首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neither bacteriophage T5+ nor its EcoRI-sensitive ris mutants became modified during growth on an EcoRI-modifying host. For this reason, the rare ris plaques able to grow on the EcoRI-modifying host were always due to revertant phage rather than to modified ris mutants. The ris mutations resulted in the creation of new EcoRI cleavage sites in the terminally repetitious first-step transfer DNA, and analysis of T5 ris revertants showed loss of these sites and restoration of the wild-type restriction pattern. Natural EcoRI sites present in the second-step transfer DNA were never lost in T5ris revertants, indicating that these are irrelevant to in vivo restriction and are protected during growth on the restricting host.  相似文献   

2.
The host-controlled EcoK-restriction of unmodified phages lambda.0 and T7ocr. is 100-fold alleviated in dam- mutants of E. coli. In addition the EcoK modification activity is considerably decreased in dam- strains. The I and III types restriction (EcoB, EcoD, EcoK and EcoP1) were relieved in dam- mutants, but no alleviation of EcoRI restriction occurred in dam- strains. We interpret the alleviation of the I type restriction in dam- mutants as consequence of induction of the function, which interferes with the I type restriction systems.  相似文献   

3.
Bacteriophage T5 is not confined by the restriction systems of the second type EcoRII and EcoRV. Bacteriophage T5 DNA is not modified by EcoRII and EcoRV methylases in vivo. The sites of recognition for restriction endonuclease EcoRV are mapped at 24.4; 57.6; 68.5; 70.2% of T5 DNA, while the sites at 5.1; 7.6% are recognized by EcoRII, the sites at 5.75; 6.0 and 6.5% are recognized by HpaI in FST. A high activity of restriction endonucleases EcoRI and EcoRV is demonstrated in crude extracts of E. coli B834 (RI) and E. coli B834 (RV) cells infected by bacteriophage T5. The simultaneous infection of E. coli B834 (RI) or E. coli B834 (RV) cells by the amber mutants of bacteriophage T5 and the suppressing phage lambda NM761 does not result in the protection of lambda DNA by the T5 anti-restriction mechanism. The presented data support the hypothesis that the anti-restriction mechanism of bacteriophage T5 is based on prevention of T5 DNA contacts with restriction enzymes by a specific phage protein.  相似文献   

4.
5.
Despite the fact that its DNA carries six EcoRI cleavage sites, bacteriophage T5 is able to grow on an EcoRI restricting host, suggesting that it specifies a restriction protection system. In the hope of identifying this protection system, mutants of T5 have been isolated which are unable to grow on an EcoRI restricting host. Analysis of the DNA of such mutants shows that they have each acquired two new EcoRI sites per molecule as a consequence of a single EcoRI site (ris) mutation located in the terminally repetitious, first step transfer (FST) region of the genome. The EcoRI sites generated by the ris mutations differ from the natural EcoRI sites in that the latter are situated on the second step transfer (SST) DNA, which suggests that the in vivo sensitivity of ris mutants is a consequence of having an EcoRI site on the FST DNA. This is understandable, if the hypothetical restriction protection genes are also located on the FST DNA. While expression of these genes would protect natural sites on the SST DNA, the ris sites would, on the contrary, enter an environment in which the protection, products had not yet been synthesized.Construction of double and triple ris mutants has allowed the ordering of the ris sites and the construction of an EcoRI restriction map of the FST region. In addition, the ris mutants allow estimation of the size of the terminal repetition of T5 DNA as 5.9 × 106 to 6.0 × 106 daltons. Correlation of the physical map of the FST region with the already established genetic map of this region allows orientation of the pre-early genes on the genetic and physical maps, and approximate localization of two amber mutations on the physical map.  相似文献   

6.
F Brunel  J Davison  M Merchez 《Gene》1979,8(1):53-68
Bacteriophage T5 was digested with the restriction endonucleases HindIII and EcoRI and the resulting fragments were inserted into the plasmid pBR322 and the bacteriophage lambda gtWES as vectors. Approx. 15% of the phage genome was recovered in recombinant clones. The recombinants were characterized by restriction analysis, DNA/DNA hybridization employing Southern blots, and ability to complement or recombine with amber mutants of T5. The results obtained allow revisions of the physical map of the T5 genome and partial correlation of the physical map with the genetic map.  相似文献   

7.
Sixteen conditional lethal mutants of bacteriophage T4D have been isolated which grow on Escherichia coli CR63 (a su+ streptomycin-sensitive K12 strain) but are restricted by CR/s (a streptomycin-resistant derivative of CR63). These mutants have been given the prefix str. Four of these mutants are amber and 12 appear to be missense. Eleven of the 12 missense mutants appear to be "pseudo-amber" (i.e. they are restricted by a su- E. coli B strain but not by a su- K12 strain); the other missense mutant was not restricted by either B or K12. The str mutations mapped in 12 different genes. Most were clustered in a region of early genes (gene 56 to gene 47). Fifty-eight amber and 10 "pseudo-amber" mutants isolated previously for their inability to grow on E. coli B were tested for restriction by CR/s. All the amber mutants grew normally on CR/s, whereas all 10 "pseudo-amber" mutants were restricted by CR/s. This implies that the phenotype of the "pseudo-amber" mutants is the result of a ribosomal difference between the permissive host CR63 and the restrictive hosts B and CR/s. These str mutants should prove to be useful alternatives to amber mutants for genetic and biochemical studies of bacteriophage T4 and for studies of the E. coli ribosome. It should be possible ot isolate similar mutants in other bacteriophages provided that streptomycin resistant hosts are available.  相似文献   

8.
2-aminopurine (2-AP) and 5-bromouracil, strong mutagens of base analog type, were found to induce efficiently the alleviation of I type restriction in Escherichia coli. 2-AP induced restriction alleviation occurs in recA, lexA and mut- mutants, but no additional relief of restriction is registered in dam-bacteria in the presence of sublethal 2-AP concentrations. 2-AP specifically alleviates I type restriction in Escherichia coli (EcoA, EcoB, EcoD, and EcoK) and does not affect restriction systems of II (EcoRI) and III (EcoP1) types. We suggest that 2-AP-induced mismatches and other replication errors may be signals inducing restriction alleviation in Escherichia coli.  相似文献   

9.
Transmission of unmodified plasmid CoIIb-P9 by bacterial conjugation is markedly resistant to restriction compared with transfer by transformation. One process allowing evasion of type I and II restriction systems involves conjugative transfer of multiple copies of the plasmid. A more specialized evasion mechanism requires the Ard (alleviation of restriction of DNA) system encoded by CoIIb. The ard gene is transferred early in conjugation and specifically alleviates DNA restriction by all known families of type I enzyme, including EcoK. CoIIb has no effect on EcoK modification but this activity is impaired by multicopy recombinant plasmids supporting overexpression of ard. Genetic evidence shows that Ard protects CoIIb from EcoK restriction following conjugative transfer and that this protection requires expression of the gene on the immigrant plasmid. It is proposed that carriage of ard facilitates transfer of CoIIb between its natural enterobacterial hosts and that the route of DNA entry is important to the restriction-evasion mechanism.  相似文献   

10.
Examination of the first-step-transfer DNA of T5ris mutants which carry new EcoRI sites showed that the left end of the chromosome is injected first.  相似文献   

11.
Two restriction-modification systems specified by two plasmids are discovered in the clinical species of Shigella. The plasmids are designated pKMR114 and pKMR115. Both are of 60.800 bp and belong to the IncN incompatibility group. The EcoRI, EcoRV, HindIII restriction patterns of both plasmid DNAs are identical. As shown by efficiency of plating of bacteriophage lambda vir on the strains harbouring plasmids encoding EcoRI, EcoRII, EcoRIII, EcoRIV, EcoRV systems and plasmids studied, the discovered plasmids control synthesis of EcoRII specificity enzymes. The main distinctive feature of the pKMR114 is the ability to decrease efficiency of plating of bacteriophage T4 having glycolised DNA.  相似文献   

12.
Wild-type bacteriophage T7 is not subject to restriction by the Escherichia coli B and K restriction systems, but T7 mutants that are susceptible to such restriction have been isolated. These mutants are all defective in gene 0.3, the first T7 gene to be expressed after infection. The gene 0.3 protein apparently acts to prevent modification as well as restriction, suggesting that it may interact with a component of the host restriction-modification system that is required for both processes. Mutants in which gene 0.3 is completely deleted are only partially modified by growth on hosts with an active restriction-modification system, presumably because the conditions of T7 infection overload the modifying capacity of the cells. This is in contrast to phages such as lambda that are completely modified during growth. Since gene 0.3 is not essential for growth in non-restricting hosts, it has been possible to isolate deletions which extend to the left of gene 0.3 into the region where E. coli RNA polymerase initiates the synthesis of T7 early RNA. Two of the three strong initiators from which E. coli RNA polymerase transcribes the early region can be deleted.In the course of searching for T7 mutants that are unable to overcome restriction, it was discovered that mutants defective in gene 2 are able to plate on E. coli C with essentially normal efficiency, and most gene 7 mutants are able to plate on both C and K strains. It has not been determined why genes 2 and 7 seem to be needed for growth in some E. coli strains but not in others.  相似文献   

13.
EcoK restriction during in vitro packaging of coliphage lambda DNA   总被引:4,自引:0,他引:4  
S M Rosenberg 《Gene》1985,39(2-3):313-315
The K restriction system of Escherichia coli works in vitro [Meselson and Yuan, Nature 217 (1968) 1110-1114]. E. coli C lacks the K restriction system. I show that in vitro packaging in standard E. coli K-12-derived systems effects a loss of plaque-former output from K-unmodified lambda DNA relative to K-modified lambda DNA when compared with packaging in the E. coli C-derived system of Rosenberg et al. [Gene 38 (1985) 165-175]. I conclude that the EcoK restriction system is active in standard in vitro packaging systems. EcoK restriction during in vitro packaging could specifically depress recovery of some lambda and cosmid clones of eukaryotic DNA or any other DNA not modified for EcoK restriction.  相似文献   

14.
The properties of viable mutants of bacteriophage T5 that lack, singly, each of the four major sites at which single-chain interruptions normally occur in T5 DNA are described. The mutations responsible for loss of each interruption were mapped by analysis with HhaI, a restriction endonuclease with a cleavage site (pGCGC) that occurs at the 5' termini of the major interruptions (B. P. Nichols and J. E. Donelson, J. Virol. 22:520-526, 1977). For each mutant tested, loss of a specific interruption resulted in loss of a specific HhaI cleavage site. Multiple single-site mutants were constructed to determine the effect of loss of more than one interruption on phage viability. These recombinants, including a phage that lacks the four major interruptible sites, were fully viable and did not exhibit a compensating increase in the frequency of minor interruptions. The effect of loss of a specific interruption on genetic recombination was tested in two-factor crosses with markers that occur close to, but on opposite sites of, the interruption. Loss of the interruptible site did not affect recombination frequency.  相似文献   

15.
Pseudomonas syringae pv. tabaci BR2 produces tabtoxin and causes wildfire disease on tobacco and bean plants. Approximately 2,700 Tn5 insertion mutants of a plasmid-free strain, PTBR 2.024, were generated by using suicide plasmid pGS9. Of these Tn5 mutants, 8 were no longer pathogenic on tobacco plants and 10 showed reduced symptoms. All of the eight nonpathogenic mutants caused typical wildfire disease symptoms on bean plants. Two of the nonpathogenic mutants failed to produce tabtoxin. The eight nonpathogenic mutants have Tn5 insertions into different EcoRI and SalI restriction fragments. The EcoRI fragments containing Tn5 from the eight nonpathogenic mutants were cloned into vector pTZ18R or pLAFR3. A genomic library of the parent strain was constructed in the broad-host-range cosmid pLAFR3. Three different cosmid clones that hybridized to the cloned Tn5-containing fragment from one of the nonpathogenic mutants, PTBR 4.000, were isolated from the genomic library. These clones contained six contiguous EcoRI fragments (a total of 57 kilobases [kb]). A 7.2-kb EcoRI fragment common to all three restored pathogenicity to mutant PTBR 4.000. None of the six EcoRI fragments hybridized to Tn5-containing fragments from the other seven mutants. The 7.2-kb fragment was conserved in P. syringae pv. tabaci and P. syringae pv. angulata, but not in other pathovars or strains. Because the mutants retained pathogenicity on bean plants and because of the conservation of the 7.2-kb EcoRI fragment only in pathovars of tobacco, we suggest that genes on the fragment might be related to host specificity.  相似文献   

16.
The EcoRI restriction endonuclease was found by the filter binding technique to form stable complexes, in the absence of Mg2+, with the DNA from derivatives of bacteriophage lambda that either contain or lack EcoRI recognition sites. The amount of complex formed at different enzyme concentrations followed a hyperbolic equilibrium-binding curve with DNA molecules containing EcoRI recognition sites, but a sigmoidal equilibrium-binding curve was obtained with a DNA molecule lacking EcoRI recognition sites. The EcoRI enzyme displayed the same affinity for individual recognition sites on lambda DNA, even under conditions where it cleaves these sites at different rates. The binding of the enzyme to a DNA molecule lacking EcoRI sites was decreased by Mg2+. These observations indicate that (a) the EcoRI restriction enzyme binds preferentially to its recognition site on DNA, and that different reaction rates at different recognition sites are due to the rate of breakdown of this complex; (b) the enzyme also binds to other DNA sequences, but that two molecules of enzyme, in a different protein conformation, are involved in the formation of the complex at non-specific consequences; (c) the different affinities of the enzyme for the recognition site and for other sequences on DNA, coupled with the different protein conformations, account for the specificity of this enzyme for the cleavage of DNA at this recognition site; (d) the decrease in the affinity of the enzyme for DNA, caused by Mg2+, liberates binding energy from the DNA-protein complex that can be used in the catalytic reaction.  相似文献   

17.
The host-controlled K-restriction of unmodified phage lambda is ten to hundred-fold alleviated in the E. coli K12 strain, carring plasmid pKM101 of N-incompatibility group. By restriction mapping Tn5 insertion in pKM101, which reduced pKM101-mediated alleviation of K-restriction, was shown to by located within BglII-B-fragment approximately 9 kb anticlockwise from the EcoRI-site of pKM101. We have termed the gene(s) promoting the alleviation of K-restriction ARD (Alleviation of Restriction of DNA). It was shown that (i) plasmid pKM101-mediated alleviation of K-restriction did not depend on bacterial genes LexA, RecBC, umuC and plasmid gene muc; (ii) ard gene did not mediate EcoK type modification of DNA and did not enhance the modification activity of EcoK system in a way similar to that observed with RAL gene of phage lambda. Action of Ard gene of plasmid pKM101 is highly specific: alleviation of restriction of DNA lambda takes place only in K-strains of E. coli and is practically absent in B-strains and also in E. coli strains which have restricting enzymes of 11 type, EcoRI and EcoRIII.  相似文献   

18.
We have constructed vectors from bacteriophage lambda and from plasmid pBR322 having a single EcoRI restriction site which is immediately downstream from the lac UV5 promotor. Each vector allows the fusion of a cloned gene to the lac Z gene in a different phase relative to the translation initiation codon of the lac Z gene. These vectors were constructed through modification of the initial EcoRI restriction site by S1 endonuclease treatment and then addition of octadeoxyribonucleotides (EcoRI linkers), which shifted the restriction site by 2 or 4 nucleotides. Used in combination these vectors should allow translation of a cloned gene in any one of the three coding phases. The bacteriophages vectors are certified as B2 (EK2) safety level vectors by the French "recombinaison génétique in vitro" committee (D.G.R.S.T.).  相似文献   

19.
K Hiom  S M Thomas  S G Sedgwick 《Biochimie》1991,73(4):399-405
The alleviation of DNA restriction during the SOS response in Escherichia coli has been further investigated. With the EcoK DNA restriction system UV irradiated wild-type cells show a 10(4)-fold increase in ability to plate non-modified lambda phage and a 3-4 fold increase in transformation by non-modified plasmid DNA. A role for the umuDC genes of E coli in the process of SOS-induced restriction alleviation was identified by showing that a umuC122::Tn5 mutant could alleviate EcoK restriction to only 5% that of wild-type levels. Although umuDC are better characterized for their pivotal role in SOS induced mutagenesis, it is demonstrated here that umu-dependent alleviation of EcoK restriction is a transient process in which umu-dependent mutagenesis plays little part. A second form of SOS induced alleviation of DNA restriction is described in this paper involving the McrA restriction system. The mcrA gene is shown to be encoded within a defective prophage called e14 situated at the 25 min region on the Escherichia coli genetic map. e14 is known to abortively excise from the chromosome after SOS induction and it is demonstrated in this report that mcrA is lost from the genome after SOS induction as part of e14. This results in co-ordinate decrease in the level of McrA restriction within a population of cells.  相似文献   

20.
During the infection of Escherichia coli by bacteriophage T7, there is a gradual conversion of host DNA to T7 DNA. Recombination and replication occur during this time. We have devised a new way of examining the physical structures of the intermediates of these processes. It is based on the observation that there are no sites in T7 DNA susceptible to cleavage by the restriction endonuclease EcoRI. E. coli DNA, on the other hand, is susceptible to degradation by EcoRI. Thus, phage and host DNA can be separated by sucrose gradient centrifugation after treatment with EcoRI. Concatemeric T7 DNA contains a high proportion of branched, gapped, and whiskered structures. These appear to be intermediates of replication and recombination. This approach also monitors the conversion process from host to T7 DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号