首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
We report an effective gene knockdown technique in rainbow trout embryos using additional RNA components combined with ribozymes (R(z)s). Chimeric R(z)s (tR(z)Cs) containing tRNA(Val), R(z) against GFP, and a constitutive transport element were microinjected into transgenic embryos. tR(z)Cs induced greater gene interference than R(z)s alone. Control tR(z)Cs did not affect unpaired bases of target RNA, and the tR(z)C did not interfere with non-relevant gene expression, suggesting that the tR(z)C-mediated gene-interference effects were sequence-specific. Furthermore, the tR(z)C-containing expression vector specifically suppressed target GFP expression in transgenic trout. tR(z)Cs enhance R(z) cleavage and could therefore be powerful tools for studying unknown gene function in vertebrates.  相似文献   

3.
4.
The Sex combs reduced (Scr) locus is unique among the genes contained within the Antennapedia complex (ANT-C) of Drosophila melanogaster in that it directs functions that are required for both cephalic and thoracic development in the embryo and the adult. Antibodies raised against protein encoded by Scr were used to follow the distribution of this gene product in embryos and imaginal discs of third instar larvae. Analysis of Scr protein accumulation in embryos hemizygous for breakpoint lesions mapping throughout the locus has allowed us to determine that sequences required for establishment of the Scr embryonic pattern are contained within a region of DNA that overlaps with the identified upstream regulatory region of the segmentation gene fushi tarazu (ftz). Gain-of-function mutations in Scr result in the presence of ectopic sex comb teeth on the first tarsal segment of mesothoracic and metathoracic legs of adult males. Heterozygous combinations of gain-of-function alleles with a wild-type Scr gene exhibit no evidence of ectopic protein localization in the second and third thoracic segments of embryos. However, mesothoracic and metathoracic leg imaginal discs can be shown to accumulate ectopically expressed Scr protein, implying a differential regulation of the Scr gene during these two periods of development. Additionally, we have found that the spatial pattern of Scr gene expression in imaginal tissues involved in the development of the adult thorax is governed in part by synapsis of homologous chromosomes in this region of the ANT-C. However, those imaginal discs that arise anteriorly to the prothorax do not appear to be sensitive to this form of gene regulation. Finally, we have demonstrated that the extent of Scr expression is influenced by mutations at the Polycomb (Pc) locus but not by mutant alleles of the zeste (z) gene. Taken together, our data suggests that Scr gene expression is differentially regulated both temporally and spatially in a manner that is sensitive to the structure of the locus.  相似文献   

5.
6.
7.
Combining gene targeting of animal somatic cells with nuclear transfer technique has provided a powerful method to produce transgenic animal mammary gland bioreactor. The objective of this study is to make an efficient and reproducible gene targeting in goat fetal fibroblasts by inserting the exogenous htPAm cDNA into the beta-casein locus with liposomes or electroporation so that htPAm protein might be produced in gene-targeted goat mammary gland. By gene-targeting technique, the exogenous htPAm gene was inserted to milk goat beta-casein gene sequences. Fetal fibroblasts were isolated from Day 35 fetuses of Guanzhong milk goats, and transfected with linear gene-targeting vector pGBC4htPAm using Lipefectamin-2000 and electoporation, respectively. Forty-eight gene-targeted cell colonies with homologous recombination were obtained, and three cell colonies were verified by DNA sequence analysis within the homologous recombination region. Using gene-targeted cell lines as donor cells for nuclear transfer, a total of 600 reconstructed embryos had been obtained, and 146 developed cloned embryos were transferred to 16 recipient goats, and finally three goats showed pregnancy at Day 90.  相似文献   

8.
9.
The knowledge base EPO-KB (Empirical Proteomic Ontology Knowledge Base) is based on an OWL ontology that represents current knowledge linking mass-to-charge (m/z) ratios to proteins on multiple platforms including Matrix Assisted Laser/Desorption Ionization (MALDI) and Surface Enhanced Laser/Desorption Ionization (SELDI)--Time of Flight (TOF). At present, it contains information on m/z ratio to protein links that were extracted from 120 published research papers. It has a web interface that allows researchers to query and retrieve putative proteins that correspond to a user-specified m/z ratio. EPO-KB also allows automated entry of additional m/z ratio to protein links and is expandable to the addition of gene to protein and protein to disease links. AVAILABILITY: http://www.dbmi.pitt.edu/EPO-KB  相似文献   

10.
The effect of the oviductal environment on gene expression in 2-cell mouse embryos was examined with mRNA differential display. Embryos used for experiments were cultured in modified Whitten medium with or without oviductal tissue until late 2-cell stage. The results of sequencing indicated that the genes for ATP synthase (ATPase 6), S:-adenosylmethionine decarboxylase (S:-AMDC) and nuclear autoantigenic sperm protein (NASP) were differentially expressed in embryos cultured in the oviductal environment (nonblocking culture condition). The ATPase 6 gene is encoded by mitochondrial DNA and is essential for the production of ATP. This indicates that the expression of ATP synthesis-related genes at the 2-cell stage may be required to maintain normal development in vitro. S:-Adenosylmethionine decarboxylase decarboxylates adenosylmethionine, which is a substrate of DNA methylation. The expression of S:-AMDC may be responsible for the low level of methylation of preimplantation development. As NASP is a histone-binding protein that is thought to be testis and sperm specific, its function in embryos remains unclear. On the other hand, the Tcl1 gene and a novel gene, the c-1 gene, were strongly expressed in embryos cultured without oviductal tissue (blocking culture condition). The expression patterns of these genes are quite similar. However, the detailed functions of these genes in embryos remain to be determined.  相似文献   

11.
Vascular endothelial growth factor (VEGF-A) is a key angiogenic growth factor which regulates vertebrate embryonic vascularization, adult physiology such as wound healing and reproduction as well as many human diseases. To understand the evolution and regulation of this gene in vertebrates, we have isolated and characterized the zebrafish vegf-A gene and compared it with VEGF-A genes of human, mouse as well as an in silico isolated VEGF-A homologue from pufferfish. Our results indicate that the zebrafish vegf-A gene is organized similarly to mammalian and Fugu VEGF-A genes, with eight exons interrupted by seven introns. However, zebrafish vegf-A introns are generally larger than mammalian introns while Fugu VEGF-A introns are much smaller. Furthermore, zebrafish exon 6 (z6) has a unique sequence while Fugu's exon 6 is highly homologous to the mammalian counterparts. Alternative splicing generates multiple vegf-A mRNA isoforms in zebrafish with Vegf(121) as the dominant isoform in adult and Vegf(165) as the dominant isoform in early embryos. The exon z6 containing isoform Vegf(12345z678) is only detected in heart, muscle, and early embryos while another isoform Vegf-A(1234577)(a)(8) is only detected in heart. Furthermore, no conserved 5' flanking sequences between zebrafish and Fugu were observed while numerous conserved regions exist between human and mouse in this area. These results suggest both conserved and diverged functions of VEGF-A from fish to mammals since the separation of these two groups from their common ancestor about 450 million years ago and a diverged regulation of this gene since the separation of zebrafish from Fugu. These data will be valuable for future studies of VEGF-A gene regulation and function in different vertebrates.  相似文献   

12.
13.
During vertebrate embryonic development, a key to unraveling specific functions of gene products is the capability to manipulate expression of the gene of interest at the desired time and place. For this, we developed a 'microelectroporation' technique by which DNA can be locally introduced into a targeted site of avian embryos, restricting spatial expression of the protein products during development. This technique involved injection of DNA solution in ovo around the target tissue and pinpoint application of an electric field by tungsten electrodes, allowing efficient and reproducible targeted gene transfer, for example, into an optic vesicle, somites, cranial mesoderm and limb mesenchyme. Because of the locality of gene introduction and its expression, survival rates of the embryos were high: approximately 90% of the embryos injected in optic vesicles were alive for at least 1 day after microelectroporation. The instantaneous gene transfer into embryonic cells allowed rapid expression of protein products such as green fluorescence protein within 2.5 h with fluorescence maintained for 3 days of incubation. This improved technique provides a convenient and efficient way to express transgenes in a spatially and temporally restricted manner in chicken embryos.  相似文献   

14.
Gene silencing is required to stably maintain distinct patterns of gene expression during eukaryotic development and has been correlated with the induction of chromatin domains that restrict gene activity. We describe the isolation of human (EZH2) and mouse (Ezh1) homologues of the Drosophila Polycomb-group (Pc-G) gene Enhancer of zeste [E(z)], a crucial regulator of homeotic gene expression implicated in the assembly of repressive protein complexes in chromatin. Mammalian homologues of E(z) are encoded by two distinct loci in mouse and man, and the two murine Ezh genes display complementary expression profiles during mouse development. The E(z) gene family reveals a striking functional conservation in mediating gene repression in eukaryotic chromatin: extra gene copies of human EZH2 or Drosophila E(z) in transgenic flies enhance position effect variegation of the heterochromatin-associated white gene, and expression of either human EZH2 or murine Ezh1 restores gene repression in Saccharomyces cerevisiae mutants that are impaired in telomeric silencing. Together, these data provide a functional link between Pc-G-dependent gene repression and inactive chromatin domains, and indicate that silencing mechanism(s) may be broadly conserved in eukaryotes.  相似文献   

15.
Polycomb group (PcG) genes are required for stable inheritance of epigenetic states throughout development, a phenomenon termed cellular memory. In Drosophila and mice, the product of the E(z) gene, one of the PcG genes, constitutes the ESC-E(Z) complex and specifically methylates histone H3. It has been argued that this methylation sets the stage for appropriate repression of certain genes. Here, we report the isolation of a well-conserved homolog of E(z), olezh2, in medaka. Hypomorphic knock-down of olezh2 resulted in a cyclopia phenotype and markedly perturbed hedgehog signaling, consistent with our previous report on oleed, a medaka esc. We also found cyclopia in embryos treated with trichostatin A, an inhibitor of histone deacetylase, which is a transient component of the ESC-E(Z) complex. The level of tri-methylation at lysine 27 of histone H3 was substantially decreased in both olezh2 and oleed knock-down embryos, and in embryos with hedgehog signaling perturbed by forskolin. We conclude that the ESC-E(Z) complex per se participates in hedgehog signaling.  相似文献   

16.
Atkins RL  Wang D  Burke RD 《BioTechniques》2000,28(1):94-6, 98, 100
Avian embryos are a popular model for cell and developmental biologists. However, analysis of gene function in living embryos has been hampered by difficulties in targeting the expression of exogenous genes. We have developed a method for localized electroporation that overcomes some of the limitations of current techniques. We use a double-barreled suction electrode, backfilled with a solution containing a plasmid-encoding green fluorescent protein (GFP) and a neurophysiological stimulator to electroporate small populations of cells in living embryos. As many as 600 cells express GFP 24-48 h after electroporation. The number of cells that express GFP depends on the number of trains, the pulse frequency and the voltage. Surface epithelial cells and cells deep to the point of electroporation express GFP. No deformities result from electroporations, and neurons, neural crest, head mesenchyme, lens and otic placode cells have been transfected. This method overcomes some of the disadvantages of viral techniques, lipofection and in vivo electroporation. The method will be useful to biologists interested in tracing cell lineage or making genetic mosaic avian embryos.  相似文献   

17.
p600 is a multifunctional protein implicated in cytoskeletal organization, integrin-mediated survival signaling, calcium-calmodulin signaling and the N-end rule pathway of ubiquitin-proteasome-mediated proteolysis. While push, the Drosophila counterpart of p600, is dispensable for development up to adult stage, the role of p600 has not been studied during mouse development. Here we generated p600 knockout mice to investigate the in vivo functions of p600. Interestingly, we found that homozygous deletion of p600 results in lethality between embryonic days 11.5 and 13.5 with severe defects in both embryo and placenta. Since p600 is required for placental development, we performed conditional disruption of p600, which deletes selectively p600 in the embryo but not in the placenta. The conditional mutant embryos survive longer than knockout embryos but ultimately die before embryonic day 14.5. The mutant embryos display severe cardiac problems characterized by ventricular septal defects and thin ventricular walls. These anomalies are associated with reduced activation of FAK and decreased expression of MEF2, which is regulated by FAK and plays a crucial role in cardiac development. Moreover, we observed pleiotropic defects in the liver and brain. In sum, our study sheds light on the essential roles of p600 in fetal development.  相似文献   

18.
The zeste gene product is required for transvection effects that imply the ability of regulatory elements on one chromosome to affect the expression of the homologous gene in a somatically paired chromosome. The z1 mutation causes a pairing dependent inhibition of the expression of the white gene. Both of these phenomena can be explained by the tendency of zeste protein, expressed in bacteria or in flies, to self-associate, forming complexes of several hundred monomers. These large aggregates bind to DNA and are found in nuclear matrix preparations, probably because they co-sediment with the matrix. The principal determinants of this self-association are located in the C-terminal half of the protein but some limited aggregation is obtained also with the N-terminal half, which contains the DNA binding domain. The z1 and zop2 mutant proteins aggregate to the same degree as the wild type but the z11G3 product, a pseudorevertant of z1, has a reduced tendency to aggregate. This mutation, which in vivo is antagonistic to z1 and does not support transvection effects, can be made to revert its phenotype when the mutant protein is over-produced under the control of the heat shock promoter. These results indicate that both the zeste-white interaction and transvection effects require the formation of high order aggregates. When the z1 protein is over-produced in vivo, it reduces the expression of an unpaired copy of white, indicating that the normal requirement for chromosome pairing is simply a device to increase the size of the aggregate bound to the white regulatory region.  相似文献   

19.
【目的】肠出血性大肠杆菌O157:H7是世界范围内重要的动物源性致病菌之一,可感染人。I型菌毛是多种致病性大肠杆菌(如肾盂肾炎型大肠杆菌等)可表达的一种黏附结构,与细菌吸附黏膜表面密切相关。然而,O157:H7 fim操纵子上几个核苷酸的缺失却导致其不能表达I型菌毛。BLAST比对结果表明O157:H7独有的开放阅读框z3276编码的氨基酸序列与其他大肠杆菌I型菌毛高度同源,这可能是对O157:H7不能表达I型菌毛的补偿机制,但确切功能尚不清楚。本文探究z3276基因的生物学功能。【方法】利用O157:H7 86-24参考菌株构建z3276基因缺失株(?z3276),并构建其互补株(C?z3276),进而比较亲本株、?z3276与C?z3276的生物学特性及对小鼠致病性差异。【结果】与亲本株相比,?z3276进入对数生长期的时间延后,在半固体琼脂平板上的迁移直径明显缩小,生物被膜形成能力显著减弱。?z3276对HEp-2细胞的黏附和侵袭能力并无明显变化,但对IPEC-J2细胞的侵袭能力明显减弱。在小鼠攻毒试验中,?z3276组排菌数量减少、排菌持续时间缩短。C?z3276各项特性均能回复到与亲本株一致的水平。【结论】z3276基因可能是O157:H7重要的毒力相关因子。  相似文献   

20.
Mammalian male preimplantation embryos develop more quickly than females . Using enhanced green fluorescent protein (EGFP)-tagged X chromosomes to identify the sex of the embryos, we compared gene expression patterns between male and female mouse blastocysts by DNA microarray. We detected nearly 600 genes with statistically significant sex-linked expression; most differed by 2-fold or less. Of 11 genes showing greater than 2.5-fold differences, four were expressed exclusively or nearly exclusively sex dependently. Two genes (Dby and Eif2s3y) were mapped to the Y chromosome and were expressed in male blastocysts. The remaining two (Rhox5/Pem and Xist) were mapped to the X chromosome and were predominantly expressed in female blastocysts. Moreover, Rhox5/Pem was expressed predominantly from the paternally inherited X chromosome, indicating sex differences in early epigenetic gene regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号