首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
In this study, BrdUrd labeling of S-phase cells in the small intestine and testes was accomplished using microwave irradiation. In this way crypt cells, spermatogonia, and Leydig cells could be labeled using removable plastic-embedded sections and immunogold-silver staining (IGSS). By using short periods of microwave irradiation for incubation of the monoclonal antibodies and the protein A-colloidal gold solution, the detection of BrdUrd-labeled cells could be remarkably enhanced. A comparative study of BrdUrd labeled spermatogonia in the testis of a Cpb-N mouse that received both [3H]-thymidine and BrdUrd proved that 90% of the BrdUrd-labeled cells also showed [3H]-thymidine labeling. The radioactive [3H]-thymidine labeling was a time-consuming method of 4 weeks' duration, whereas the BrdUrd-labeled cells could be labeled, fixed, enhanced, and counterstained in less than 3 hr. This investigation proves that BrdUrd labeling of S-phase cells can be a reliable, reproductive, rapid, and non-radioactive alternative method for [3H]-thymidine labeling of proliferating cells.  相似文献   

2.
Cell kinetics of human tumors by in vitro bromodeoxyuridine labeling   总被引:4,自引:0,他引:4  
We labeled active S-phase cells in primary breast carcinomas with a modified 5-bromo-2'-deoxyuridine (BrdU) procedure using a silver-enhanced colloidal gold visualization step. Separate samples of 29 tumors were labeled with BrdU or tritiated thymidine ([3H]-dThd), and the labeling indices (LI) from the two methods were equivalent (Spearman's correlation coefficient = 0.96). Three breast carcinomas were incubated in various mixes of both BrdU and [3H]-dThd and developed sequentially for each. Paired photomicrographs showed that the same nuclei were labeled by either precursor. The in vitro method yielded LIs similar to those reported after in vivo pulse BrdU labeling for tumors of the central nervous system. The BrdU LI correlated significantly (r = 0.76, p less than 0.001) with % S-phase by DNA flow cytometry in 33 breast carcinomas. The BrdU labeling method is simpler and more rapid than the [3H]-dThd procedure (1-2 days for completion for the former, 7-10 days for the latter), and it provides an equivalent measurement of proliferative index.  相似文献   

3.
Durations of S-phase (Ts) and total cell cycle times (Tc) were measured from the peripheral blood (PB) and bone marrow aspirates (BM) of five patients with acute nonlymphocytic leukemia (ANLL). Intravenous bromodeoxyuridine (BrdU) was used as the first label for S-phase cells and a monoclonal anti-BrdU antibody was used to detect the positive cells. Tritiated thymidine [( 3H]Tdr) was used as a second label in vitro, and the Ts was calculated by counting the number of cells labeled either by BrdU or by [3H]Tdr or by both. Our data demonstrate that the duration of S-phase in myeloblasts obtained from BM is quite similar to that of circulating leukemic cells. Finally, the most accurate assessment of percentage of myeloblasts actively engaged in DNA synthesis can be obtained only from bone marrow biopsies following in vivo labeling.  相似文献   

4.
Studies of cell cycles have traditionally employed [3H]- and [14C]-thymidine to label the DNA of proliferating cells and autoradiography to reveal the thymidine label. The development of antibodies to the thymidine analogue 5-bromodeoxyuridine (BrdU) has allowed the development of an immunocytochemical method analogous to the thymidine autoradiographic technique. In direct comparisons, we found that the immunocytochemical method consistently detected a larger number of proliferating cells. This suggests that it may be a more sensitive index of proliferation than thymidine autoradiography in some systems. We used the BrdU method to analyze the cycle of astroglia cultured from neonatal mouse cerebral cortex. Cells were exposed to BrdU for 1 hr to label a discrete subpopulation of proliferating cells. At 2-36 hr after the pulse, a combination of anti-BrdU immunocytochemistry and counterstaining with propidium iodide was used to identify proliferating cells. The length of the cell cycle was determined by charting the percent of BrdU-labeled mitotic cells vs time after the pulse. We found the average length of the cell cycle of astrocytes grown in vitro to be 20.5 hr. The combined G2 + M phases were 2-3 hr. These values are virtually identical with those found for glial cells in vivo, suggesting that the culture environment does not interfere with the normal control of cell cycle length.  相似文献   

5.
It has been postulated that the stem cells of somatic tissues protect themselves from mutation and cancer risk by selective segregation of their template DNA strands. Self-renewing mammary epithelial stem cells that were originated during allometric growth of the mammary ducts in pubertal females were labeled using [3H]-thymidine (3HTdR). After a prolonged chase during which much of the branching duct morphogenesis was completed, 3HTdR-label retaining epithelial cells (LREC) were detected among the epithelium of the maturing glands. Labeling newly synthesized DNA in these glands with a different marker, 5-bromodeoxyuridine (5BrdU), resulted in the appearance of doubly labeled nuclei in a large percentage of the LREC. By contrast, label-retaining cells within the stroma did not incorporate 5BrdU during the pulse, indicating that they were not traversing the cell cycle. Upon chase, the second label (5BrdU) was distributed from the double-labeled LREC to unlabeled mammary cells while 3HTdR was retained. These results demonstrate that mammary LREC selectively retain their 3HTdR-labeled template DNA strands and pass newly synthesized 5BrdU-labeled DNA to their progeny during asymmetric divisions. Similar results were obtained in mammary transplants containing self-renewing, lacZ-positive epithelial cells suggesting that cells capable of expansive self-renewal may repopulate new mammary stem cell niches during the allometric growth of new mammary ducts.  相似文献   

6.
The simultaneous immunohistochemical detection of bromodeoxyuridine (BrdU) and [3H]-thymidine ([3H]TdR), by conventional autoradiography, was performed on the mouse small intestine (ileum). Proliferation was studied under normal conditions as well as after 3 Gy of gamma-rays. The BrdU method in conjunction with [3H]TdR autoradiography appears to be reliable and useful for the study of cell kinetics especially in disturbed states, on condition that [3H]TdR is delivered to the animals before BrdU. It has been found that cells in the crypt are delayed by irradiation in their progression through the cell cycle predominantly in late S phase. The cells at the bottom of the crypt are more affected than the more differentiated but proliferating cells in the upper part of the crypt.  相似文献   

7.
Mouse tongue epithelium is characterized by a circadian variation in the number of DNA-synthesizing cells (labelling index, LI). Cells undergoing DNA synthesis were labelled with tritiated thymidine [( 3H]TdR) at 0300 (peak LI) or 1200 h (low LI). The fate of these cells was assessed by injecting animals with bromodeoxyuridine (BrdU) at intervals from 12-48 h after [3H]TdR, to follow them from one cell cycle to the next. Labelling was revealed by combining [3H]TdR autoradiography with immunoperoxidase detection of BrdU in the same sections. A single peak in the appearance of double-labelled cells was seen at 44 h, if [3H]TdR was given at 1200 h; following [3H]TdR at 0300 h, a peak of double labelling was seen at 48 h with the possibility of smaller peaks at 24 h and 36 h. These results show that the 24 h periodicity in LI in this tissue is associated with a predominant cell cycle duration of 44-48 h, but that a few cells cycle more quickly. Double labelling with [3H]TdR and BrdU provides a useful method for establishing cell cycle duration by labelling S-phase cells in successive cell cycles.  相似文献   

8.
Labelling index, S-phase duration and cell-cycle time of proliferating brain cells from 6-day-old chick embryos in culture were investigated autoradiographically after labelling with [3H]- and/or [14C]-thymidine. The dissociated cells were cultured in the absence or in the presence of brain extract from 8-day-old chick embryos. Cultures contained essentially two cell types, which could be easily distinguished by the size of their nuclei: small nuclei identified as belonging to precursor cells of neurons and large nuclei corresponding to astroglial cells. The labelling index of astroglial cells (16.4%) was about 2 times higher than that of the neuronal cells (9.9%). Under the influence of brain extract the labelling index of neuroblasts was nearly doubled while that of the astroglial cells remained nearly unchanged. From double-labelling experiments with [3H]- and [14C]-thymidine, the same S-phase duration of about 7 hr was found for both cell types cultured with or without brain extract. A cell-cycle duration of 39 hr for neuronal and of 29 hr for astroglial cells was found. The cycle times remained constant under the influence of brain extract. From the measured data mentioned above, a growth fraction of 50% (neuroblasts) and 68% (astroglial cells) was calculated in control cultures without brain extract. After addition of brain extract, the growth fraction increased for both cell types (neuroblasts: 92%; astroglial cells: 80%). The results demonstrate that more cells proliferate in the presence of brain extract, but the durations of the S-phase and the cell cycle remain unchanged.  相似文献   

9.
Untransformed Syrian hamster fibroblasts in exponential growth were exposed to a pulse of [3H]-thymidine for 5 min, followed immediately by bromodeoxyuridine, and serial samples were taken up to 16 h. Preparations were autoradiographed and stained for replication banding. No cell with replication bands was found without significant [3H]-thymidine uptake, although the extent of uptake varied between sub-phases of S. Thus there is no indication of a total cessation of synthesis at any period during S-phase.  相似文献   

10.
Labelling index, S-phase duration and cell-cycle time of proliferating brain cells from 6-day-old chick embryos in culture were investigated autoradiographically after labelling with [3H]- and/or [14C]-thymidine. the dissociated cells were cultured in the absence or in the presence of brain extract from 8-day-old chick embryos. Cultures contained essentially two cell types, which could be easily distinguished by the size of their nuclei: small nuclei identified as belonging to precursor cells of neurons and large nuclei corresponding to astroglial cells. the labelling index of astroglial cells (16.4%) was about 2 times higher than that of the neuronal cells (9.9%). Under the influence of brain extract the labelling index of neuroblasts was nearly doubled while that of the astroglial cells remained nearly unchanged. From double-labelling experiments with [3H]- and [14C]-thymidine, the same S-phase duration of about 7 hr was found for both cell types cultured with or without brain extract. A cell-cycle duration of 39 hr for neuronal and of 29 hr for astroglial cells was found. the cycle times remained constant under the influence of brain extract. From the measured data mentioned above, a growth fraction of 50% (neuroblasts) and 68% (astroglial cells) was calculated in control cultures without brain extract. After addition of brain extract, the growth fraction increased for both cell types (neuroblasts: 92%; astroglial cells: 80%). the results demonstrate that more cells proliferate in the presence of brain extract, but the durations of the S-phase and the cell cycle remain unchanged.  相似文献   

11.
12.
The degradation of proteins in Escherichia coli was investigated in cells grown under steady-state conditions in a glucose-limited chemostat. During the first 24 h, approximately 25% of pulse-labeled proteins were degraded and after 72 h up to 58% of the proteins were broken down. To examine the stability of subcellular components steady-state cultures were labeled with an initial pulse of [14C]leucine, 24 h were allowed for turnover of these proteins, and the cells were then labeled with a short pulse of [3H]leucine. By this double-label protocol, the labile proteins were preferentially labeled with [H]leucine and had high 3H/14C ratios, while the more stable proteins had lower 3//14C ratios. The 3/-labeled proteins were degraded approximately five times as rapidly as the 14C-labeled proteins in exponentially growing cells. The relative stability of subcellular fractions was determined by comparing their 3H/14C ratios to the ratio of the cells at harvest. The soluble fraction contained the most labile proteins, while the ribosomal and membrane fractions were at least as stable as the average cell protein.  相似文献   

13.
Abstract Mouse tongue epithelium is characterized by a circadian variation in the number of DNA-synthesizing cells (labelling index, LI). Cells undergoing DNA synthesis were labelled with tritiated thymidine ([3H]TdR) at 0300 (peak LI) or 1200 h (low LI). The fate of these cells was assessed by injecting animals with bromodeoxyuridine (BrdU) at intervals from 12–48 h after [3H]TdR, to follow them from one cell cycle to the next. Labelling was revealed by combining [3H]TdR autoradiography with immunoperoxidase detection of BrdU in the same sections.
A single peak in the appearance of double-labelled cells was seen at 44 h, if [3H]TdR was given at 1200 h; following [3H]TdR at 0300 h, a peak of double labelling was seen at 48 h with the possibility of smaller peaks at 24 h and 36 h.
These results show that the 24 h periodicity in LI in this tissue is associated with a predominant cell cycle duration of 44–48 h, but that a few cells cycle more quickly. Double labelling with [3H]TdR and BrdU provides a useful method for establishing cell cycle duration by labelling S-phase cells in successive cell cycles.  相似文献   

14.
In Platyhelminthes, totipotent stem cells (neoblasts) are supposed to be the only dividing cells. They are responsible for the renewal of all cell types during development, growth, and regeneration, a unique situation in the animal kingdom. In order to further characterize these cells, we have applied two immunocytochemical markers to detect neoblasts in different stages of the cell cycle in the acoel flatworm Convolutriloba longifissura: (1) the thymidine analog 5'-bromo-2'-deoxyuridine (BrdU) to identify cells in S-phase, and (2) an antibody to phosphorylated histone H3 to locate mitosis. BrdU pulse-chase experiments were carried out to follow differentiation of neoblasts. We demonstrate the differentation into four labeled, differentiated cell types. S-phase cells and mitotic cells showed a homogenous distribution pattern throughout the body of C. longifissura. Two different types of S-phase cells could be distinguished immunocytochemically by their pattern of incorporated BrdU in the nuclei. Transmission electron microscopy was used to study ultrastructural characters of neoblasts and revealed two different stages in maturation of neoblasts, each with a characteristic organization of heterochromatin. The stem-cell pool of C. longifissura is an important prerequisite for the extraordinary mode of asexual reproduction and the high capacity of regeneration. A comparison of the stem-cell pool in Acoela and higher platyhelminth species can provide evidence for the phylogenetic relationships of these taxa.  相似文献   

15.
Thymidine kinase (TK) and its isoenzymes were studied in relation to age of Ehrlich ascites tumour cells growing in vivo. Various steps of the pathway of thymidine through deoxynucleotide metabolism were studied: [3H]-thymidine cellular uptake and incorporation into DNA; the cellular nucleotide pools; and the concentration of thymidine in ascites. In addition, the proportion of cells in the various parts of the cell cycle and the bromodeoxyuridine labelling index were determined. Four isoenzymes at pI 4.1, 5.3, 6.9 and 8.3 were identified using isoelectric focusing. The TK activity declined with age of the tumour by about 90%, mostly due to a decrease of the isoenzyme at pI 8.3. However, this decline was neither related to the changes in DNA synthesis rate of the cells with tumour age, nor to the proportion of cells in S-phase or the bromodeoxyuridine (BrdU) labelling index. In contrast, the contribution of DNA synthesis via the thymidine salvage pathway relative to the total DNA synthesis increased from less than 1% at exponential growth to about 15% at plateau phase of growth. Blocking of DNA synthesis by aphidicolin did not change the TK activity. We therefore conclude that changes in TK activity and changes in cell growth are epiphenomena rather than causally related to each other. All nucleotide pools decreased with tumour age. The inhibition of TK by an increase in the deoxythymidine triphosphate pool could therefore be excluded. With a decrease of the TK activity during tumour growth, increasing amounts of TdR were excreted by the cells and accumulated in the ascites fluid. To explain our results on TK activity we propose a substrate cycle in which thymidine monophosphate supplied by de novo synthesis is dephosphorylated and is then either phosphorylated by TK to thymidine monophosphate or excreted by the cell.  相似文献   

16.
We used reliable and relatively inexpensive equipment to make sequential sets of measurements of antitubulin immunofluorescence, Feulgen staining, and autoradiography on the same cells. This was done to evaluate tubulin conformations, DNA content, and [3H]-thymidine incorporation in cell lines sensitive (HL60) and resistant (K562) to the novel anti-tubulin chemotherapeutic agent taxol. Numbers of cells with microtubule bundles have been found to correlate with sensitivity to taxol by clonogenic assay for several leukemic cell lines. We have found that cells with "asters" produced by taxol exposure are in mitosis and that cells with taxol-induced "bundles" are in G0/G1, S, and G2 phases. We further found that S-phase cells with microtubule bundles in both sensitive (HL60) and resistant (K562) cell lines were able to incorporate [3H]-thymidine after 4-hr exposure to taxol. As microtubule bundles and asters occur in cells of the same cell cycle phases in both lines, we conclude that the greater frequency of cells with microtubule bundles reported for sensitive cells after taxol treatment cannot result from drug exclusion nor from different effects of the drug on cell microtubules in these two leukemic lines.  相似文献   

17.
Nerve cells in hydra differentiate from the interstitial cell, a multipotent stem cell. Decapitation elicits a sharp increase in the fraction of the interstitial cells committed to nerve cell differentiation in the tissue which forms the new head. To investigate when during the cell cycle nerve cell commitment can be stimulated, hydra were pulse-labeled with [3H]thymidine at times from 18 hr before to 15 hr following decapitation; the resulting cohorts of labeled interstitial cells were in the various phases of the cell cycle at the time of decapitation. Increased commitment to nerve cell differentiation within a single cell cycle (≈24 hr) was observed in those cohorts which were at least 6 hr before the end of S-phase (12 hr) at the time of decapitation. The lag time required for decapitation to produce an effective stimulus for nerve cell differentiation was measured by transplanting the stem cells from the regenerating tissue to a neutral environment. Following decapitation, 3 to 6 hr were required for increased nerve cell commitment to be stable to such transplantation. These results suggest that interstitial cells must be stimulated by late S-phase to become committed to undergo nerve cell differentiation following the subsequent mitosis. However, when head regeneration was reversed by grafting a new head onto the regenerating surface, nerve cell differentiation by such committed stem cells was greatly reduced. This indicates that an appropriate tissue environment is required for committed interstitial cells to complete the nerve cell differentiation pathway.  相似文献   

18.
The cells of S-phase labelled prior to cultivation with H3-thymidine and other neighbouring cambial cells of the lens of the pig, cattle and sheep were found to form morphologically underdifferentiated zones of growth. The zones of growth were formed in the culture from differentiating in vivo cells of the lens. The cells of these zones occasionally resembled abortively differentiated lens fibres in vivo. The growth zones of the lens cells in vitro are comparable by its growings in trauma or cataract in vivo. In lens cultures under routine conditions of cultivation there occurs disturbance of normal embryonic histogenesis and abortive differentiation of the already differentiated in vivo cells.  相似文献   

19.
NIH 3T3 fibroblasts were stably transfected with rat brain inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) 3-kinase to explore the relationship between increased production of Ins(1,3,4,5)P4 and the formation of InsP5 and InsP6. Mass measurements of InsP5 and InsP6 revealed no significant difference between kinase- and vector-transfected fibroblasts. However, such 3-kinase-transfected cells, when labeled with [3H]inositol for 48-72 h, showed lower levels of [3H]InsP5 and [3H]InsP6, as well as [3H]Ins(1,3,4,6)P4 and D/L[3H]Ins(1,4,5,6)P4, than their vector-transfected counterparts. Because Ins(1,4,5)P3 3-kinase-transfected cells grew less rapidly than vector-transfected controls, we determined whether the synthesis of InsP5 and InsP6 was related to a specific phase of the cell cycle. When NIH 3T3 cells prelabeled with [3H]inositol were synchronized by serum deprivation followed by stimulation with platelet-derived growth factor (PDGF), the amounts of labeled InsP5 and InsP6 began to increase only after 12 h of stimulation, when cells entered the S-phase as indicated by increased [3H]thymidine incorporation. The enhanced synthesis of these inositol polyphosphates was preceded by an early increase in Ins(1,4,5)P3 and its metabolites that was no longer evident by the fifth hour of PDGF action. There was also a prominent and biphasic increase in the level of D/L-Ins(1,4,5,6)P4 with an early peak at approximately 3 h and a second rise that paralleled the increases in InsP5 and InsP6. These results indicate that the formation of highly phosphorylated inositols is not tightly coupled to the receptor-mediated formation of Ins(1,4,5)P3 and its metabolites but is mainly determined by other factors that operate at specific points of the cell cycle.  相似文献   

20.
This study investigates the primary effect of the eye lens obsolescence (Elo) gene of the mouse. Morphological features of the Elo lens were defined as follows: (1) deficient elongation of lens fiber cells, (2) morphological abnormality of nuclei of lens fiber cells, (3) lack of eosinophilic granules in the central fiber cells and (4) rupture of lens capsule in the posterior region. We have immunohistologically examined, by means of an in vivo BrdU incorporation system, whether or not the Elo gene regulates cell proliferation during lens development. The lens fiber cells were morphologically abnormal in day 13 embryonic Elo lens. However, there were no significant differences in morphology or cell proliferation between normal and Elo lens epithelium until day 14 of gestation. After day 15, the total cell number in the Elo lens epithelium was significantly less than that in the normal, but the total numbers of S-phase cells in the two genotypes were not significantly different. The ratio of the total S-phase cell number to the total number of lens epithelial cells may be affected by the developmental stage, but not directly by the genotype. The genotype, however, may be having a direct influence at later ages because malformation of Elo lens fiber cells must cause reduction of the total number of lens epithelial cells in older embryos. Although, at 30 days old, Elo lens cells were externally extruded through the ruptured capsule into the vitreous cavity, BrdU-labelled lens epithelial cells were detectable. To investigate whether the Elo lens phenotype is determined by its own genotype or by its cellular environment, we produced aggregation chimeras between C3H-Elo/+(C/C) and BALB/c(c/c). Most lenses of BALB/c dominant chimeras were oval in shape without the ruptured lens capsule. However, they were opaque in the center and slightly smaller in size than normal. The lenses of C3H-Elo/+ dominant chimeras were morphologically similar to the Elo lens. Although normal nuclei were regularly arranged in the anterior region, Elo-type nuclei were located in the posterior region. Immunohistological staining by using anti-C3H strain-specific antibody demonstrated that the lens fiber cells with abnormal nuclei were derived only from C3H-Elo/+, not from BALB/c. These observations suggest that the primary effect of the Elo gene in the developing lens may be specific to the fiber cell differentiation rather than to the cell proliferation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号