha-factor, whereas the affinity for Saccharomyces kluyveri alpha-factor (WHWLSFSKGEPMY) was increased over 20-fold compared with that of wild-type receptor. In contrast, the affinity of [Lys10]- and [Orn10]alpha-factor was increased greatly in a S47E,T48E mutant receptor, whereas the binding of the S. kluyveri alpha-factor was abolished. The affinity of [Lys10]- and [Orn10]alpha-factor for the S47E,T48E receptor dropped 4-6-fold in the presence of 1 m NaCl, whereas the affinity of alpha-factor was not affected by this treatment. These results demonstrate that when bound to its receptor the 10th residue (Gln) of the S. cerevisiae alpha-factor is adjacent to Ser47 and Thr48 residues in the receptor and that the 10th residue of alpha-factors from two Saccharomyces species is responsible for the ligand selectivity to their cognate receptors. Based on these data, we have developed a two-dimensional model of alpha-factor binding to its receptor.  相似文献   

19.
The guanine nucleotide-binding protein Ras exists in solution in two different conformational states when complexed with different GTP analogs such as GppNHp or GppCH(2)p. State 1 has only a very low affinity to effectors and seems to be recognized by guanine nucleotide exchange factors, whereas state 2 represents the high affinity effector binding state. In this work we investigate Ras in complex with the physiological nucleoside triphosphate GTP. By polarization transfer (31)P NMR experiments and effector binding studies we show that Ras(wt)·Mg(2+)·GTP also exists in a dynamical equilibrium between the weakly populated conformational state 1 and the dominant state 2. At 278 K the equilibrium constant between state 1 and state 2 of C-terminal truncated wild-type Ras(1-166) K(12) is 11.3. K(12) of full-length Ras is >20, suggesting that the C terminus may also have a regulatory effect on the conformational equilibrium. The exchange rate (k(ex)) for Ras(wt)·Mg(2+)·GTP is 7 s(-1) and thus 18-fold lower compared with that found for the Ras·GppNHp complex. The intrinsic GTPase activity substantially increases after effector binding for the switch I mutants Ras(Y32F), (Y32R), (Y32W), (Y32C/C118S), (T35S), and the switch II mutant Ras(G60A) by stabilizing state 2, with the largest effect on Ras(Y32R) with a 13-fold increase compared with wild-type. In contrast, no acceleration was observed in Ras(T35A). Thus Ras in conformational state 2 has a higher affinity to effectors as well as a higher GTPase activity. These observations can be used to explain why many mutants have a low GTPase activity but are not oncogenic.  相似文献   

20.
The molecular mechanisms of nicotinic receptor activation are still largely unknown. The crystallographic structure of the acetylcholine binding protein (AChBP) reveals a single H-bond between two different acetylcholine binding loops. Within these homologous loops we systematically introduced alpha4 residues into the alpha7/5HT(3) chimeric receptor and found that the single point mutations G152K (loop B) and P193I (loop C) displayed a non-additive increase of equilibrium binding affinity for several agonists compared with the double mutant G152K/P193I. In whole-cell patch-clamp recordings, G152K, P193I and G152K/P193I mutants displayed an increase up to 5-fold in acetylcholine potency with a large decrease of the apparent Hill coefficients (significantly smaller than one). Concomitantly, the G152K/P193I mutant showed a dramatic loss of high-affinity alpha-bungarotoxin binding (100-fold decrease), thus pinpointing a new contact area for the toxin. Fitting the data with an allosteric-kinetic model, together with molecular dynamic simulations, suggests that the presence of the inter-backbone H-bond between positions 152 and 193, revealed in alpha4 and in alpha7 double mutant but not in alpha7, coincides with a large stabilization of both open and desensitized states of nicotinic receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号