首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitric oxide (NO) donors have been shown to improve wound healing, but the mechanism is not well defined. Here we show that the novel NO donor nitrosyl-cobinamide (NO-Cbi) improved in vitro wound healing in several cell types, including an established line of lung epithelial cells and primary human lung fibroblasts. On a molar basis, NO-Cbi was more effective than two other NO donors, with the effective NO-Cbi concentration ranging from 3 to 10 μM, depending on the cell type. Improved wound healing was secondary to increased cell migration and not cell proliferation. The wound healing effect of NO-Cbi was mediated by cGMP, mainly through cGMP-dependent protein kinase type I (PKGI), as determined using pharmacological inhibitors and activators, and siRNAs targeting PKG type I and II. Moreover, we found that Src and ERK were two downstream mediators of NO-Cbi's effect. We conclude that NO-Cbi is a potent inducer of cell migration and wound closure, acting via cGMP, PKG, Src, and extracellular signal regulated kinase (ERK).  相似文献   

2.
Keloids arise from the aberrant wound healing process and nitric oxide (NO) plays an important role in the inflammation stage of wound healing. In order to better define the potential effect of NO/cGMP signal pathway in the keloid pathogenesis, the enhancing effect of exogenous NO (released from NO donor) on collagen expression in the keloid fibroblast (KF) as well as on the induction of collagen type I protein and TGF-beta1 expression in the KF were studied in this investigation. The DETA NONOate, an NO donor, was added to the KF, as the exogenous NO, to release NO in the culture medium. The expression of collagens was then determined by assaying the total soluble collagens and collagen type I in the KF. The cellular concentration of cGMP was measured by EIA in the KF. Exogenous NO was found to enhance the expression of collagens and elevate the cellular levels of cGMP. Moreover, to evaluate the effect of the elevated cellular cGMP levels on the expression of collagen and TGF-beta1, both cGMP and TGF-beta1 were measured by ELISA. The inhibitors for phosphodiesterase (PDE), such as IBMX (3-isobutyl-1-methylxanthine), Vinpocetine, EHNA, Milrinone and Zapriast, which have been reported to reduce the ability of PDE and subsequently produce an increase of cellular cGMP, induce the production of autocrine TGF-beta1 as well as the synthesis of collagen in the KF. In this investigation, the inhibition of the PDE enzyme activity was observed to enhance the effect on the collagen synthesis, and was induced by exogenous NO. Taken together, these results have suggested that the NO/cGMP pathway could positively influence the progression of keloid formation, via the TGF-beta1 expression in the KF.  相似文献   

3.
Effects of nitric oxide (NO) on gastric wound healing were investigated in primary rabbit gastric epithelial cell cultures. We analyzed the speed of cell migration, proliferation, and apoptosis after creating a round wound on the cell cultures. The monolayers were incubated with or without the NO donor sodium nitroprusside, oxatriazolimine 1,2,3,4-oxatriazolium, 5amino-3-(3,4-dichlorophenylchloride), or the peroxynitrite generator 3-morpholinosydnomine-N-ethylcarbamide. The possible role of cGMP as a second messenger of NO was investigated with 8-bromo-cGMP. The role of O2(-*) was evaluated using diethyldithiocarbamate and pyrogallol. The effects of superoxide dismutase and allopurinol were also investigated. NO inhibited the speed of cell migration and proliferation and induced cell apoptosis in a dose- and time-dependent manner. The effects were augmented with O2(-*) generators and ameliorated by O2-(8) scavengers, whereas cGMP had no significant effect on wound healing. NO donors retard gastric wound healing by inhibiting migration and proliferation and inducing cell apoptosis. These effects do not seem to be mediated via cGMP, but O2(-*). or peroxynitrites may be involved.  相似文献   

4.
The effect of intraperitoneal administration of cGMP (0.5 mg per animal) on carbohydrate metabolism of wound area muscle tissue was studied in experiments on rats with linear skin wounds. The content of glycogen, gluconeogenesis, activity of glycogen phosphorylase, lactate dehydrogenase and malate dehydrogenase were studied. Cyclic GMP induced a substantial activation of glycogen metabolism (elevation of gluconeogenesis, increase in the activity of glycogen phosphorylase) even the third day after the operation. The animals not given cGMP demonstrated such an activation only the fifth day following the operation. Under the effect of cGMP the activity of lactate dehydrogenase rose the third day after the operation. Thus cGMP administration to the animals with wounds leads to an earlier mobilization of energy resources thereby promoting the acceleration of wound healing.  相似文献   

5.
The effect of collagen, its hydrolysate and glycin on metabolism of cyclic nucleotides in wound tissue was studied in experiments on animals. Collagen was found to reduce the cAMP level in muscles of the wound fundus, while the concentration of cGMP remained unchanged. Collagen hydrolysate induced unidirectional changes in cyclic nucleotides, whereas glycin opposite ones. The basal activity of cAMP phosphodiesterase was not changed. The mechanism of the stimulatory effect of collagen on wound healing is discussed.  相似文献   

6.
微小RNA是一类真核细胞中广泛存在的内源性转录后调控分子,其在细胞的增殖、分化、凋亡、迁移等过程中发挥了重要的调控作用。皮肤创伤修复涉及复杂的细胞与分子的相互作用网络。近年来研究表明micro RNAs在皮肤创伤修复中发挥调控作用,引人关注。miR-21作为重要的癌基因是目前研究的最多的miRNAs分子之一,其在皮肤创伤修复中的作用研究也越来越受到重视。研究表明miR-21参与了细胞增殖与迁移、炎症反应、血管生成和细胞外基质合成等重要修复相关事件的调控。因此,阐明miR-21分子在正常皮肤创伤愈合中的作用,厘清miR-21表达失调在修复不足和修复过度中的功能,将深化我们对于皮肤创伤愈合基本理论的认识,并为促进创面愈合与防治修复不足和过度提供潜在的治疗靶点。本文就miR-21分子在正常皮肤创伤修复、慢性难愈性创面和增生性瘢痕中作用的研究进展进行综述展望。  相似文献   

7.
皮肤是哺乳动物最重要的组织之一.当皮肤受损时,受损组织通过系列伤口愈合反应的生理和心理作用被修复,实现组织再生.再生反应主要发生在胚胎发育早期,伤口自愈能力随着机体的成熟而减弱;并且哺乳动物的组织重塑过程较为复杂,在不正确的信号引导下,可能引起并发症而导致创面愈合异常.研究表明,伤口微环境的稳态和信号分子的辅助作用是愈...  相似文献   

8.
Previously, we demonstrated the effectiveness of a research grade recombinant chymotrypsin, derived from the larvae of Lucilia sericata, in "debriding" slough/eschar from venous leg ulcers ex vivo. Furthermore, we were able to formulate this enzyme for successful delivery to in vitro wound healing assays, from a prototype hydrogel wound dressing, and showed that enzyme delivered in this way could degrade wound tissue ex vivo. Recently, to progress biotechnological development of the enzyme as a potential therapeutic product, we explored expression using current good manufacturing practice (cGMP) guidelines, and now report that a recombinant chymotrypsin I zymogen from L. sericata can be expressed in the cGMP acceptable strain of Escherichia coli (BLR-DE3). In addition, the conditions required for purification, refolding and activation of the chymotrypsinogen have been determined. The activated enzyme was stable, and effective in digesting wound slough/eschar tissue. To summarise, we have successfully initiated the production and characterisation of a novel cGMP compatible product for use in future clinical trials.  相似文献   

9.
Skin wound healing involves Notch/Jagged1 signaling. However, little is known how Jag1 expression level in epidermal stem cells (ESCs) contributes to wound healing and scar formation. We applied multiple cellular and molecular techniques to examine how Jag1 expression in ESCs modulates ESCs differentiation to myofibroblasts (MFB) in vitro, interpret how Jag1 expression in ESCs is involved in wound healing and scar formation in mice, and evaluate the effects of porcine acellular dermal matrix (ADM) treatment on wound healing and scar formation. We found that Jag1, Notch1 and Hes1 expression was up-regulated in the wound tissue during the period of wound healing. Furthermore, Jag1 expression level in the ESCs was positively associated with the level of differentiation to MFB. ESC-specific knockout of Jag1 delayed wound healing and promoted scar formation in vivo. In addition, we reported that porcine ADM treatment after skin incision could accelerate wound closure and reduce scar formation in vivo. This effect was associated with decreased expression of MFB markers, including α-SMA Col-1 and Col-III in wound tissues. Finally, we confirmed that porcine ADM treatment could increase Jag1, Notch1 and Hesl expression in wound tissues. Taken together, our results suggested that ESC-specific Jag1 expression levels are critical for wound healing and scar formation, and porcine ADM treatment would be beneficial in promoting wound healing and preventing scar formation by enhancing Notch/Jagged1 signaling pathway in ESCs.  相似文献   

10.
Delayed wound healing causes problems for many patients both physically and psychologically, contributing to pain, economic burden, loss of function, and even amputation. Although many factors affect the wound healing process, abnormally prolonged or augmented inflammation in the wound site is a common cause of poor wound healing. Excessive neutrophil extracellular trap (NET) formation during this phase may amplify inflammation and hinder wound healing. However, the roles of NETs in wound healing are still unclear. Herein, we briefly introduce NET formation and discuss the possible NET-related mechanisms in wound healing. We conclude with a discussion of current studies, focusing on the roles of NETs in diabetic and normoglycemic wounds and the effectiveness of NET-targeting treatments in wound healing.Subject terms: Mechanisms of disease, Experimental models of disease  相似文献   

11.
It has classically been accepted that the healing of narrow wounds in epithelia occurs by the formation of a contractile actin cable, while wide wounds are resurfaced by lamellipodia-dependent migration of border cells into the denuded area. To further investigate the general validity of this idea, we performed systematic experiments of the roles of wound geometry, wound size, and extracellular matrix (ECM) in wound healing in monolayers of bovine corneal endothelial cells, a system shown here to predominantly display any of the two healing mechanisms according to the experimental conditions. We found that, in this system, it is the absence or presence of the ECM on the wound surface that determines the specific healing mode. Our observations demonstrate that, independent of their size and geometry, wounds created maintaining the ECM heal by migration of cells into the wound area, while ECM removal from the wound surface determines the predominant formation of an actin cable. While the latter mechanism is slower, the actin cable permits the maintainance of the epithelial phenotype to a larger extent during the healing process, as also confirmed by our finding of a more conserved localization of cadherin and vinculin. We also introduce a model that simulates experimental findings about the dynamics of healing mechanisms, both for the maintenance or removal of the ECM on the wound surface. The findings of this study may contribute to the understanding of physiological and pathological aspects of epithelial wound healing and to the design of therapeutic strategies.  相似文献   

12.
感染是影响慢性难愈性创面愈合最常见的原因,由于多种细菌混合感染、耐药性产生、生物膜的形成使其治疗成为难题.其中,细菌生物膜形成是导致创面的难以愈合的重要因素之一.本文就慢性难愈合创面中细菌生物膜的形成机制、特征、生态学、对伤口愈合的影响以及可能的治疗对策等作一综述.  相似文献   

13.
14.
While urodele amphibians (newts and salamanders) can regenerate limbs as adults, other tetrapods (reptiles, birds and mammals) cannot and just undergo wound healing. In adult mammals such as mice and humans, the wound heals and a scar is formed after injury, while wound healing is completed without scarring in an embryonic mouse. Completion of regeneration and wound healing takes a long time in regenerative and non-regenerative limbs, respectively. However, it is the early steps that are critical for determining the extent of regenerative response after limb amputation, ranging from wound healing with scar formation, scar-free wound healing, hypomorphic limb regeneration to complete limb regeneration. In addition to the accumulation of information on gene expression during limb regeneration, functional analysis of signaling molecules has recently shown important roles of fibroblast growth factor (FGF), Wnt/beta-catenin and bone morphogenic protein (BMP)/Msx signaling. Here, the routine steps of wound healing/limb regeneration and signaling molecules specifically involved in limb regeneration are summarized. Regeneration of embryonic mouse digit tips and anuran amphibian (Xenopus) limbs shows intermediate regenerative responses between the two extremes, those of adult mammals (least regenerative) and urodele amphibians (more regenerative), providing a range of models to study the various abilities of limbs to regenerate.  相似文献   

15.
It was demonstrated that biogenic elicitors, arachidonic acid and chitosan, locally and systemically stimulated wound healing in potato tuber tissues by increasing the number of wound periderm layers, accelerating the development of cork cambium (phellogen), and inducing proteinase inhibitors. The signal molecules, jasmonic and salicylic acids, had different effects on the development of wound periderm: jasmonic acid locally and systemically stimulated potato wound healing and elevated the level of proteinase inhibitors, whereas salicylic acid did not have any effect on wound healing and even blocked the formation of proteinase inhibitors.  相似文献   

16.
The main objective of this retrospective study was to determine whether the rates of complications are higher in large reductions (> or =1000 g per breast) as compared with smaller reductions (< or =999 g per breast) using the inferior pedicle technique. A retrospective chart review of 133 consecutive patients operated on between October of 2000 and March of 2002 was undertaken. Complication data were recorded and analyzed on a per-breast basis. Two hundred sixteen breasts had reductions of 999 g or less, whereas 50 breasts had reductions of 1000 g or more. The overall mean follow-up period was 152 days (range, 20 to 522 days). There were no statistically significant differences in the rates of nipple necrosis, hematoma formation, seroma, delayed healing, culture-positive wound infection, fat necrosis, cyst formation, nipple sensation, or hypertrophic scarring between the large and small reductions. However, the rate of wound dehiscence was significantly lower in the smaller reduction group. The rates of wound dehiscence and hypertrophic scarring were also significantly lower in patients who had received at least 5 days of postoperative antibiotics. A statistically significant difference was also reported for clinical wound infection (p < 0.0005). Body mass index had no statistically significant effect on the rate of nipple necrosis, hematoma formation, fat necrosis, cyst formation, nipple sensation, or hypertrophic scarring. However, body mass index had a statistically significant effect on delayed healing, wound dehiscence, and culture-positive wound infection. A higher mean body mass index predicted a delayed healing, wound dehiscence, and infection. The inferior pedicle technique is a safe method of breast reduction regardless of degree of parenchymal resection. However, the use of postoperative antibiotics for at least 5 days is recommended to reduce rates of wound dehiscence and improve postoperative scarring.  相似文献   

17.
Wound healing is a complex and error-prone process. Wound healing in adults often leads to the formation of scars, a type of fibrotic tissue that lacks skin appendages. Hypertrophic scars and keloids can also form when the wound-healing process goes wrong. Leptin (Lep) and leptin receptors (LepRs) have recently been shown to affect multiple stages of wound healing. This effect, however, is paradoxical for scarless wound healing. On the one hand, Lep exerts pro-inflammatory and profibrotic effects; on the other hand, Lep can regulate hair follicle growth. This paper summarises the role of Lep and LepRs on cells in different stages of wound healing, briefly introduces the process of wound healing and Lep and LepRs, and examines the possibility of promoting scarless wound healing through spatiotemporal, systemic, and local regulation of Lep levels and the binding of Lep and LepRs.  相似文献   

18.
Immunohistochemical localization of growth factors in fetal wound healing   总被引:26,自引:0,他引:26  
Fetal wound healing occurs rapidly, in a regenerative fashion, and without scar formation, by contrast with adult wound healing, where tissue repair results in scar formation which limits tissue function and growth. The extracellular matrix deposited in fetal wounds contains essentially the same structural components as that in the adult wound but there are distinct differences in the spatial and temporal distribution of these components. In particular the organization of collagen in the healed fetal wound is indistinguishable from the normal surrounding tissue. Rapidity of healing, lack of an inflammatory response, and an absence of neovascularization also distinguish fetal from adult wound healing. The mechanisms controlling these differing processes are undefined but growth factors may play a critical role. The distribution of growth factors in healing fetal wounds is unknown. We have studied, by immunohistochemistry, the localization of platelet-derived growth factor (PDGF), transforming growth factor beta (TGF beta), and basic fibroblast growth factor (bFGF), in fetal, neonatal, and adult mouse lip wounds. TGF beta and bFGF were present in neonatal and adult wounds, but were not detected in the fetal wounds, while PDGF was present in fetal, neonatal, and adult wounds. This pattern correlates with the known effects in vitro of these factors, the absence of an inflammatory response and neovascularization in the fetal wound, and the patterns of collagen deposition in both fetal and adult wounds. The results suggest that it may be possible to manipulate the adult wound to produce more fetal-like, scarless, wound healing.  相似文献   

19.
The effect of disodium cromoglycate on skin wound healing and collagen formation in the wounds was studied. Disodium cromoglycate (a mast cell stabilizer) administered to the rats in a dose of 2 mg/animal was found to retard wound healing and markedly increased wound surface in all examined days (3rd, 5th, 7th, 10th, 14th day of healing). The mast cell stabilizer injected directly into wounds decreased collagen content, especially on 10th and 14th day of the healing process.  相似文献   

20.
Promotion of wound healing by yeast glucan evaluated on single animals   总被引:3,自引:0,他引:3  
M Wolk  D Danon 《Medical biology》1985,63(2):73-80
The effectiveness of yeast glucan in the acceleration of wound healing was evaluated in mice, rats and guinea pigs. In all experiments comparison between glucan treatment in one hind leg and saline treatment as control on the other leg was made on identical wounds. The degree of healing in the two legs was evaluated macroscopically and classified as follows: 1. healing more advanced in glucan treated wound marked by (+). 2. No significant difference between the two legs marked by (0). 3. Healing more advanced in the control wound, marked by (-). During the days when the differences were most obvious, 60% to 80% of the animals showed more advanced healing in the glucan treated wound, 20% to 40% showed no significant difference; and 0 to 15% showed more advanced healing in the control, saline treated wound. The average time for complete wound healing was reduced by about 18% as a result of glucan treatment. The histological analysis shows that the acceleration of wound healing was mediated by early arrival of macrophages to the wound area in the glucan treated wounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号