首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Signal regulatory proteins (SIRP-alpha, -beta, and -gamma) are important regulators of several innate immune functions that include leukocyte migration. Membrane distal (D1) domains of SIRPalpha and SIRPgamma, but not SIRPbeta, mediate binding to a cellular ligand termed CD47. Because the extracellular domains of all SIRPs are highly homologous, we hypothesized that some of the 16 residues unique to SIRPalpha.D1 mediate binding to CD47. By site-directed mutagenesis, we determined that SIRPalpha binding to CD47 is independent of N-glycosylation. We also identified three residues critical for CD47 binding by exchanging residues on SIRPalpha with corresponding residues from SIRPbeta. Cumulative substitutions of the critical residues into SIRPbeta resulted in de novo binding of the mutant protein to CD47. Homology modeling of SIRPalpha.D1 revealed topological relationships among critical residues and allowed the identification of critical residues common to SIRPalpha and SIRPbeta. Mapping these critical residues onto the recently reported crystal structure of SIRPalpha.D1 revealed a novel region that is required for CD47 binding and is distinct and lateral to another putative CD47 binding site described on that crystal structure. The importance of this lateral region in mediating SIRPalpha.D1 binding to CD47 was confirmed by epitope mapping analyses of anti-SIRP Abs. These observations highlight a complex nature of the ligand binding requirements for SIRPalpha that appear to be dependent on two distinct but adjacent regions on the membrane distal Ig loop. A better understanding of the structural basis of SIRPalpha/CD47 interactions may provide insights into therapeutics targeting pathologic inflammation.  相似文献   

2.
Cell-cell interactions between ubiquitously expressed integrin-associated protein (CD47) and its counterreceptor signal regulatory protein (SIRPalpha) on phagocytes regulate a wide range of adhesive signaling processes, including the inhibition of phagocytosis as documented in mice. We show that CD47-SIRPalpha binding interactions are different between mice and humans, and we exploit phylogenetic divergence to identify the species-specific binding locus on the immunoglobulin domain of human CD47. All of the studies are conducted in the physiological context of membrane protein display on Chinese hamster ovary (CHO) cells. Novel quantitative flow cytometry analyses with CD47-green fluorescent protein and soluble human SIRPalpha as a probe show that neither human CD47 nor SIRPalpha requires glycosylation for interaction. Human CD47-expressing CHO cells spread rapidly on SIRPalpha-coated glass surfaces, correlating well with the spreading of primary human T cells. In contrast, CHO cells expressing mouse CD47 spread minimally and show equally weak binding to soluble human SIRPalpha. Further phylogenetic analyses and multisite substitutions of the CD47 Ig domain show that human to cow mutation of a cluster of seven residues on adjacent strands near the middle of the domain decreases the association constant for human SIRPalpha to about one-third that of human CD47. Direct tests of cell-cell adhesion between human monocytes and CD47-displaying CHO cells affirm the species specificity as well as the importance of the newly identified binding locus in cell-cell interactions.  相似文献   

3.
CD47, a cell surface transmembrane Ig superfamily member, is an extracellular ligand for signal regulatory protein (SIRPalpha). Interactions between CD47 and SIRPalpha regulate many important immune cell functions including neutrophil (PMN) transmigration. Here we report identification of a novel function-blocking peptide, CERVIGTGWVRC, that structurally mimics an epitope on CD47 and binds to SIRPalpha. The CERVIGTGWVRC sequence was identified by panning phage display libraries on the inhibitory CD47 mAb, C5D5. In vitro PMN migration assays demonstrated that peptide CERVIGTGWVRC specifically inhibited PMN migration across intestinal epithelial monolayers and matrix in a dose-dependent fashion. Further studies using recombinant proteins indicated that the peptide specifically blocks CD47 and SIRPalpha binding in a dose-dependent fashion. Protein binding assays using SIRPalpha domain-specific recombinant proteins demonstrated that this peptide directly bound to the distal-most Ig loop of SIRPalpha, the same loop where CD47 binds. In summary, these findings support the relevance of CD47-SIRPalpha interactions in regulation of PMN transmigration and provide structural data predicting the key residues involved on the surface of CD47. Such peptide reagents may be useful for studies on experimental models of inflammation and provide a template for the design of anti-inflammatory agents.  相似文献   

4.
SIRPalpha and SIRPbeta1, the two major isoforms of the signal regulatory protein (SIRP) family, are co-expressed in human leukocytes but mediate distinct extracellular binding interactions and divergent cell signaling responses. Previous studies have demonstrated that binding of SIRPalpha with CD47, another important cell surface molecule, through the extracellular IgV domain regulates important leukocyte functions including macrophage recognition, leukocyte adhesion and transmigration. Although SIRPbeta1 shares highly homologous extracellular IgV structure with SIRPalpha, it does not bind to CD47. Here, we defined key amino acid residues exclusively expressing in the IgV domain of SIRPalpha, but not SIRPbeta1, which determine the extracellular binding interaction of SIRPalpha to CD47. These key residues include Gln67, a small hydrophobic amino acid (Ala or Val) at the 57th position and Met102. We found that Gln67 and Ala/Val57 are critical. Mutation of either of these residues abates SIRPalpha directly binding to CD47. Functional cell adhesion and leukocyte transmigration assays further demonstrated central roles of Gln67 and Ala/Val57 in SIRPalpha extracellular binding mediated cell interactions and cell migration. Another SIRPalpha-specific residue, Met102, appears to assist SIRPalpha IgV binding through Gln67 and Ala/Val57. An essential role of these amino acid residues in SIRPalpha binding to CD47 was further confirmed by introducing these residues into the SIRPbeta1 IgV domain, which dramatically converts SIRPbeta1 into a CD47-binding molecule. Our results thus revealed the molecular basis by which SIRPalpha binds to CD47 and shed new light into the structural mechanisms of SIRP isoform mediated distinctive extracellular interactions and cellular responses.  相似文献   

5.
CD47 is a widely distributed cell-surface protein that acts a marker of self through interactions of myeloid and neural cells. We describe the high-resolution X-ray crystallographic structures of the immunoglobulin superfamily domain of CD47 alone and in complex with the N-terminal ligand-binding domain of signal regulatory protein alpha (SIRPalpha). The unusual and convoluted interacting face of CD47, comprising the N terminus and loops at the end of the domain, intercalates with the corresponding regions in SIRPalpha. We have also determined structures of the N-terminal domains of SIRPbeta, SIRPbeta(2), and SIRPgamma; proteins that are closely related to SIRPalpha but bind CD47 with negligible or reduced affinity. These results explain the specificity of CD47 for the SIRP family of paired receptors in atomic detail. Analysis of SIRPalpha polymorphisms suggests that these, as well as the activating SIRPs, may have evolved to counteract pathogen binding to the inhibitory SIRPalpha receptor.  相似文献   

6.
Signal regulatory proteins (SIRPs) comprise a family of cell surface signaling receptors differentially expressed in leukocytes and the central nervous system. Although the extracellular domains of SIRPs are highly similar, classical motifs in the cytoplasmic or transmembrane domains distinguish them as either activating (beta) or inhibitory (alpha) isoforms. We reported previously that human neutrophils (polymorphonuclear leukocytes (PMN)) express multiple SIRP isoforms and that SIRPalpha binding to its ligand CD47 regulates PMN transmigration. Here we further characterized the expression of PMN SIRPs, and we reported that the major SIRPalpha and SIRPbeta isoforms expressed in PMN include Bit/PTPNS-1 and SIRPbeta1, respectively. Furthermore, although SIRPalpha (Bit/PTPNS-1) is expressed as a monomer, we showed that SIRPbeta1 is expressed on the cell surface as a disulfide-linked homodimer with bond formation mediated by Cys-320 in the membrane-proximal Ig loop. Subcellular fractionation studies revealed a major pool of SIRPbeta1 within the plasma membrane fractions of PMN. In contrast, the majority of SIRPalpha (Bit/PTPNS-1) is present in fractions enriched in secondary granules and is translocated to the cell surface after chemoattractant (formylmethionylleucylphenylalanine) stimulation. Functional studies revealed that antibody-mediated ligation of SIRPbeta1 enhanced formylmethionylleucylphenylalanine-driven PMN transepithelial migration. Co-immunoprecipitation experiments to identify associated adaptor proteins revealed a 10-12-kDa protein associated with SIRPbeta1 that was tyrosine-phosphorylated after PMN stimulation and is not DAP10/12 or Fc receptor gamma chain. These results provide new insights into the structure and function of SIRPs in leukocytes and their potential role(s) in fine-tuning responses to inflammatory stimuli.  相似文献   

7.
Signal regulatory protein alpha (SIRPalpha, SHPS-1) is a plasma membrane receptor for CD47 and a key regulator of phagocytosis, growth factor signaling, and migration. Phosphorylation of immunoreceptor tyrosine-based inhibition motifs in its cytoplasmic tail is essential for the functional effects of SIRPalpha, at least in part, because the phosphorylated immunoreceptor tyrosine-based inhibition motifs recruit Src homology 2 domain-containing tyrosine phosphatases. Ligation by CD47 and integrin engagement both have been thought to regulate SIRPalpha phosphorylation. However, their distinct contributions have not been distinguished. Here, we show that the importance of CD47 varies with cell type, since ligation of CD47 is not necessary for SIRPalpha phosphorylation in myeloid cells, whereas it is required in endothelial cells. In contrast, integrin-mediated adhesion is required for SIRPalpha phosphorylation in both cell types. This shows that SIRPalpha phosphorylation is dually regulated and demonstrates a new mechanism for functional cooperation between integrins and the integrin-associated protein CD47.  相似文献   

8.
A functional disulfide bond in both the HIV envelope glycoprotein, gp120, and its immune cell receptor, CD4, is involved in viral entry, and compounds that block cleavage of the disulfide bond in these proteins inhibit HIV entry and infection. The disulfide bonds in both proteins are cleaved at the cell surface by the small redox protein, thioredoxin. The target gp120 disulfide and its mechanism of cleavage were determined using a thioredoxin kinetic trapping mutant and mass spectrometry. A single disulfide bond was cleaved in isolated and cell surface gp120, but not the gp160 precursor, and the extent of the reaction was enhanced when gp120 was bound to CD4. The Cys(32) sulfur ion of thioredoxin attacks the Cys(296) sulfur ion of the gp120 V3 domain Cys(296)-Cys(331) disulfide bond, cleaving the bond. Considering that V3 sequences largely determine the chemokine receptor preference of HIV, we propose that cleavage of the V3 domain disulfide, which is facilitated by CD4 binding, regulates chemokine receptor binding. There are 20 possible disulfide bond configurations, and, notably, the V3 domain disulfide has the same unusual -RHStaple configuration as the functional disulfide bond cleaved in CD4.  相似文献   

9.
Sanejouand YH 《Proteins》2004,57(1):205-212
It has recently been shown that disulfide bond Cys130-Cys159 in domain 2 of monomeric CD4 is involved in the formation of CD4 disulfide-bonded dimers on cell surfaces and that it can influence the permissiveness of cells to HIV infection. Because this disulfide bond is buried in the monomer, a large conformational change must take place in order to allow for such disulfide exchange. Using standard optimization techniques, whose efficiency was first checked in the well-documented CD2 case, we have shown that 3D domain swapping is a likely candidate for the conformational change, the hinge loop, or linker, being loop E-F. Indeed, as a consequence of domain swapping, because Cys130 and Cys159 belong to beta-strands C and F, respectively, two disulfide bonds become established between Cys130 in one monomer and Cys159 in the other one. Such a disulfide exchange has already been observed when the nuclear magnetic resonance (NMR) structure of the prion protein was compared to the crystallographic, dimeric one. In both cases, domain swapping implies disulfide exchange because the linker is located in the sequence between two disulfide-bonded cysteines. As in the CD2 case, the proposed configuration of the CD4 dimer is found as a pair of neighboring monomers in the crystallographic unit cell. Moreover, because in this configuration the epitope of monoclonal antibody MT151, which does not compete with Gp120 for CD4 binding, is in the cleft between the pair of CD4 monomers, it is suggested that MT151 achieves its HIV-blocking activity by interfering with the formation of CD4 domain-swapped dimers on cell surface.  相似文献   

10.
The primary aim of this study is the elucidation of the mechanism of disulfide induced alteration of ligand binding in human tear lipocalin (TL). Disulfide bonds may act as dynamic scaffolds to regulate conformational changes that alter protein function including receptor-ligand interactions. A single disulfide bond, (Cys61-Cys153), exists in TL that is highly conserved in the lipocalin superfamily. Circular dichroism and fluorescence spectroscopies were applied to investigate the mechanism by which disulfide bond removal effects protein stability, dynamics and ligand binding properties. Although the secondary structure is not altered by disulfide elimination, TL shows decreased stability against urea denaturation. Free energy change (ΔG(0)) decreases from 4.9±0.2 to 2.1±0.3kcal/mol with removal of the disulfide bond. Furthermore, ligand binding properties of TL without the disulfide vary according to the type of ligand. The binding of a bulky ligand, NBD-cholesterol, has a decreased time constant (from 11.8±0.2 to 3.3s). In contrast, the NBD-labeled phospholipid shows a moderate decrease in the time constant for binding, from 33.2±0.2 to 22.2±0.4s. FRET experiments indicate that the hairpin CD is directly involved in modulation of both ligand binding and flexibility of TL. In TL complexed with palmitic acid (PA-TL), the distance between the residues 62 of strand D and 81 of loop EF is decreased by disulfide bond reduction. Consequently, removal of the disulfide bond boosts flexibility of the protein to reach a CD-EF loop distance (24.3?, between residues 62 and 81), which is not accessible for the protein with an intact disulfide bond (26.2?). The results suggest that enhanced flexibility of the protein promotes a faster accommodation of the ligand inside the cavity and an energetically favorable ligand-protein complex.  相似文献   

11.
Huo X  Abe T  Misono KS 《Biochemistry》1999,38(51):16941-16951
The atrial natriuretic peptide (ANP) receptor is a 130-kDa transmembrane protein containing an extracellular ANP-binding domain, a single transmembrane sequence, an intracellular kinase-homologous domain, and a guanylate cyclase (GCase) domain. We observed that the receptor, when bound with ANP, was rapidly cleaved by endogenous or exogenously added protease to yield a 65-kDa ANP-binding fragment. No cleavage occurred without bound ANP. This ligand-induced cleavage abolished GCase activation by ANP. Cleavage occurred in an extracellular, juxtamembrane region containing six closely spaced Pro residues and a disulfide bond. Such structural features are shared among the A-type and B-type ANP receptors but not by ANP clearance receptors. The potential role of the hinge structure was examined by mutagenesis experiments. Mutation of Pro(417), but not other Pro residues, to Ala abolished GCase activation by ANP. Elimination of the disulfide bond by Cys to Ser mutations yielded a constitutively active receptor. Pro(417), and Cys(423) and Cys(432) forming the disulfide bond are strictly conserved among GCase-coupled receptors, while other residues are largely variable. The conserved Pro(417) and the disulfide bond may represent a consensus signaling motif in the juxtamembrane hinge structure that undergoes a marked conformational change upon ligand binding and apparently mediates transmembrane signal transduction.  相似文献   

12.
Storjohann L  Holst B  Schwartz TW 《Biochemistry》2008,47(35):9198-9207
A highly conserved feature across all families of 7TM receptors is a disulfide bridge between a Cys residue located at the extracellular end of transmembrane segment III (TM-III) and one in extracellular loop 2 (ECL-2). The zinc sensor GPR39 contains four Cys residues in the extracellular domains. By using mutagenesis, treatment with the reducing agent TCEP, and a labeling procedure for free sulfhydryl groups, we identify the pairing of these Cys residues in two disulfide bridges: the prototypical bridge between Cys (108) in TM-III and Cys (210) in ECL-2 and a second disulfide bridge connecting Cys (11) in the N-terminal domain with Cys (191) in ECL-2. Disruption of the conserved disulfide bond by mutagenesis greatly reduced the level of cell surface expression and eliminated agonist-induced increases in inositol phosphate production but surprisingly enhanced constitutive signaling. Disruption of the nonconserved disulfide bridge by mutagenesis led to an increase in the Zn (2+) potency. This phenotype, with an approximate 10-fold increase in agonist potency and a slight increase in E max, was mimicked by treatment of the wild-type receptor with TCEP at low concentrations, which had no effect on the receptor already lacking the second disulfide bridge and already displaying a high Zn (2+) potency. We conclude that the second disulfide bridge, which according to the beta2-adrenergic structure will form a covalent link across the entrance to the main ligand binding pocket, serves to dampen GPR39 activation. We suggest that formation of extra disulfide bridges may be an important general mechanism for regulating the activity of 7TM receptors.  相似文献   

13.
Ames JB  Vyas V  Lusin JD  Mariuzza R 《Biochemistry》2005,44(17):6416-6423
2B4, a transmembrane receptor expressed primarily on natural killer (NK) cells and on a subset of CD8(+) T cells, plays an important role in activating NK-mediated cytotoxicity through its interaction with CD48 on target cells. We report here the atomic-resolution structure of the ligand-binding (D1) domain of 2B4 in solution determined by nuclear magnetic resonance (NMR) spectroscopy. The overall main chain structure resembles an immunoglobulin variable (V) domain fold, very similar to that seen previously for domain 1 of CD2 and CD4. The structure contains nine beta-strands assembled into two beta-sheets conventionally labeled DEB and AGFCC'C' '. The six-stranded sheet (AGFCC'C' ') contains structural features that may have implications for ligand recognition and receptor function. A noncanonical disulfide bridge between Cys2 and Cys99 stabilizes a long and parallel beta-structure between strand A (residues 3-12) and strand G (residues 100-108). A beta-bulge at residues Glu45 and Ile46 places a bend in the middle of strand C' that orients two conserved and adjacent hydrophobic residues (Ile46 and Leu47) inside the beta-sandwich as seen in other V domains. Finally, the FG-loop (implicated in ligand recognition in the CD2-CD58 complex) is dynamically disordered in 2B4 in the absence of a ligand. We propose that ligand binding to 2B4 might stabilize the structure of the FG-loop in the ligand complex.  相似文献   

14.
Liu J  Guo C  Yao Y  Lin D 《Biochimie》2008,90(11-12):1637-1646
Three cysteine residues, Cys(65), Cys(89), and Cys(186) in lipocalin-type prostaglandin D synthase (L-PGDS), are conserved among all species and the disulfide bond between Cys(89) and Cys(186) is highly conserved among most, but not all, lipocalins. In this study, four rat L-PGDS variants were constructed by site-directed mutagenesis, and the conserved disulfide bond in several variants was removed by substituting cysteine with alanine. The effects of removing this disulfide bond on their biological characteristics were investigated. The NMR experiments indicated that the removal of disulfide did not change their conformations significantly. However, both thermal-induced and urea-induced unfolding experiments showed that the stabilities of enzymes without the disulfide bond decreased significantly. Moreover, the ligand-binding affinities of these variants were assessed by fluorescence experiments. Dissociation constants (K(d)) of 0.668, 0.689, 0.543 and 0.571 microM were obtained for ANS binding to wild-type rat L-PGDS, C(65)A, C(186)A, and C(89,186)A variants, respectively, and 71.2 and 62.3 nM for retinoic acid binding to wild-type rat L-PGDS and the C(186)A variant, respectively. These results suggested that the removal of the disulfide bond slightly increased the affinities for ligand binding by changing the hydrophobic regions. This study may offer valuable information for further studies on other rat lipocalins.  相似文献   

15.
Feng YH  Saad Y  Karnik SS 《FEBS letters》2000,484(2):133-138
Dithiothreitol (DTT) treatment of angiotensin II (Ang II) type 2 (AT(2)) receptor potentiates ligand binding, but the underlying mechanism is not known. Two disulfide bonds proposed in the extracellular domain were examined in this report. Based on the analysis of ligand affinity of cysteine (Cys, C) to alanine (Ala, A) substitution mutants, we provide evidence that Cys(35)-Cys(290) and Cys(117)-Cys(195) disulfide bonds are formed in the wild-type AT(2) receptor. Disruption of the highly conserved Cys(117)-Cys(195) disulfide bond linking the second and third extracellular segments leads to inactivation of the receptor. The Cys(35)-Cys(290) bond is highly sensitive to DTT. Its breakage results in an increased binding affinity for both Ang II and the AT(2) receptor-specific antagonist PD123319. Surprisingly, in the single Cys mutants, C35A and C290A, a labile population of receptors is produced which can be re-folded to high-affinity state by DTT treatment. These results suggest that the free -SH group of Cys(35) or Cys(290) competes with the disulfide bond formation between Cys(117) and Cys(195). This Cys-disulfide bond exchange results in production of the inactive population of the mutant receptors through formation of a non-native disulfide bond.  相似文献   

16.
The EGF receptor is a classical receptor-tyrosine kinase. In the absence of ligand, the receptor adopts a closed conformation in which the dimerization arm of subdomain II interacts with the tethering arm in subdomain IV. Following the binding of EGF, the receptor opens to form a symmetric, back-to-back dimer. Although it is clear that the dimerization arm of subdomain II is central to the formation of receptor dimers, the role of the tethering arm of subdomain IV (residues 561-585) in this configuration is not known. Here we use (125)I-EGF binding studies to assess the functional role of the tethering arm in the EGF receptor dimer. Mutation of the three major residues that contribute to tethering (D563A,H566A,K585A-EGF receptor) did not significantly alter either the ligand binding properties or the signaling properties of the EGF receptor. By contrast, breaking the Cys(558)-Cys(567) disulfide bond through double alanine replacements or deleting the loop entirely led to a decrease in the negative cooperativity in EGF binding and was associated with small changes in downstream signaling. Deletion of the Cys(571)-Cys(593) disulfide bond abrogated cooperativity, resulting in a high affinity receptor and increased sensitivity of downstream signaling pathways to EGF. Releasing the Cys(571)-Cys(593) disulfide bond resulted in extreme negative cooperativity, ligand-independent kinase activity, and impaired downstream signaling. These data demonstrate that the tethering arm plays an important role in supporting cooperativity in ligand binding. Because cooperativity implies subunit-subunit interactions, these results also suggest that the tethering arm contributes to intersubunit interactions within the EGF receptor dimer.  相似文献   

17.
SRC homology 2 domain-containing protein tyrosine phosphatase substrate 1 (SHPS-1 or SIRPα/BIT) is an immunoglobulin (Ig) superfamily transmembrane receptor and a member of the signal regulatory protein (SIRP) family involved in cell-cell interaction. SHPS-1 binds to its ligand CD47 to relay an inhibitory signal for cellular responses, whereas SIRPβ, an activating member of the same family, does not bind to CD47 despite sharing a highly homologous ligand-binding domain with SHPS-1. To address the molecular basis for specific CD47 recognition by SHPS-1, we present the crystal structure of the ligand-binding domain of murine SHPS-1 (mSHPS-1). Folding topology revealed that mSHPS-1 adopts an I2-set Ig fold, but its overall structure resembles IgV domains of antigen receptors, although it has an extended loop structure (C′E loop), which forms a dimer interface in the crystal. Site-directed mutagenesis studies of mSHPS-1 identified critical residues for CD47 binding including sites in the C′E loop and regions corresponding to complementarity-determining regions of antigen receptors. The structural and functional features of mSHPS-1 are consistent with the human SHPS-1 structure except that human SHPS-1 has an additional β-strand D. These results suggest that the variable complementarity-determining region-like loop structures in the binding surface of SHPS-1 are generally required for ligand recognition in a manner similar to that of antigen receptors, which may explain the diverse ligand-binding specificities of SIRP family receptors.  相似文献   

18.
Ai LS  Liao F 《Biochemistry》2002,41(26):8332-8341
CCR6 is the receptor for the chemokine MIP-3 alpha/CCL20. Almost all chemokine receptors contain cysteine residues in the N-terminal domain and in the first, second, and third extracellular loops. In this report, we have studied the importance of all cysteine residues in the CCR6 sequence using site-directed mutagenesis and biochemical techniques. Like all G protein-coupled receptors, mutating disulfide bond-forming cysteines in the first (Cys118) and second (Cys197) extracellular loops in CCR6 led to complete elimination of receptor activity, which for CCR6 was also associated with the accumulation of the receptor intracellularly. Although two additional cysteines in the N-terminal region and the third extracellular loop, which are present in almost all chemokine receptors, are presumed to form a disulfide bond, this has not been demonstrated experimentally for any of these receptors. We found that mutating the cysteines in the N-terminal domain (Cys36) and the third extracellular loop (Cys288) neither significantly affected receptor surface expression nor completely abolished receptor function. Importantly, contrary to several previous reports, we demonstrated directly that instead of forming a disulfide bond, the N-terminal cysteine (Cys36) and the third extracellular loop cysteine (Cys288) contain free SH groups. The cysteine residues (Cys36 and Cys288), rather than forming a disulfide bond, may be important per se. We propose that CCR6 forms only a disulfide bond between the first (Cys118) and second (Cys197) extracellular loops, which confines a helical bundle together with the N-terminus adjacent to the third extracellular loop, creating the structural organization critical for ligand binding and therefore for receptor signaling.  相似文献   

19.
The EGF receptor is a transmembrane receptor tyrosine kinase that is enriched in lipid rafts. Subdomains I, II and III of the extracellular domain of the EGF receptor participate in ligand binding and dimer formation. However, the function of the cysteine-rich subdomain IV has not been elucidated. In this study, we analyzed the role of the membrane-proximal portion of subdomain IV in EGF binding and signal transduction. A double Cys-->Ala mutation that breaks the most membrane-proximal disulfide bond (Cys600 to Cys612), ablated high affinity ligand binding and substantially reduced signal transduction. A similar mutation that breaks the overlapping Cys596 to Cys604 disulfide had little effect on receptor function. Mutation of residues within the Cys600 to Cys612 disulfide loop did not alter the ligand binding or signal transducing activities of the receptor. Despite the fact that the C600,612A EGF receptor was significantly impaired functionally, this receptor as well as all of the other receptors with mutations in the region of residues 596 to 612 localized normally to lipid rafts. These data suggest that the disulfide-bonded structure of the membrane-proximal portion of the EGF receptor, rather than its primary sequence, is important for EGF binding and signaling but is not involved in localizing the receptor to lipid rafts.  相似文献   

20.
Energetics of structural domains in alpha-lactalbumin.   总被引:3,自引:3,他引:0       下载免费PDF全文
alpha-Lactalbumin is a small, globular protein that is stabilized by four disulfide bonds and contains two structural domains. One of these domains is rich in alpha-helix (the alpha-domain) and has Cys 6-Cys 120 and Cys 28-Cys 111 disulfide bonds. The other domain is rich in beta-sheet (the beta-domain), has Cys 61-Cys 77 and Cys 73-Cys 91 disulfide bonds, and includes one calcium binding site. To investigate the interaction between domains, we studied derivatives of bovine alpha-lactalbumin differing in the number of disulfide bonds, using calorimetry and CD at different temperatures and solvent conditions. The three-disulfide form, having a reduced Cys 6-Cys 120 disulfide bond with carboxymethylated cysteines, is similar to intact alpha-lactalbumin in secondary and tertiary structure as judged by its ellipticity in the near and far UV. the two-disulfide form of alpha-lactalbumin, having reduced Cys 6-Cys 120 and Cys 28-Cys 111 disulfide bonds with carboxymethylated cysteines, retains about half the secondary and tertiary structure of the intact alpha-lactalbumin. The remaining structure is able to bind calcium and unfolds cooperatively upon heating, although at lower temperature and with significantly lower enthalpy and entropy. We conclude that, in the two disulfide form, alpha-lactalbumin retains its calcium-binding beta-domain, whereas the alpha-domain is unfolded. It appears that the beta-domain does not require alpha-domain to fold, but its structure is stabilized significantly by the presence of the adjacent folded alpha-domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号