首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
A new gene closely related to the glycophorin A (GPA) and glycophorin B (GPB) genes has been identified in the normal human genome as well as in that of persons with known alterations of GPA and/or GPB expression. This gene, called glycophorin E (GPE), is transcribed into a 0.6-kb message which encodes a 78-amino-acid protein with a putative leader peptide of 19 residues. The first 26 amino acids of the mature protein are identical to those of M-type glycophorin A (GPA), but the C-terminal domain (residues 27-59) differs significantly from those of glycophorins A and B (GPA and GPB). The GPE gene consists of four exons distributed over 30 kb of DNA, and its nucleotide sequence is homologous to those of the GPA and GPB genes in the 5' region, up to exon 3. Because of branch and splice site mutations, the GPE gene contains a large intron sequence partially used as exons in GPA and GPB genes. Compared to its counterpart in the GPB gene, exon 3 of the GPE gene contains several point mutations, an insertion of 24 bp, and a stop codon which shortens the reading frame. Downstream from exon 3, the GPE and the GPB sequences are virtually identical and include the same Alu repeats. Thus, it is likely that the GPE and GPB genes have evolved by a similar mechanism. From the analysis of the GPA, GPB and GPE genes in glycophorin variants [En(a-), S-s-U- and Mk], it is proposed that the three genes are organized in tandem on chromosome 4. Deletion events within this region may remove one or two structural gene(s) and may generate new hybrid structures in which the promoter region of one gene is positioned upstream from the body of another gene of the same family. This model of gene organization provides a basis with which to explain the diversity of the glycophorin gene family.  相似文献   

3.
Pancreatic ribonuclease (RNASE1) is a digestive enzyme that has been recognized to be one of the most attractive model systems for molecular evolutionary studies. The contribution of RNASE1 gene duplication to the functional adaptation of digestive physiology in foregut-fermenting herbivores, mostly in ruminants, has been well documented. However, no one has ever done a comprehensive study on the carnivores, which are sister to the artiodactyls. Here, we sequenced this gene from 15 species of the superfamily Caniformia in order Carnivora, which all have a relatively simple digestive system and lack the microbial digestion in rumen or cecum typical of most herbivores. In contrast to our initial expectation that only a single RNASE1 gene is present in these carnivores, we observed a "birth (gene duplication)-and-death (gene deactivation)" process for the evolution of RNASE1 genes in all 3 species of Mustelidae family examined here, adding the growing diversity of RNASE1 gene family evolution. In addition, bursts of positive selection have been shown to contribute the enigmatic diversification of these RNASE1 genes in Mustelidae. The finding of the adaptive expansion of RNASE1 in animals without foregut fermentation provides another opportunity for further studies of the structure, function, and evolution of this gene, raising the possibility that new tissue specificity or other functions of RNASE1 genes might have developed in these species.  相似文献   

4.
We report the novel cloning of the murine PHEX promoter, the gene that is mutated in X-linked hypophosphatemic rickets (XLH). Four promoter/reporter gene constructs, -133/+104, -542/+104, -1061/+104, and -2866/+104, showed significant luciferase activity (4.9-13.2-fold over background) when transfected into rat osteogenic sarcoma (UMR-106) cells.  相似文献   

5.
The peptides substance K and substance P evoke a variety of biological responses via distinct, guanosine-nucleotide-binding-regulatory-protein-coupled receptors. We have screened a murine genomic cosmid library using oligonucleotide probes and have isolated, cloned and characterized the substance K receptor and the substance P receptor genes. The coding portion of the substance K receptor gene consists of five exons distributed over 13 kbp. The substance P receptor gene is considerably larger than that of substance K (more than 30 kbp), however, the boundaries of the four exons that have been characterized in the substance P receptor gene correspond exactly to the homologous exons in the substance K receptor gene. To verify the identity of the isolated genes, we have cloned the corresponding cDNA by means of the polymerase chain reaction and we have expressed these cDNA species in Xenopus laevis oocytes. The ligand binding characteristics determined in this system pharmacologically confirm the identity of the two receptors. The deduced amino acid sequence of the mouse substance K receptor is 94% identical to the rat sequence and 85% identical to the bovine and human sequences. The mouse substance P receptor amino acid sequence is 99% identical to the rat sequence. The cloning of the murine substance K and substance P receptor genes should contribute substantially to the generation of in vivo models for the detailed analysis of the functional significance of these receptors.  相似文献   

6.
A fragment of DNA (3.1 kilobases [kb]) from a ColE1 Escherichia coli DNA hybrid plasmid containing the bacterial citrate synthase gene (gltA) was subcloned in both orientations into phage lambda vectors by in vitro recombination. The resulting phages were able to transduce gltA and, as prophages, complemented the lesion of a gltA mutant, showing that a functional gltA gene is contained in the 3.1-kb fragment. The segment of E. coli DNA cloned in these lambda gltA phages was extended in vivo by prophage integration and aberrant excision in the gltA region. Plaque-forming derivatives, carrying up to three additional tricarboxylic acid cycle genes, succinate dehydrogenase (sdh), 2-oxoglutarate dehydrogenase (sucA), and dihydrolipoamide succinyltransferase (sucB), were isolated and characterized by their transducing and complementing activities with corresponding mutants, and the order of the genes was confirmed as gltA-sdh-sucA-sucB. Physical maps of a variety of the transducing phages showed that the four tricarboxylic acid cycle genes are contained in a 12.8-kb segment of bacterial DNA. The four gene products, plus a possible succinate dehydrogenase small subunit, were identified in postinfection labeling studies, and the polarities of gene expression were defined as counterclockwise for gltA and clockwise for sdh, sucA, and sucB, relative to the E. coli linkage map.  相似文献   

7.
8.
9.
The Arabidopsis AtMCP and rice OsMCP genes which encode proteins highly homologous to molybdoenzymes of the sulphite oxidase family were isolated and characterized. Both proteins seemed to possess only a molybdenum cofactor as the redox centre, unlike all the other eukaryotic molybdoenzymes. Putative MCP orthologues were identified in 17 plant species, indicating that MCPs are widely distributed over the plant kingdom [corrected]. An analysis using a green fluorescent protein fusion showed that AtMCP possesses a peroxisomal targeting signal at its C-terminus. Putative peroxisomal targeting signals were also found in all plant MCPs, suggesting the existence of a new redox pathway in this organelle.  相似文献   

10.
In the present study, a pre-B cell leukemia L1210-C7, representing a very early stage of the B lineage, was used to characterize the molecular mechanisms exploited by IFN-gamma to modulate B cell activity. A cDNA library was prepared with poly (A)+ RNA from cells stimulated with IFN-gamma and three cDNAs clones complementary to IFN-gamma inducible mRNAs were isolated by differential screening. Of these, the 9.5 cDNA hybridized to a 2.4 kb mRNA not homologous with previously cloned IFN-gamma inducible mRNAs. Furthermore, when compared with RNAs obtained from cells of different origins (fibroblasts and T cells) the 9.5 mRNA appeared to be increased only in cells belonging to the B lineage. Taken as a whole, these results demonstrate that in leukemic pre-B cells IFN-gamma induces the expression of a gene that could be employed as specific cell activation marker.  相似文献   

11.
12.
13.
Molecular cloning and sequencing of a murine pgk-1 pseudogene family   总被引:1,自引:0,他引:1  
Seven genomic mouse DNA fragments carrying pgk-1-homologous regions have been cloned and sequenced. They have to be classified as processed genes because intervening sequences, present in their productive counterpart, are absent. Four pseudogenes (I-IV) represent nearly the complete sequence of pgk-1 cDNA. Two of these genes (I and II), although rather different from the published mouse pgk-1 cDNA in the 3'-untranslated region, represent the actual mouse pgk-1 cDNA sequence in the coding part except for substitutions in the third position of three codons. These genes can code for a functional PGK protein but, lacking as they do classical promoter structures, are probably not expressed. They show the typical characteristics of retroposons, being flanked by A-rich regions and direct repeats which are localized at the positions where the homology with the mouse pgk-1 cDNA is interrupted. Pseudogenes III and IV have numerous mutations. Gene III is also flanked by direct repeats, whereas gene IV is flanked by inverted repeats. The other three genes are flanked by direct repeats localized further inside the target sites. They are truncated and mutated extensively as usually observed with pseudogenes.  相似文献   

14.
目的:克隆与分析大鼠不同剪切的Liras基因.方法:应用巢式RT-PCR,以大鼠cDNA为模板,扩增Lims基因不同剪切子,构入PinPointTM Xa-1T质粒,测序鉴定.结果:测序表明克隆了一种新的Lims基因变异剪切体Lims E,编码区为1164bp,编码387个氨基酸.结论:比较基因组学分析显示,成功地克隆了一个新的大鼠Liras基因剪切子LimsE,为进一步研究Lims基因在细胞发育中的功能打下了基础.  相似文献   

15.
The RNase A ribonucleases are a complex group of functionally diverse secretory proteins with conserved enzymatic activity. We have identified novel RNase 1 genes from four species of squirrel (order Rodentia, family Sciuridae). Squirrel RNase 1 genes encode typical RNase A ribonucleases, each with eight cysteines, a conserved CKXXNTF signature motif, and a canonical His12-Lys41-His119 catalytic triad. Two alleles encode Callosciurus prevostii RNase 1, which include a Ser18?Pro, analogous to the sequence polymorphisms found among the RNase 1 duplications in the genome of Rattus exulans. Interestingly, although the squirrel RNase 1 genes are closely related to one another (77–95% amino acid sequence identity), the cluster as a whole is distinct and divergent from the clusters including RNase 1 genes from other rodent species. We examined the specific sites at which Sciuridae RNase 1s diverge from Muridae/Cricetidae RNase 1s and determined that the divergent sites are located on the external surface, with complete sparing of the catalytic crevice. The full significance of these findings awaits a more complete understanding of biological role of mammalian RNase 1s.  相似文献   

16.
Mast cell carboxypeptidase A has been isolated from the secretory granules of mouse peritoneal connective tissue mast cells (CTMC) and from a mouse Kirsten sarcoma virus-immortalized mast cell line (KiSV-MC), and a cDNA that encodes this exopeptidase has been cloned from a KiSV-MC-derived cDNA library. KiSV-MC-derived mast cell carboxypeptidase A was purified with a potato-derived carboxypeptidase-inhibitor affinity column and was found by analytical sodium dodecyl sulfate-polyacrylamide gel electrophoresis to be a Mr 36,000 protein. Secretory granule proteins from KiSV-MC and from mouse peritoneal CTMC were then resolved by preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis and transblotted to polyvinylidine difluoride membranes. Identical aminoterminal amino acid sequences were obtained for the prominent Mr 36,000 protein present in the granules of both cell types. Based on the amino-terminal sequence, an oligonucleotide probe was synthesized and used to isolate a 1,470-base pair cDNA that encodes this mouse exopeptidase. The deduced amino acid sequence revealed that, after cleavage of a 15-amino acid hydrophobic signal peptide and a 94-amino acid activation peptide from a 417-amino acid preproenzyme, the mature mast cell carboxypeptidase A protein core has a predicted Mr of 35,780 and a high positive charge [Lys + Arg) - (Asp + Glu) = 17) at neutral pH. Although critical zinc-binding amino acids (His67, Glu70, His195), substrate-binding amino acids (Arg69, Asn142, Arg143, Tyr197, Asp255, Phe278), and cysteine residues that participate in intrachain disulfide bonds (Cys64-Cys77, Cys136-Cys159) of pancreatic carboxypeptidases were also present in mast cell carboxypeptidase A, the overall amino acid sequence identities for mouse mast cell carboxypeptidase A relative to rat pancreatic carboxypeptidases A1, A2, and B were only 43, 41, and 53%, respectively. RNA and DNA blot analyses revealed that mouse peritoneal CTMC, KiSV-MC, and bone marrow-derived mast cells all express a prominent 1.5-kilobase mast cell carboxypeptidase A mRNA which is transcribed from a single gene. We conclude that mouse mast cell carboxypeptidase A is a prominent secretory granule enzyme of mast cells of the CTMC subclass and represents a novel addition to the carboxypeptidase gene family.  相似文献   

17.
We report here the molecular cloning, sequencing, and expression of the gene encoding the mouse neutral ceramidase, which has been proposed to function in sphingolipid signaling. A full-length cDNA encoding the neutral ceramidase was cloned from a cDNA library of mouse liver using the partial amino acid sequences of the purified mouse liver ceramidase. The open reading frame of 2,268 nucleotides encoded a polypeptide of 756 amino acids having nine putative N-glycosylation sites. Northern blot analysis revealed that the mRNA of the ceramidase was expressed widely in mouse tissues, with especially strong signals found in the liver and kidney. The ceramidase activity of lysates of CHOP cells increased more than 900-fold when the cells were transformed with a plasmid containing the cDNA encoding ceramidase. We also cloned the ceramidase homologue from the cDNA library of mouse brain and found that the sequence of the open reading frame, but not the 5'-noncoding region, was identical to that of the liver. Interestingly, phylogenetic analysis of various ceramidases clearly indicated that neutral/alkaline ceramidases form a novel but highly conserved gene family that is evolutionarily different from lysosomal acid ceramidases.  相似文献   

18.
19.
20.
《Gene》1996,174(1):129-134
We isolated the genes of two small GTP-binding proteins of the rab family from a human melanocyte cDNA library and from melanoma cells. One gene, rab30 codes for a novel rab protein of 203 amino acids with minimal homology to previously documented GTPases. The other, rab22b, appears to be an isoform of the human homologue of canine rab22. Both rab mRNAs displayed a nearly ubiquitous pattern of expression in the various tissues examined. Rab22b and rab30 were mapped to chromosomes 18 and 11, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号