首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Chondroitin sulfate proteoglycans (CSPG) appear to contribute to retention of low density lipoproteins (LDL) in atherosclerotic lesions. In vitro, CSPG and glycosaminoglycans (GAG) modify LDL structure and increase its uptake by macrophages. This latter effect appears related to increased exposure of arginine- and lysine-rich segments of apoB-100. We explored whether alterations of LDL induced by human arterial CSPG and purified GAG alter the lipoprotein susceptibility to transition metals-catalyzed oxidation. Human LDL was complexed with human arterial CSPG and dissociated by raising the ionic strength. The nonaggregated, CSPG- and GAG-treated LDL was subjected to oxidation by micromolar amounts of Cu+, Cu2+, Fe2+, and Fe3+. This treatment increased LDL susceptibility to Cu2+ oxidation 3- to 5-times, as indicated by the degradation rate of phospholipids and cholesteryl esters and formation rates of dienes and thiobarbituric acid-reacting substances (TBARS). Also, human macrophages degraded the CSPG-treated, Cu2+-oxidized LDL 3- to 6-times faster than native LDL similarly treated. No enhancement of oxidation was observed with Fe2+, Fe3+, and Cu+. Quenching of the LDL intrinsic fluorescence by Cu2+ showed that heparin, CSPG, and chondroitin-6-SO4 pretreatment increased the access of Cu2+ to hydrophobic chromophores, probably tryptophan, 6- to 7-, 3- to 4-, and 2- to 3-fold, respectively. Also, the affinity constant (Ka) of LDL for Cu2+ was increased from 0.12 microM to 0.20 microM by the treatment with CSPG and GAG. These results and evaluation of the fraction of surface-accessible LDL chromophores to acrylamide quenching suggest that the increased susceptibility to oxidation may be associated with an increase in the access of Cu2+ to hydrophobic regions in LDL caused by treatment with CSPG and GAG. This effect was not detected with Cu+, Fe2+, or Fe3+. The phenomenon may contribute to acceleration of the oxidative modifications of LDL in cell culture models and in vivo.  相似文献   

2.
Using monoclonal antibodies against apolipoprotein B (apoB) we studied changes in apoB immunoreactivity during copper ion-mediated oxidation of human low density lipoprotein (LDL). The radioimmunoassay experiments demonstrated the decrease of immunoreactivity of three different epitopes of apoB located in different parts of the protein; at the same time the immunoreactivity of another epitope, previously mapped to the C-terminal 20 amino acids of apoB increased markedly during the first 6 h of LDL oxidation and diminished gradually upon prolonged incubation with copper ions. The fate of LDL during oxidation was also monitored using electrophoretic techniques combined with immunodetection. These experiments showed a rapid fragmentation and disappearance of immunoreactive apoB. They also indicated that the diminishing LDL immunoreactivity detectable during oxidation is associated with apoB fragments still attached to the lipid core. The changes in apoB immunoreactivity during Cu2+ treatment of LDL are similar to those observed upon LDL aging. Therefore, it appears that the enhancement of immunoreactivity of the C-terminus of apoB is a general phenomenon associated with various kinds of oxidative modifications of LDL.  相似文献   

3.
4.
Tetravalent vanadium mediated oxidation of low density lipoprotein   总被引:1,自引:0,他引:1  
1. Tetravalent vanadium causes oxidation of low density lipoprotein (LDL) as manifest by protein degradation and lipid peroxidation. 2. Oxidative modification of the apolipoprotein B-100 is paralleled by the formation of thiobarbituric acid reactive substance and fluorescent chromolipid production. 3. The metal chelators ethylenediamine tetracetic acid and desferrioxamine, and the alcohols, ethanol and isopropanol inhibit the oxidation of LDL by tetravalent vanadium. No inhibition is observed with superoxide dismutase, catalase or mannitol. 4. The data suggest that aldehydes formed during the process of lipid peroxidation induced by tetravalent vanadium react with the proteins in LDL to form fluorescent chromolipids and that the oxidative process originates within the hydrophobic domain of LDL.  相似文献   

5.
Tanshinone II-A inhibits low density lipoprotein oxidation in vitro   总被引:5,自引:0,他引:5  
Tanshinone II-A (TSII-A) is a major component of Salvia miltorrhiza Bunge which has long been used for preventing and ameliorating anginal pain in China. However the effect of TSII-A on low density lipoprotein (LDL) oxidation has not been studied. The present study was performed to investigate the effects of TSII-A on LDL oxidation using four oxidizing systems, including copper-, peroxyl radical- and peroxynitriteinitiated and macrophage-mediated LDL oxidation. LDL oxidation was measured in terms of formation of thiobarbituric acid-reactive substances (TBARS), relative electrophoretic mobility (REM) on agarose gel and lag time. In all four systems, TSII-A has apparent antioxidative effects against LDL oxidation, as evidenced by its dose-dependent inhibition of TBARS formation, prolongation of lag time and suppression of increased REM.

Regarding the mechanism underlying its antioxidative effect, TSII-A neither scavenged superoxide nor peroxynitrite. It also did not chelate copper. But it has mild peroxyl radical scavenging activity. The direct binding to LDL particles and conformational change of LDL structure by TSII-A were suggested, because it increased negative charge of LDL which was shown by increased REM on agarose gel. In conclusion, TSII-A is an effective antioxidant against LDL oxidation in vitro. The underlying mechanism appears to be related to its peroxyl radical scavenging and LDL binding activity.  相似文献   

6.
Tanshinone II-A (TSII-A) is a major component of Salvia miltorrhiza Bunge which has long been used for preventing and ameliorating anginal pain in China. However the effect of TSII-A on low density lipoprotein (LDL) oxidation has not been studied. The present study was performed to investigate the effects of TSII-A on LDL oxidation using four oxidizing systems, including copper-, peroxyl radical- and peroxynitriteinitiated and macrophage-mediated LDL oxidation. LDL oxidation was measured in terms of formation of thiobarbituric acid-reactive substances (TBARS), relative electrophoretic mobility (REM) on agarose gel and lag time. In all four systems, TSII-A has apparent antioxidative effects against LDL oxidation, as evidenced by its dose-dependent inhibition of TBARS formation, prolongation of lag time and suppression of increased REM.

Regarding the mechanism underlying its antioxidative effect, TSII-A neither scavenged superoxide nor peroxynitrite. It also did not chelate copper. But it has mild peroxyl radical scavenging activity. The direct binding to LDL particles and conformational change of LDL structure by TSII-A were suggested, because it increased negative charge of LDL which was shown by increased REM on agarose gel. In conclusion, TSII-A is an effective antioxidant against LDL oxidation in vitro. The underlying mechanism appears to be related to its peroxyl radical scavenging and LDL binding activity.  相似文献   

7.
A method for monitoring low-density lipoprotein (LDL) oxidation by low-level chemiluminescence (LL-CL) is described in this study. The kinetic indices obtained with this procedure, in particular lag-time and K value (related to prooxidant activity of Cu2+ bound to LDL) are compared with those of the established UV-absorbing conjugated diene assay. The correlation of lag-time values obtained by LL-CL and conjugated diene assay was very high both in the case of Cu2+- and peroxyl-radical-mediated oxidation (r = 0.99). By using the transient free radical scavenging activity of butylated hydroxytoluene, a calibration of LL-CL for lipid peroxyl radical and termination rate was obtained. The spectral analysis of LL-CL from oxidizing LDL shows a maximum peak between 420 and 500 nm, corresponding to the emission of triplet carbonyl compounds. LL-CL allows continuous and direct monitoring of LDL oxidation as extraction and derivatization of lipid peroxidation products are not required. Moreover, some limitations of UV spectroscopy such as by absorbing compounds need not be considered. Therefore, the present procedure represents a simple and convenient tool for continuous monitoring of LDL oxidation which may be applied to mechanistic and clinical studies.  相似文献   

8.
Endogenous oxidized cholesterols are potent atherogenic agents. Therefore, the antioxidative effects of green tea catechins (GTC) against cholesterol oxidation were examined in an in vitro lipoprotein oxidation system. The antioxidative potency of GTC against copper catalyzed LDL oxidation was in the decreasing order (-)-epigalocatechin gallate (EGCG)=(-)-epicatechin gallate (ECG)>(-)-epicatechin (EC)=(+)-catechin (C)>(-)-epigallocatechin (EGC). Reflecting these activities, both EGCG (74%) and ECG (70%) inhibited the formation of oxidized cholesterol, as well as the decrease of linoleic and arachidonic acids, in copper catalyzed LDL oxidation. The formation of oxidized cholesterol in 2,2'-azobis(2-amidinopropane) hydrochloride (AAPH)-mediated oxidation of rat plasma was also inhibited when the rats were given diets containing 0.5% ECG or EGCG. In addition, EGCG and ECG highly inhibited oxygen consumption and formation of conjugated dienes in AAPH-mediated linoleic acid peroxidative reaction. These two species of catechin also markedly lowered the generation of hydroxyl radical and superoxide anion. Thus, GTC, especially ECG and EGCG, seem to inhibit cholesterol oxidation in LDL by combination of interference with PUFA oxidation, the reduction and scavenging of copper ion, hydroxyl radical generated from peroxidation of PUFA and superoxide anion.  相似文献   

9.
Dietary phenolic compounds, ubiquitous in vegetables and fruits and their juices possess antioxidant activity that may have beneficial effects on human health. The phenolic composition of six commercial apple juices, and of the peel (RP), flesh (RF) and whole fresh Red Delicious apples (RW), was determined by high performance liquid chromatography (HPLC), and total phenols were determined by the Folin-Ciocalteau method. HPLC analysis identified and quantified several classes of phenolic compounds: cinnamates, anthocyanins, flavan-3-ols and flavonols. Phloridzin and hydroxy methyl furfural were also identified. The profile of phenolic compounds varied among the juices. The range of concentrations as a percentage of total phenolic concentration was: hydroxy methyl furfural, 4-30%; phloridzin, 22-36%; cinnamates, 25-36%; anthocyanins, n.d.; flavan-3-ols, 8-27%; flavonols, 2-10%. The phenolic profile of the Red Delicious apple extracts differed from those of the juices. The range of concentrations of phenolic classes in fresh apple extracts was: hydroxy methyl furfural, n.d.; phloridzin, 11-17%; cinnamates, 3-27%; anthocyanins, n.d.-42%; flavan-3-ols, 31-54%; flavonols, 1-10%. The ability of compounds in apple juices and extracts from fresh apple to protect LDL was assessed using an in vitro copper catalyzed human LDL oxidation system. The extent of LDL oxidation was determined as hexanal production using static headspace gas chromatography. The apple juices and extracts, tested at 5 microM gallic acid equivalents (GAE), all inhibited LDL oxidation. The inhibition by the juices ranged from 9 to 34%, and inhibition by RF, RW and RP was 21, 34 and 38%, respectively. Regression analyses revealed no significant correlation between antioxidant activity and either total phenolic concentration or any specific class of phenolics. Although the specific components in the apple juices and extracts that contributed to antioxidant activity have yet to be identified, this study found that both fresh apple and commercial apple juices inhibited copper-catalyzed LDL oxidation. The in vitro antioxidant activity of apples support the inclusion of this fruit and its juice in a healthy human diet.  相似文献   

10.
INTRODUCTION: The aim of this study was to evaluate the influence of hypothyroidism on oxidative modification of low density lipoprotein (LDL). MATERIAL AND METHODS: 24 patients with overt hypothyroidism and 10 patients with mild hypothyroidism were enrolled to the study. The control group consisted of 24 healthy subjects with normal serum TSH. Plasma level of oxidized LDL (oxLDL) and serum level of antibodies against oxidized LDL (anti-oxLDL) determined lipoprotein oxidation. RESULTS: Significantly increased plasma oxLDL levels were found in patients with overt hypothyroidism in comparison to patients with mild hypothyroidism and control group. Anti-oxLDL levels in patients with overt or mild hypothyroidism and in the control group showed no significant differences. OxLDL plasma levels in patients with hypothyroidism inversely correlated with FT(4) levels and positively correlated with TSH, total cholesterol, LDL cholesterol and triglycerides levels. CONCLUSIONS: The presented study indicates increased lipoprotein oxidation in patients with hypothyroidism which depends on the degree of hypothyroidism and changes in lipid profile. Elevated cholesterol and triglycerides levels are the factors increasing lipoprotein oxidation. Plasma oxLDL levels may constitute a useful marker indicating the risk for atherosclerosis in hypothyroidism.  相似文献   

11.
  • 1.1. LDL was incubated in the presence of 1 μ M CuSO4 for 18 hr at 37°C. The content of lipoperoxides was found to be approx. 40 nmol MDA equivalents/mg LDL protein. The addition of 50 μM phosphatidylserine (PS) reduced the content of lipoperoxides to 15% of control values.
  • 2.2. The electrophoretic mobility observed for LDL oxidized in the presence of PS approximated the mobility observed for native LDL.
  • 3.3. The formation of conjugated dienes was strongly inhibited when LDL was oxidized in the presence of PS.
  • 4.4. The addition of 50 μM phosphatidylcholine, phosphatidylglycerol and cardiolipin did not alter the extent of LDL oxidation.
  • 5.5. PS did not inhibit the oxidation of LDL mediated by J774 macrophages in the presence of Ham's F-10 culture medium. Under these conditions, PS was found to be an excellent substrate for oxidation.
  相似文献   

12.
Effect of dipicolinic acid (pyridine 2,6-dicarboxylic acid) and pyridine compounds on the copper-dependent oxidation of human low density lipoprotein was analyzed in relation to the inhibition of copper reduction. Dipicolinic acid inhibited copper-dependent LDL oxidation completely, but the LDL oxidation was slightly inhibited by pyridine compounds with one carboxyl group at 2 or 6-position. Reduction of copper by LDL itself and ascorbate was inhibited completely by dipicolinic acid, but only partially by picolinic acid, quinolinic acid and isocinchomeronic acid with 2- or 6-carboxylic group. Pyridine compounds without 2- or 6-carboxyl group did not show any inhibitory effect on the LDL oxidation and the copper reduction. Protective effect of dipicolinic acid on the LDL oxidation was closely correlated with the copper-reducing activity. Dipicolinic acid shows an antioxidant action by the formation of a chelation complex with copper. This may have implications in understanding mechanisms of preventing LDL oxidation during the early phase of atherosclerosis.  相似文献   

13.
Five branched oleochemicals were prepared from commercially available methyl oleate and common organic acids; and their lubricant properties were determined. These branched oleochemicals are characterized as 9(10)-hydroxy-10(9)-ester derivatives of methyl oleate. These derivatives show improved low temperature properties, over olefinic oleochemicals, as determined by pour point and cloud point measurements. The derivatization also increased thermo-oxidative stability, measured using both pressurized differential scanning calorimetry (PDSC) and thin film micro oxidation (TFMO) methods. Branched oleochemicals were used as additives both in soybean oil and in polyalphaolefin. Their lubrication enhancement was evaluated by both four-ball and ball-on-disk wear determinations. These derivatives have good anti-wear and friction-reducing properties at relatively low concentrations, under all test loads. Their surface tensions were also determined and a trend was observed. The materials with larger side chain branches had lower surface tension than those containing smaller side chain branches. An exception to this trend was found when studying the compound with the carbonyl containing levulinic acid side chain, which had the highest surface tension of the branched oleochemicals studied. Overall, the data indicate that some of these derivatives have significant potential as a lubricating oil or fuel additives.  相似文献   

14.
The plasma clearance and tissue distribution of radioiodinated low-density lipoprotein (LDL), beta-very low density lipoprotein (beta-VLDL), and acetoacetylated LDL were studied in cholesterol-fed rabbits. Radioiodinated LDL ([125I]LDL) was cleared more slowly than either [125I]beta-VLDL or acetoacetylated-[125I]LDL and its fractional catabolic rate was one-half that of [125I]beta-VLDL and one-ninth that of acetoacetylated-[125I]LDL. Forty-eight hours after the injection of the labeled lipoproteins, the hepatic uptake was the greatest among the organs evaluated with the uptake of [125I]LDL being one-third that of either [125I]beta-VLDL or acetoacetylated-[125I]LDL. The reduction in the hepatic uptake of LDL due to a down-regulation of the receptors would account for this retarded plasma clearance.  相似文献   

15.
The inhibitory effect of a synthesized glutathione peroxidase (GSHPX) mimic- ebselen, and its cofactor glutathione (GSH), on the oxidation of low density lipoprotein (LDL) induced by Cu2+ was studied by determination of hydroperoxides and thiobarbituric acid reactive substances (TBARS). Ebselen alone had a strong inhibitory effect on the oxidation of LDL. The lag time of LDL oxidation was prolonged with an increase in the concentration of ebselen. The inhibitory effect of 5 μM ebselen was equivalent to that of 50 μM α-tocopherol. When GSH was present, ebselen exhibited stronger inhibitory effect than when present alone. With 50 μM GSH, ebselen at a concentration as low as 5 μM could inhibit oxidation of LDL induced by 5 μM Cu2+ completely for at least 24 h. Ebselen at high concentrations (100 μM) decomposed hydroperoxides in pre-oxidized LDL and effectively prevented its further oxidation, but not in the present of EDTA. Low concentration of ebselen (5 μM) plus GSH (50 μM) decomposed hydroperoxides in pre-oxidized LDL whether EDTA was added or not.  相似文献   

16.
Antioxidative effects of the flavonols and their glycosides, i.e., quercetin (Q), quercetin galactopyranoside (QG), quercetin rhamnolpyranoside (QR), rutin (R), morin (MO), myrecetin (MY), kaempferol (K) and kaempferol glucoside (KG), against free radical initiated peroxidation of human low density lipoprotein (LDL) were studied. The peroxidation was initiated either by a water-soluble initiator 2,2'-azobis(2-amidino propane hydrochloride) (AAPH), or by cupric ion (Cu2+). The reaction kinetics were monitored either by the uptake of oxygen and the depletion of alpha-tocopherol (TOH) presented in the native LDL, or by the formation of thiobarbituric acid reactive substances (TBARS). Kinetic analysis of the antioxidation process demonstrates that these flavonols and their glycosides are effective antioxidants against AAPH- and Cu(2+)-initiated LDL peroxidation, the flavonols bearing ortho-dihydroxyl groups possess significantly higher antioxidant activity than those bearing no such functionalities, and the glycosides are less active than their parent aglycones.  相似文献   

17.
Hydroxyl radicals have been shown to convert free tyrosine to 3,4-dihydroxyphenyl-alanine (DOPA) which has reducing properties. During protein or peptide oxidation such reducing species are also formed from tyrosine residues. Free DOPA or peptide-bound DOPA (PB-DOPA) is able to promote radical-generating events, facilitating the damage of biomolecules such as nucleic acids. Radical induced lipid oxidation in low density lipoprotein (LDL) transforms the lipoprotein into an atherogenic particle. As PB-DOPA has been found in atherosclerotic plaques, we tested the ability of free and PB-DOPA to influence LDL oxidation. Free DOPA, in contrast to tyrosine had strong inhibitory action on both, the copper-ion initiated and metal ion independent (AAPH-induced) lipid oxidation. Free DOPA also inhibited LDL oxidation induced by the copper transport protein ceruloplasmin. To test if PB-DOPA was also able to inhibit LDL oxidation, DOPA residues were generated enzymatically in the model peptides insulin and tyr-tyr-tyr, respectively. PB-DOPA formation substantially increased the ability of both molecules to inhibit LDL oxidation by copper or AAPH. We hypothesize that DOPA-peptides and -proteins may have the potential to act as efficacious antioxidants in the atherosclerotic plaque.  相似文献   

18.
《Life sciences》1995,58(2):PL17-PL22
We demonstrated that the flavonoid morin hydrate at 75–100 μM protects against the oxidation of low density lipoprotein (LDL) by free radicals produced by 2,2′-azo-bis(2-amidinopropane) dihydrochloride. Morin hydrate reduces the relative electrophoretic mobility, malondialdehyde equivalents and lipid peroxide level of oxidized LDL. On the other hand, Trolox (an analogue of vitamin E) showed less protective effect in the present system. Since free radical mediated oxidation of LDL is implicated to be a cause of atherogenesis, morin hydrate may be a candidate chemotherapeutic agent herein.  相似文献   

19.
Incubation of human high density lipoprotein (HDL) particles (density = 1.063-1.21 g/ml) with catalytic amounts of Manduca sexta lipid transfer particle (LTP) resulted in alteration of the density distribution of HDL protein such that the original HDL particles were transformed into new particles with an equilibrium density = 1.05 g/ml. Concomitantly, substantial amounts of protein were recovered in the bottom fraction of the density gradient. The LTP-induced alteration in HDL protein density distribution was dependent on the LTP concentration and incubation time. Electrophoretic analysis revealed that the lower density fraction contained apolipoprotein A-II (apoA-II) as the major apoprotein component while nearly all of the apoA-I was recovered in the bottom fraction. Lipid analysis of the HDL substrate and product fractions revealed that the apoA-I-rich fraction was nearly devoid of lipid (less than 1%, w/w). The lipid originally associated with HDL was recovered in the low density, apoA-II-rich, lipoprotein fraction, and the ratios of individual lipid classes were the same as in control HDL. Electron microscopy and gel permeation chromatography experiments revealed that the LTP-induced product lipoprotein population comprised particles of larger size (19.7 +/- 1.4-nm diameter) than control HDL (10.6 +/- 1.4-nm diameter). The results suggest that facilitated net lipid transfer between HDL particles altered the distribution of lipid such that apoprotein migration occurred and donor particles disintegrated. Similar results were obtained when human HDL3 or HDL2 density subclasses were employed as substrates for LTP. The lower surface area to core volume ratio of the larger, product lipoprotein particles compared with the substrate HDL requires that there be a decrease in the total exposed lipid/water interface which requires stabilization by apolipoprotein. Selective displacement of apoA-I by apoA-II or apoC, due to their greater surface binding affinity, dictates that apoA-I is preferentially lost from the lipoprotein surface and is therefore recovered as lipid-free apoprotein. Thus, it is conceivable that the structural arrangement of HDL particle lipid and apoprotein components isolated from human plasma may not represent the most thermodynamically stable arrangement of lipid and protein.  相似文献   

20.
The LDL receptor (LDLR) and scavenger receptor class B type I (SR-BI) play physiological roles in LDL and HDL metabolism in vivo. In this study, we explored HDL metabolism in LDLR-deficient mice in comparison with WT littermates. Murine HDL was radiolabeled in the protein (125I) and in the cholesteryl ester (CE) moiety ([3H]). The metabolism of 125I-/[3H]HDL was investigated in plasma and in tissues of mice and in murine hepatocytes. In WT mice, liver and adrenals selectively take up HDL-associated CE ([3H]). In contrast, in LDLR−/− mice, selective HDL CE uptake is significantly reduced in liver and adrenals. In hepatocytes isolated from LDLR−/− mice, selective HDL CE uptake is substantially diminished compared with WT liver cells. Hepatic and adrenal protein expression of lipoprotein receptors SR-BI, cluster of differentiation 36 (CD36), and LDL receptor-related protein 1 (LRP1) was analyzed by immunoblots. The respective protein levels were identical both in hepatic and adrenal membranes prepared from WT or from LDLR−/− mice. In summary, an LDLR deficiency substantially decreases selective HDL CE uptake by liver and adrenals. This decrease is independent from regulation of receptor proteins like SR-BI, CD36, and LRP1. Thus, LDLR expression has a substantial impact on both HDL and LDL metabolism in mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号