首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Although they possess a well‐characterized ability to porate the bacterial membrane, emerging research suggests that cationic antimicrobial peptides (CAPs) can influence pathogen behaviour at levels that are sublethal. In this study, we investigated the interaction of polymyxin B and human neutrophil peptide (HNP‐1) with the human pathogen Streptococcus pyogenes. At sublethal concentrations, these CAPs preferentially targeted the ExPortal, a unique microdomain of the S. pyogenes membrane, specialized for protein secretion and processing. A consequence of this interaction was the disruption of ExPortal organization and a redistribution of ExPortal components into the peripheral membrane. Redistribution was associated with inhibition of secretion of certain toxins, including the SpeB cysteine protease and the streptolysin O (SLO) cytolysin, but not SIC, a protein that protects S. pyogenes from CAPs. These data suggest a novel function for CAPs in targeting the ExPortal and interfering with secretion of factors required for infection and survival. This mechanism may prove valuable for the design of new types of antimicrobial agents to combat the emergence of antibiotic‐resistant pathogens.  相似文献   

2.
3.
The Gram-positive pathogen Streptococcus pyogenes secretes proteins through the ExPortal, a unique single microdomain of the cellular membrane specialized to contain the Sec translocons. It has been proposed that the ExPortal functions as an organelle to promote the biogenesis of secreted proteins by coordinating interactions between nascent unfolded secretory proteins and membrane-associated chaperones. In this study we provide evidence to support this model. It was found that HtrA (DegP), a surface anchored accessory factor required for maturation of the secreted SpeB cysteine protease, was localized exclusively to the ExPortal. Furthermore, the ATP synthase beta subunit was not localized to the ExPortal, suggesting that retention is likely restricted to a specific subset of exported proteins. Mutations that disrupted the anchoring, but not the protease activity, of HtrA, also altered the maturation kinetics of SpeB demonstrating that localization to the ExPortal was important for HtrA function. These data indicate that the ExPortal provides a mechanism by which Gram-positive bacteria can coordinate protein secretion and subsequent biogenesis in the absence of a specialized protein-folding compartment.  相似文献   

4.
Pathogenic bacteria often produce proteinases that are believed to be involved in virulence. Moreover, several host defence systems depend on proteolysis, demonstrating that proteolysis and its regulation play an important role during bacterial infections. Here, we discuss how proteolytical events are regulated at the surface of Streptococcus pyogenes during infection with this important human pathogen. Streptococcus pyogenes produces proteinases, and host proteinases are produced and released as a result of the infection. Streptococcus pyogenes also recruits host proteinase inhibitors to its surface, suggesting that proteolysis is tightly regulated at the bacterial surface. We propose that the initial phase of a S. pyogenes infection is characterized by inhibition of proteolysis and complement activity at the bacterial surface. This is achieved mainly through binding of host proteinase inhibitors and complement regulatory proteins to bacterial surface proteins. In a later phase of the infection, massive proteolytic activity will release bacterial surface proteins and degrade human tissues, thus facilitating bacterial spread. These proteolytic events are regulated both temporally and spatially, and should influence virulence and the outcome of S. pyogenes infections.  相似文献   

5.
6.
7.
8.
Very few studies have so far been dedicated to the systematic analysis of protein interactions occurring between surface and/or secreted proteins in bacteria. Such interactions are expected to play pivotal biological roles that deserve investigation. Taking advantage of the availability of a detailed map of surface and secreted proteins in Streptococcus pyogenes (group A Streptococcus (GAS)), we used protein array technology to define the "surface interactome" in this important human pathogen. Eighty-three proteins were spotted on glass slides in high density format, and each of the spotted proteins was probed for its capacity to interact with any of the immobilized proteins. A total of 146 interactions were identified, 25 of which classified as "reciprocal," namely, interactions that occur irrespective of which of the two partners was immobilized on the chip or in solution. Several of these interactions were validated by surface plasmon resonance and supported by confocal microscopy analysis of whole bacterial cells. By this approach, a number of interesting interactions have been discovered, including those occurring between OppA, DppA, PrsA, and TlpA, proteins known to be involved in protein folding and transport. These proteins, all localizing at the septum, might be part, together with HtrA, of the recently described ExPortal complex of GAS. Furthermore, SpeI was found to strongly interact with the metal transporters AdcA and Lmb. Because SpeI strictly requires zinc to exert its function, this finding provides evidence on how this superantigen, a major player in GAS pathogenesis, can acquire the metal in the host environment, where it is largely sequestered by carrier proteins. We believe that the approach proposed herein can lead to a deeper knowledge of the mechanisms underlying bacterial invasion, colonization, and pathogenesis.  相似文献   

9.
10.
11.
Streptococcus pyogenes grown in the presence of subinhibitory concentrations of sodium fluoride had a diminished ability, compared to control cells, to adhere to buccal cells, collagen, fibronectin, and laminin. In addition, sodium fluoride was a competitive inhibitor of streptococcal adhesion to collagen and fibronectin, but not laminin. It is suggested that sodium fluoride may be useful in therapy or prophylaxis in infections involving group A streptococci.  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
【目的】分析乳杆菌代谢产物对化脓性链球菌的抑制作用。【方法】基于双层平板打孔法,通过测量抑菌圈大小来检测乳杆菌代谢产物对化脓性链球菌的抑菌作用;然后分别采用高效液相色谱法和4-氨酰安替比林法检测乳杆菌代谢产物中的有机酸和H2O2含量;最后,检测乳酸、乙酸和H2O2对化脓性链球菌的最小抑菌浓度(MIC)、最小杀菌浓度(MBC)。【结果】对化脓性链球菌的抑菌效果以植物乳杆菌KLDS1.0667最好,副干酪乳杆菌KLDS1.0342-1次之,瑞士乳杆菌KLDS1.0203抑菌效果最差;乳酸和乙酸产量KLDS1.0667>KLDS1.0342-1>KLDS1.0203;H2O2产量KLDS1.0203>KLDS1.0667>KLDS1.0342-1。在抑菌试验中,乳杆菌的发酵上清液经去除H2O2处理后抑菌圈直径都减小;将发酵上清液的p H调至7.0后均检测不到抑菌圈。结果表明,乳杆菌代谢产物中对化脓性链球菌起抑制作用的主要物质为有机酸和H2O2,其中乳酸是产生抑菌作用的最主要物质。乳酸、乙酸和H2O2对化脓性链球菌的最小抑菌浓度(MIC)分别为1.28、0.64和0.008 g/L,对化脓性链球菌的最小杀菌浓度(MBC)分别为5.12、2.56和0.032 g/L。【结论】乳杆菌可利用其代谢产物对化脓性链球菌产生抑制作用,主要抑菌物质为有机酸和H2O2。  相似文献   

20.
Since we first reported (DeAngelis, P. L., Papaconstantinou, J., and Weigel, P. H. (1993) J. Biol. Chem. 268, 19181-19184) the cloning of the hyaluronan (HA) synthase from Streptococcus pyogenes (spHAS), numerous membrane-bound HA synthases have been discovered in both prokaryotes and eukaryotes. The HASs are unique among enzymes studied to date because they mediate 6-7 discrete functions in order to assemble a polysaccharide containing hetero-disaccharide units and simultaneously effect translocation of the growing HA chain through the plasma membrane. To understand how the relatively small spHAS performs these various functions, we investigated the topological organization of the protein utilizing fusion analysis with two reporter enzymes, alkaline phosphatase and beta-galactosidase, as well as several other approaches. From these studies, we conclude that the NH2 terminus and the COOH terminus, as well as the major portion of a large central domain are localized intracellularly. The first two predicted membrane domains were confirmed to be transmembrane domains and give rise to a very small extracellular loop that is inaccessible to proteases. Several regions of the large internal central domain appear to be associated with, but do not traverse, the membrane. Following the central domain, there are two additional transmembrane domains connected by a second small extracellular loop that also is inaccessible to proteases. The COOH-terminal approximately 25% of spHAS also contains a membrane domain that does not traverse the membrane and may contain extensive re-entrant loops or amphipathic helices. Numerous membrane associations of this latter COOH-terminal region and the central domain may be required to create a pore-like structure through which a growing HA chain can be extruded to the cell exterior. Based on the high degree of similarity among Class I HAS family members, these enzymes may have a similar topological organization for their spHAS-related domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号