首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We analysed 120 white‐tailed sea eagles Haliaeetus albicilla from eastern (Poland and Estonia) and southeastern (Serbian Danube population) Europe for genetic variability and structuring at the mitochondrial control region and seven nuclear microsatellite loci. We combined this new dataset with sequence and genotype data from previous analyses covering Greenland and Eurasia (total sample sizes of 420 and 186 individuals for mtDNA and microsatellites, respectively) to address the following questions: 1) does the large eastern population in Europe add significantly to the species‘ overall genetic diversity? 2) Do the new sequence data match the clinal distribution pattern (west to east) of the two major mtDNA lineages? 3) Does the preliminary hypothesis of two nuclear genetic clusters recently found in this species hold for the whole of Europe, and do these clusters show a geographic pattern? Our results confirmed Europe as a stronghold of genetic diversity in white‐tailed sea eagles, and the east of the continent contributed disproportionately to this, the reason being the admixture of eagles with different genetic background. As hypothesised, both mitochondrial lineages were recovered also in eastern Europe, but the globally more eastern lineage was dominant. The presence of two microsatellite clusters was also confirmed, and these groups, too, show a non‐random geographic distribution, with, except for Poland, a high proportion of ‘eastern‐type’ eagles in the populations of east–central and eastern Europe.  相似文献   

2.
The 1278insTATC is the most prevalent -hexosaminidase A (HEXA) gene mutation causing Tay-Sachs disease (TSD), one of the four lysosomal storage diseases (LSDs) occurring at elevated frequencies among Ashkenazi Jews (AJs). To investigate the genetic history of this mutation in the AJ population, a conserved haplotype (D15S981:175–D15S131:240–D15S1050:284–D15S197:144–D15S188:418) was identified in 1278insTATC chromosomes from 55 unrelated AJ individuals (15 homozygotes and 40 heterozygotes for the TSD mutation), suggesting the occurrence of a common founder. When two methods were used for analysis of linkage disequilibrium (LD) between flanking polymorphic markers and the disease locus and for the study of the decay of LD over time, the estimated age of the insertion was found to be 40±12 generations (95% confidence interval: 30–50 generations), so that the most recent common ancestor of the mutation-bearing chromosomes would date to the 8th–9th century. This corresponds with the demographic expansion of AJs in central Europe, following the founding of the Ashkenaz settlement in the early Middle Ages. The results are consistent with the geographic distribution of the main TSD mutation, 1278insTATC being more common in central Europe, and with the coalescent times of mutations causing two other LSDs, Gaucher disease and mucolipidosis type IV. Evidence for the absence of a determinant positive selection (heterozygote advantage) over the mutation is provided by a comparison between the estimated age of 1278insTATC and the probability of the current AJ frequency of the mutant allele as a function of its age, calculated by use of a branching-process model. Therefore, the founder effect in a rapidly expanding population arising from a bottleneck provides a robust parsimonious hypothesis explaining the spread of 1278insTATC-linked TSD in AJ individuals.Electronic database information: URLs for the data in this article are as follows: , ,  相似文献   

3.
The type II and type III mutations at the FXI locus, which cause coagulation factor XI deficiency, have high frequencies in Jewish populations. The type III mutation is largely restricted to Ashkenazi Jews, but the type II mutation is observed at high frequency in both Ashkenazi and Iraqi Jews, suggesting the possibility that the mutation appeared before the separation of these communities. Here we report estimates of the ages of the type II and type III mutations, based on the observed distribution of allelic variants at a flanking microsatellite marker (D4S171). The results are consistent with a recent origin for the type III mutation but suggest that the type II mutation appeared >120 generations ago. This finding demonstrates that the high frequency of the type II mutation among Jews is independent of the demographic upheavals among Ashkenazi Jews in the 16th and 17th centuries.  相似文献   

4.
Adipophilin (ADPH), a prominent protein component of lipid storage droplets (LSDs), is postulated to be necessary for the formation and cellular function of these structures. The presence of significant sequence similarities within an approximately 100 amino acid region of the N-terminal portions of ADPH and related LSD binding proteins, perilipin and TIP47, has implicated this region, known as the "PAT" domain, in LSD targeting. Here we investigate the role of the PAT domain in targeting ADPH to LSDs by expressing this region, as well as selected N- and C-terminal truncations of mouse ADPH in COS7 cells as epitope-tagged fusion proteins. Our studies show that truncations lacking either the PAT domain or the C-terminal half of ADPH both correctly targeted LSDs and increased the LSD content of transfected cells. Neither the PAT domain nor the C-terminal half of ADPH appeared to target LSDs or affect the LSD number. Instead, targeting fragments encompassed a putative alpha-helical region between amino acids 189 and 205, implicating this region in both LSD targeting and regulation of LSD formation.  相似文献   

5.
Lysosomal storage disorders (LSDs) are diseases characterized by the accumulation of macromolecules in the late endocytic system and are caused by inherited defects in genes that encode mainly lysosomal enzymes or transmembrane lysosomal proteins. Niemann-Pick type C disease (NPCD), a LSD characterized by liver damage and progressive neurodegeneration that leads to early death, is caused by mutations in the genes encoding the NPC1 or NPC2 proteins. Both proteins are involved in the transport of cholesterol from the late endosomal compartment to the rest of the cell. Loss of function of these proteins causes primary cholesterol accumulation, and secondary accumulation of other lipids, such as sphingolipids, in lysosomes. Despite years of studying the genetic and molecular bases of NPCD and related-lysosomal disorders, the pathogenic mechanisms involved in these diseases are not fully understood. In this review we will summarize the pathogenic mechanisms described for NPCD and we will discuss their relevance for other LSDs with neurological components such as Niemann- Pick type A and Gaucher diseases. We will particularly focus on the activation of signaling pathways that may be common to these three pathologies with emphasis on how the intra-lysosomal accumulation of lipids leads to pathology, specifically to neurological impairments. We will show that although the primary lipid storage defect is different in these three LSDs, there is a similar secondary accumulation of metabolites and activation of signaling pathways that can lead to common pathogenic mechanisms. This analysis might help to delineate common pathological mechanisms and therapeutic targets for lysosomal storage diseases.  相似文献   

6.
A study was undertaken to characterize the mutation(s) responsible for Tay-Sachs disease (TSD) in a Cajun population in southwest Louisiana and to identify the origins of these mutations. Eleven of 12 infantile TSD alleles examined in six families had the beta-hexosaminidase A (Hex A) alpha-subunit exon 11 insertion mutation that is present in approximately 70% of Ashkenazi Jewish TSD heterozygotes. The mutation in the remaining allele was a single-base transition in the donor splice site of the alpha-subunit intron 9. To determine the origins of these two mutations in the Cajun population, the TSD carrier status was enzymatically determined for 90 members of four of the six families, and extensive pedigrees were constructed for all carriers. A single ancestral couple from France was found to be common to most of the carriers of the exon 11 insertion. Pedigree data suggest that this mutation has been in the Cajun population since its founding over 2 centuries ago and that it may be widely distributed within the population. In contrast, the intron 9 mutation apparently was introduced within the last century and probably is limited to a few Louisiana families.  相似文献   

7.
Lysosomal storage diseases (LSDs), of which about 50 are known, are caused by the defective activity of lysosomal proteins, resulting in accumulation of unmetabolized substrates. As a result, a variety of pathogenic cascades are activated such as altered calcium homeostasis, oxidative stress, inflammation, altered lipid trafficking, autophagy, endoplasmic reticulum stress, and autoimmune responses. Some of these pathways are common to many LSDs, whereas others are only altered in a subset of LSDs. We now review how these cascades impact upon LSD pathology and suggest how intervention in the pathways may lead to novel therapeutic approaches.  相似文献   

8.
The molecular basis of more than 25 genetic diseases has been described in Ashkenazi Jewish populations. Most of these diseases are characterized by one or two major founder mutations that are present in the Ashkenazi population at elevated frequencies. One explanation for this preponderance of recessive diseases is accentuated genetic drift resulting from a series of dispersals to and within Europe, endogamy, and/or recent rapid population growth. However, a clear picture of the manner in which neutral genetic variation has been affected by such a demographic history has not yet emerged. We have examined a set of 32 binary markers (single nucleotide polymorphisms; SNPs) and 10 microsatellites on the non-recombining portion of the Y chromosome (NRY) to investigate the ways in which patterns of variation differ between Ashkenazi Jewish and their non-Jewish host populations in Europe. This set of SNPs defines a total of 20 NRY haplogroups in these populations, at least four of which are likely to have been part of the ancestral Ashkenazi gene pool in the Near East, and at least three of which may have introgressed to some degree into Ashkenazi populations after their dispersal to Europe. It is striking that whereas Ashkenazi populations are genetically more diverse at both the SNP and STR level compared with their European non-Jewish counterparts, they have greatly reduced within-haplogroup STR variability, especially in those founder haplogroups that migrated from the Near East. This contrasting pattern of diversity in Ashkenazi populations is evidence for a reduction in male effective population size, possibly resulting from a series of founder events and high rates of endogamy within Europe. This reduced effective population size may explain the high incidence of founder disease mutations despite overall high levels of NRY diversity.Electronic Supplementary Material Supplementary material is available in the online version of this article at D.M. Behar and D. Garrigan contributed equally to this workElectronic database information: URLs for the data in this article are as follows:ARLEQUIN,  相似文献   

9.
To investigate which aspects of contemporary human Y-chromosome variation in Europe are characteristic of primary colonization, late-glacial expansions from refuge areas, Neolithic dispersals, or more recent events of gene flow, we have analyzed, in detail, haplogroup I (Hg I), the only major clade of the Y phylogeny that is widespread over Europe but virtually absent elsewhere. The analysis of 1,104 Hg I Y chromosomes, which were identified in the survey of 7,574 males from 60 population samples, revealed several subclades with distinct geographic distributions. Subclade I1a accounts for most of Hg I in Scandinavia, with a rapidly decreasing frequency toward both the East European Plain and the Atlantic fringe, but microsatellite diversity reveals that France could be the source region of the early spread of both I1a and the less common I1c. Also, I1b*, which extends from the eastern Adriatic to eastern Europe and declines noticeably toward the southern Balkans and abruptly toward the periphery of northern Italy, probably diffused after the Last Glacial Maximum from a homeland in eastern Europe or the Balkans. In contrast, I1b2 most likely arose in southern France/Iberia. Similarly to the other subclades, it underwent a postglacial expansion and marked the human colonization of Sardinia ~9,000 years ago.  相似文献   

10.
West Nile virus (WNV) is the most widely distributed of the encephalitic flaviviruses and is a major cause of encephalitis, with isolates obtained from all continents, apart from Antarctica. Subsequent to its divergence from the other members of the Japanese encephalitis virus complex, presumably in Africa, WNV has diverged into individual lineages that mostly correspond with geographic distribution. Here we elucidate the phylogeography and evolutionary history of isolates from lineage 1 of WNV. Interestingly, there are many examples of the same amino acid having evolved independently on multiple occasions. In Africa, WNV exists in an endemic cycle, whereas it is epidemic in Europe, being reintroduced regularly from Africa either directly (in western Europe) or via the Middle East (in eastern Europe). Significantly, introduction into other geographic areas has occurred on one occasion only in each region, leading to subsequent establishment and expansion of the virus in these areas. Only one endemic genotype each is present in India and Australia, suggesting that WNV was successfully introduced into these locations once only. Each introduction occurred many centuries ago, probably due to trade and exploration during the 19th century. Likewise, in the Americas, WNV was successfully introduced in 1999 and subsequently became endemic across most temperate regions of North America (NA). In contrast to previous suggestions, an isolate from the epidemic in Israel in 1998 was not the direct progenitor of the NA epidemic; rather, both epidemics originated from the same (unknown) location.  相似文献   

11.
The N370S mutation at the GBA locus on human chromosome 1q21, which causes Gaucher disease (GD), has a high frequency in the Ashkenazim and is the second-most-widespread GD mutation in the European non-Jewish population. A common ancient origin for the N370S mutation in the Ashkenazi Jewish and Spanish populations has been proposed on the basis of both a similar haplotype for associated markers and an age estimate that suggests that this mutation appeared several thousand years ago. However, a reappraisal of haplotype data, using the Risch formula properly along with a Luria-Delbrück setting of the genetic clock, allows identification of the likely origin of the N370S mutation in Ashkenazi Jews between the 11th and 13th centuries. This result is consistent with the estimated ages of other mutations that are frequent among Ashkenazim, with the exception of type II (Glu117Stop) factor XI deficiency, which is deemed to be >3000 years old, predating the separation of the Ashkenazi and Iraqi Jews. The present finding supports the hypothesis of a more recent origin for the N370S mutation and is consistent with both a founder chromosome transfer from Ashkenazim who assimilated in some European populations and a non-Jewish origin of the European N370S-bearing chromosomes.  相似文献   

12.
Detailed population data were obtained on the distribution of novel biallelic markers that finely dissect the human Y-chromosome haplogroup E-M78. Among 6,501 Y chromosomes sampled in 81 human populations worldwide, we found 517 E-M78 chromosomes and assigned them to 10 subhaplogroups. Eleven microsatellite loci were used to further evaluate subhaplogroup internal diversification. The geographic and quantitative analyses of haplogroup and microsatellite diversity is strongly suggestive of a northeastern African origin of E-M78, with a corridor for bidirectional migrations between northeastern and eastern Africa (at least 2 episodes between 23.9-17.3 ky and 18.0-5.9 ky ago), trans-Mediterranean migrations directly from northern Africa to Europe (mainly in the last 13.0 ky), and flow from northeastern Africa to western Asia between 20.0 and 6.8 ky ago. A single clade within E-M78 (E-V13) highlights a range expansion in the Bronze Age of southeastern Europe, which is also detected by haplogroup J-M12. Phylogeography pattern of molecular radiation and coalescence estimates for both haplogroups are similar and reveal that the genetic landscape of this region is, to a large extent, the consequence of a recent population growth in situ rather than the result of a mere flow of western Asian migrants in the early Neolithic. Our results not only provide a refinement of previous evolutionary hypotheses but also well-defined time frames for past human movements both in northern/eastern Africa and western Eurasia.  相似文献   

13.
The lysosomal storage diseases (LSDs) collectively account for death in 1 in 8,000 children. Although some forms are treatable, they are essentially incurable and usually are lethal in the first decade of life. The most intractable forms of LSD are those with neuronal involvement. In an effort to identify the pathological signaling driving pathology in the LSDs, invertebrate models have been developed. In this review, we outline our current understanding of LSDs and recent findings using invertebrate models. We outline strategies and pitfalls for the development of such models. Available models of LSD in Drosophila and Caenorhabditis elegans are uncovering roles for LSD-related proteins with previously unknown function using both gain-of-function and loss-of-function strategies. These models of LSD in Drosophila and C. elegans have identified potential pathogenic signaling cascades that are proving critical to our understanding of these lethal diseases.  相似文献   

14.
This study was carried out to determine the 32-bp deletion allele frequencies in the CCR5 gene (CCR5-Delta32) in various populations of Jews of eastern European origin (Ashkenazi Jews). The total population sample (n = 351) represented Ashkenazi Jews originating from seven geographic groups in Europe. The overall frequency of the CCR5-Delta32 allele was elevated (13.7%), although some important differences in frequencies occurred among the seven countries included in the survey; the frequency was highest (25.9%) in those of Lithuanian origin. There is an apparent trend (r = 0.74) involving a lowering of the Delta32 allele frequencies moving from north to south in the seven populations tested. The Delta32 frequencies obtained were compared to those already published for non-Jewish populations inhabiting the same countries and the differences in frequencies were not significant, with the exception of Lithuania (chi(2) = 2.20, p < 0.03). Founder effect and genetic drift are proposed to explain the elevated values observed in Ashkenazi Jews and those originating from Lithuania.  相似文献   

15.
Lipocalin-type prostaglandin (PG) D synthase (L-PGDS) is a dually functional protein, acting both as a PGD2-synthesizing enzyme and as an extracellular transporter of various lipophilic small molecules. L-PGDS is expressed in oligodendrocytes (OLs) in the central nervous system and is up-regulated in OLs of the twitcher mouse, a model of globoid cell leukodystrophy (Krabbe's disease). We investigated whether up-regulation of L-PGDS is either unique to Krabbe's disease or is a more generalized phenomenon in lysosomal storage disorders (LSDs), using LSD mouse models of Tay-Sachs disease, Sandhoff disease, GM1 gangliosidosis and Niemann-Pick type C1 disease. Quantitative RT-PCR revealed that L-PGDS mRNA was up-regulated in the brains of all these mouse models. In addition, strong L-PGDS immunoreactivity was observed in OLs, but not in either astrocytes or microglia in these models. Thus, up-regulation of L-PGDS appears to be a common response of OLs in LSDs. Moreover, surface plasmon resonance analyses revealed that L-PGDS binds GM1 and GM2 gangliosides, accumulated in neurons in the course of LSD, with high affinities (KD = 65 and 210 nm, respectively). This suggests that L-PGDS may play a role in scavenging harmful lipophilic substrates in LSD.  相似文献   

16.
In many plant and animal species, sexual and asexual forms have different geographical distributions ('geographic parthenogenesis'). The common dandelion Taraxacum officinale s.l. provides a particularly clear example of differing distributions: diploid sexuals are restricted to southern and central Europe, while triploid asexuals occur across Europe. To get a better understanding of the factors underlying this pattern, we studied the distribution and demography of sexuals and asexuals in a mixed population that was located at the northern distribution limit of the sexuals. In this population three adjacent, contrasting microhabitats were found: a foreland and south and north slopes of a river dike. Comparative analyses of the distribution, phenology and demography indicated that sexuals had a stronger preference for the south slope than did asexuals. We therefore propose that the large-scale geographic parthenogenesis in T. officinale is shaped by an environmental gradient which acts upon the sexuals.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 82 , 205–218.  相似文献   

17.
The ornate dog tick (Dermacentor reticulatus) shows a recently expanding geographic distribution. Knowledge on its intraspecific variability, population structure, rate of genetic diversity and divergence, including its evolution and geographic distribution, is crucial to understand its dispersal capacity. All such information would help to evaluate the potential risk of future spread of associated pathogens of medical and veterinary concern. A set of 865 D. reticulatus ticks was collected from 65 localities across 21 countries, from Portugal in the west to Kazakhstan and southern Russia in the east. Cluster analyses of 16 microsatellite loci were combined with nuclear (ITS2, 18S) and mitochondrial (12S, 16S, COI) sequence data to uncover the ticks’ population structures and geographical patterns. Approximate Bayesian computation was applied to model evolutionary relationships among the found clusters. Low variability and a weak phylogenetic signal showing an east–west cline were detected both for mitochondrial and nuclear sequence markers. Microsatellite analyses revealed three genetic clusters, where the eastern and western cluster gradient was supplemented by a third, northern cluster. Alternative scenarios could explain such a tripartite population structure by independent formation of clusters in separate refugia, limited gene flow connected with isolation by distance causing a “bipolar pattern”, and the northern cluster deriving from admixture between the eastern and western populations. The best supported demographic scenario of this tick species indicates that the northern cluster derived from admixture between the eastern and western populations 441 (median) to 224 (mode) generations ago, suggesting a possible link with the end of the Little Ice Age in Europe.  相似文献   

18.
Type 1 Gaucher disease (GD), a non-neuronopathic lysosomal storage disorder, results from the deficient activity of acid beta-glucosidase (GBA). Type 1 disease is panethnic but is more prevalent in individuals of Ashkenazi Jewish (AJ) descent. Of the causative GBA mutations, N370S is particularly frequent in the AJ population, (q approximately .03), whereas the 84GG insertion (q approximately .003) occurs exclusively in the Ashkenazim. To investigate the genetic history of these mutations in the AJ population, short tandem repeat (STR) markers were used to map a 9.3-cM region containing the GBA locus and to genotype 261 AJ N370S chromosomes, 60 European non-Jewish N370S chromosomes, and 62 AJ 84GG chromosomes. A highly conserved haplotype at four markers flanking GBA (PKLR, D1S1595, D1S2721, and D1S2777) was observed on both the AJ chromosomes and the non-Jewish N370S chromosomes, suggesting the occurrence of a founder common to both populations. Of note, the presence of different divergent haplotypes suggested the occurrence of de novo, recurrent N370S mutations. In contrast, a different conserved haplotype at these markers was identified on the 84GG chromosomes, which was unique to the AJ population. On the basis of the linkage disequilibrium (LD) delta values, the non-Jewish European N370S chromosomes had greater haplotype diversity and less LD at the markers flanking the conserved haplotype than did the AJ N370S chromosomes. This finding is consistent with the presence of the N370S mutation in the non-Jewish European population prior to the founding of the AJ population. Coalescence analyses for the N370S and 84GG mutations estimated similar coalescence times, of 48 and 55.5 generations ago, respectively. The results of these studies are consistent with a significant bottleneck occurring in the AJ population during the first millennium, when the population became established in Europe.  相似文献   

19.
The function of lysosomes relies on the ability of the lysosomal membrane to fuse with several target membranes in the cell. It is known that in lysosomal storage disorders (LSDs), lysosomal accumulation of several types of substrates is associated with lysosomal dysfunction and impairment of endocytic membrane traffic. By analysing cells from two severe neurodegenerative LSDs, we observed that cholesterol abnormally accumulates in the endolysosomal membrane of LSD cells, thereby reducing the ability of lysosomes to efficiently fuse with endocytic and autophagic vesicles. Furthermore, we discovered that soluble N‐ethylmaleimide‐sensitive factor attachment protein (SNAP) receptors (SNAREs), which are key components of the cellular membrane fusion machinery are aberrantly sequestered in cholesterol‐enriched regions of LSD endolysosomal membranes. This abnormal spatial organization locks SNAREs in complexes and impairs their sorting and recycling. Importantly, reducing membrane cholesterol levels in LSD cells restores normal SNARE function and efficient lysosomal fusion. Our results support a model by which cholesterol abnormalities determine lysosomal dysfunction and endocytic traffic jam in LSDs by impairing the membrane fusion machinery, thus suggesting new therapeutic targets for the treatment of these disorders.  相似文献   

20.
Lysosomal storage diseases (LSDs) are genetically inherited disorders affecting most patients in pediatric age and progressively lead to severe, even lethal, multiorgan dysfunction and brain neurodegeneration. Motor neuron diseases (MNDs) or Amyotrophic Lateral Sclerosis (ALS)-related syndromes are neurodegenerative disorders occurring in the majority of cases sporadically and affect adult middle-aged patients. Despite being divergent in most pathological and physiological hallmarks, both MNDs and LSDs are characterized by tremendous clinical heterogeneity due to poor prognosis and variable onset of the symptoms. Moreover, both LSDs and MNDs are characterized by the concurrence of multiple pathogenetic processes, such as the development of inflammatory and excitotoxic environments. Furthermore, pharmacological, enzyme or genetic therapies have proven to be ineffective and no cure is currently available for the neurodegeneration in either LSD or ALS affected patients. Recent studies have identified non-neuronal cell types, such as astrocytes and microglia, as being involved in non cell-autonomous effects on MND or LSD progression. These findings have prompted the use of neural stem cells for the replacement of non-neuronal cells rather than neuronal cells, which may result in neuroprotection and immunomodulation. The choice of an appropriate tissue source and the establishment of standardized paradigms to culture human neural stem cells (hNSC) will allow their use for future clinical trials on both ALS and LSD affected patients and parallel drug screening studies with novel breakthroughs in the knowledge of neurodegenerative diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号