首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
采用超声破碎,Triton X-100处理,30%丙酮提取,经三次DEAE-52纤维素离子交换柱层析分离纯化,我们第一次从紫色非硫光合细菌Rps.capsulata N-3菌株中,获得聚丙烯酰胺凝胶电泳纯的铁氧还蛋白(Ferredoxin)及其结晶。吸收光谱的峰值位于275舳,375nm;在450 nm、480 nm处各有较小的吸收峰。特征吸收峰比A375nm/A275nm=0.74。凝胶过滤测定它的分子量为9,000道尔顿;每分子含有8个非血红素铁和等数量的酸性不稳定硫。铁氧还蛋白能被连二亚硫酸钠化学还原,氢气和氢酶构成的酶体系还原,亦能作为电子传递载体参与菠菜叶绿体催化的DCPIPH_2→铁氧还蛋白→NADP~ 光还原。  相似文献   

2.
本文介绍了从紫色非硫光合细菌Rhodopseudomonas capsulata分离纯化的铁氧还蛋白,经固体硫酸铵分级盐析沉淀和透析进一步纯化的样品,通过循环伏安法检测其对温度的敏感性,所引起的蛋白变性;然后应用定电位电量法和电位阶跃电量法,研究它的电量-电位关系,根据Nernst公式进而计算铁氧还蛋白的中点电位分别为-378mV和-375mV,在其参与氧化-还原反应时,每分子铁氧还蛋白传递电子数目≈2。并对不同菌种来源的铁氧还蛋白的标准氧化-还原电位及其传递电子数目进行了讨论。  相似文献   

3.
本文介绍了从紫色非硫光合细菌Rhodopseudomanas capsulata 分离纯化的铁氧还蛋白,经固体硫酸铵分级盐析沉淀和透析进一步纯化的样品,通过循环伏安法检测其对温度的敏感性,所引起的蛋白变性;然后应用定电位电量法和电位阶跃电量法,研究它的电量-电位关系,根据Nernst 公式进而计算铁氧还蛋白的中点电位分别为-378mV 和-375mV,在其参与氧化-还原反应时,每分子铁氧还蛋白传递电子数目≈2。并对不同菌种来源的铁氧还蛋白的标准氧化-还原电位及其传递电子数目进行了讨论。  相似文献   

4.
光合细菌Rhodopseudomonas capsulata载色体的内源光合磷酸化(循环光合磷酸化)对antimycin A敏感,在浓度为10~(-7)M时,几乎完全被抑制。外加电子供体(DCPIPH_2)和电子受体(维生素K_3,反丁烯二酸或氧)所构成的非循环光合磷酸化,对antimycin A不敏感,这些结果与Rhodospirillum rubrum载色体中所得到的结果一致。 经0.2%Triton X-100处理后的载色体,两种类型(循环和非循环)的光合磷酸化活性完全丧失。回加铁氧还蛋白,只能使非循环光合磷酸化恢复。循环光合磷酸化活性的恢复必需同时有PMS的存在,所恢复了的磷酸化活性,对antimycin A不再敏感。 ο-Phenanthroline对细菌载色体的光合磷酸化活性具有两个反应部位。高浓度(10~(-3)M)时,几乎完全抑制循环和非循环的光合磷酸化作用(包括回加铁氧还蛋白后恢复了的光合磷酸化作用)。低浓度(10~(-5)M)时,对存在PMS的循环光合磷酸化和非循环光合磷酸化只具有部分抑制作用。而对回加铁氧还蛋白后恢复了的循环和非循环光合磷酸化活性则表现出同等程度的抑制作用。 基于上述结果,对铁氧还蛋白在光合电子传递链上作为次级电子受体的可能性进行了讨论。  相似文献   

5.
紫色非硫光合细菌是兼性厌氧及兼性光合生长的细菌,利用这一可塑的生长特性,研究了光对Rhodopseudomonas capsulata的固氮酶合成的影响,结果表明:1.暗生长的无固氮活性的静止细胞一经照光其固氮酶即以高速率形成,一旦光照中断,固氮酶的合成也立即中止,氯霉素的抑制试验表明,这种光促诱导的固氮酶出现是酶蛋白的重新合成,而不是预先形成的系统在光下的激活。2.外源性电子供体如苹果酸、分子氢等对光促诱导的固氨酶合成有促进作用。3.固氮酶合成与细菌光合器的形成是彼此独立的,在黑暗中细菌光合膜可以形成,而固氮酶却不能形成。4.暗处好氧生长的光合细菌在同一光强下诱导固氮酶,细菌叶绿素含量高的菌体,其固氮酶合成的速率也高。5.固氮酶的诱导合成可被电子传递抑制剂或磷酸化解联剂完全抑制。基于上述结果,对光合细菌固氮酶的光促合成的可能机理作了讨论。  相似文献   

6.
完整叶绿体中的NADP及NADPH测定   总被引:2,自引:2,他引:0  
NADP是植物体内重要的氢递体,叶绿体通过光合电子传递和偶联光合磷酸化反应形成NADPH和ATP,再利用它们去同化CO_2。因此对光合器官内NADP及NADPH的含量分析,在光合作用研究中显得十分重要。一般测定NADPH形成的非循环光合电子传递活性时,是在无被膜的离体叶绿体反应系统中加入外源NADP及铁氧还蛋白,光还原形成的NADPH的量直接由波长340  相似文献   

7.
缺硫对脐橙叶片光合特性和叶绿素荧光参数的影响   总被引:6,自引:0,他引:6  
陈屏昭  王磊 《生态学杂志》2006,25(5):503-506
采用营养液培养的方法,对缺硫脐橙叶片的光合特性进行了研究。结果表明,在缺硫情况下,脐橙叶片的净光合速率(Pn)、光呼吸速率(Pr)、光合色素含量、可溶性蛋白质含量、初始荧光(Fo)、光化学效率(Fv/Fm)、最大荧光(Fm)和电子传递速率(ETR)显著下降,而光呼吸/光合比(Pr/Pn)显著升高。缺硫脐橙植株的光合能力降低,可能是叶绿体发育不全或特性功能蛋白含量不足所致。  相似文献   

8.
光合细菌对鲤养殖水体生态系统的影响   总被引:18,自引:0,他引:18  
光合细菌(Photosynthetic Bacteria,简称PSB)是一种不放氧光合作用的细菌总称,近年来,光合细菌在理论和应用上都受到了广泛的重视,一方面由于它是研究光合作用的理想材料,另一方面,它又有广泛的应用价值.光合细菌在处理高浓度有机废水,生产单细胞蛋白,水产养殖和禽畜饲养,改善植物营养状况等方面已有不少报道1-4,本文研究了光合细菌在鲤养殖水体中的增殖和分布规律以及它对水体中异养细菌、浮游动物及水质的影响,以阐明光合细菌在该生态系统中的作用.    相似文献   

9.
温度变化对藻类光合电子传递与光合放氧关系的影响   总被引:2,自引:0,他引:2  
张曼  曾波  张怡  韩博平 《生态学报》2010,30(24):7087-7091
由于直接测定藻类的光合速率耗时且不方便,研究者们常通过测定藻类光合电子传递速率的方式来间接反映其光合速率,理论上,以氧气产生来度量的总光合速率(PGross)与电子传递速率(ETR)之间应该存在很好的线性关系。然而,由于温度的变化会影响藻类的光呼吸等耗氧的生理过程从而影响光合作用中的氧气释放,因此温度可能会对PGross与ETR之间的线性关系产生影响。研究了温度变化对蛋白核小球藻(Cholorella pyrenoidosa)、菱形藻(Nitzschia sp.)和水生集胞藻(Synechocystis aquetilis Sauv.)的总光合放氧速率(PGross)与电子传递速率(ETR)之间比率的影响,结果表明PGross/ETR随温度的升高而降低,低温条件下PGross/ETR比值较高,说明在相同的电子传递速率的情况下水的光裂解产生的氧有更多的可以释放出来;在高温条件下PGross/ETR比值相对较低,说明高温条件下可能有相对更多的水光裂解产生的氧被用于耗氧的生理过程而没有释放出来。研究表明当温度发生变化时,光合放氧与电子传递之间并不呈线性关系,这说明将ETR作为实际光合生产的评价指标时要谨慎,不能不加分析地直接应用。  相似文献   

10.
铁氧还素(Fd)能解除二溴百里香醌(DBMIB)对光合电子传递的抑制作用。DBMIB的抑制效果与反应系统中的Fd和DBMIB的浓度,以及两者混合后的保温时间有关。Fd—DBMIB动态差示吸收光谱显示Fd与DBMIB之间有直接的化学作用。因此,在用DBMIB来研究有Fd参与的光合电子传递实验时,都须注意两者间的直接作用。  相似文献   

11.
高等植物铁氧还蛋白-NADP~+氧化还原酶研究进展   总被引:1,自引:0,他引:1  
高等植物叶绿体定位的铁氧还蛋白-NADP+氧化还原酶(LFNR)负责催化光合线性电子传递的最后一步反应,催化电子由还原态的铁氧还蛋白(Fd)传递给NADP+。LFNR分布在叶绿体的3个不同的组分中,即叶绿体基质中、类囊体膜上和叶绿体内膜上。最近的研究表明,大多数膜定位的LFNR并非光合作用所必需的,叶绿体基质中的LFNR足以维持光合作用的正常进行。叶绿体中的两个蛋白——Tic62和TROL作为LFNR的锚定蛋白,可以与LFNR在类囊体膜上形成高分子量的蛋白复合体。Tic62-LFNR复合体主要负责在夜间保护LFNR的活性,但它不直接在光合作用中起作用。然而,TROL-LFNR复合体对植物的光合作用有一定的影响。本文将概述植物LFNR的最新研究进展。  相似文献   

12.
从NCBI数据库中下载了3种铁氧还蛋白(ACK79261.1,ACK79281.1和ACK80954.1)序列,利用网站在线预测结合软件分析,对其基本理化性质、蛋白修饰、保守结构域、亚细胞定位、二级和三级结构预测和蛋白相互作用网络等方面进行分析和预测。所得数据表明,3种蛋白质均为不稳定的亲水性蛋白质,等电点偏酸性,不含信号肽,均在细胞质中发挥作用;蛋白相互作用分析预测ACK79261.1在核酸代谢过程中发挥重要作用,ACK79281.1主要参与了细胞内的2Fe-2S簇的组装,ACK80954.1对于能量和电子传递必不可少。本研究利用生物信息学预测了铁氧还蛋白结构和功能,为后续研究嗜酸氧化亚铁硫杆菌中的电子传递过程以及菌株改良、应用推广提供理论上的依据。  相似文献   

13.
光系统Ⅰ(PSⅠ)的结构与功能研究进展   总被引:5,自引:0,他引:5  
光系统Ⅰ(PSⅠ)是整合于光合膜上的由多个蛋白亚基组成的色素蛋白复合物,它在光合电子传递链中催化电子从PC经过一系列电子传递体到Fd的传递.近20年特别是近几年来,有关光合作用PSⅠ结构与功能的研究取得了显著的进展,获得了很多具有重要意义的结果.本文综合介绍了近年来在PSⅠ的蛋白亚基组成及其特性、PSⅠ介导的3种电子传递过程、PSⅠ特有的外周捕光色素蛋白复合物系统(LHCⅠ)以及最新的有关PSⅠ4?分辨率的三维晶体结构生物学研究的进展情况,并对未来的研究进行了展望.  相似文献   

14.
光系统Ⅰ(PSⅠ)是整合于光合膜上的由多个蛋白亚基组成的色素蛋白复合物,它在光合电子传递链中催化电子从PC经过一系列电子传递体到Fd的传递。近20年特别是近几年来,有关光合作用PSⅠ结构与功能的研究取得了显著的进展,获得了很多具有重要意义的结果。本文综合介绍了近年来在PSⅠ的蛋白亚基组成及其特性、PSⅠ介导的3种电子传递过程、PSⅠ特有的外周捕光色素蛋白复合物系统(LHCⅠ)以及最新的有关PSⅠ 4*!分辨率的三维晶体结构生物学研究的进展情况,并对未来的研究进行了展望。  相似文献   

15.
植物硫氧还蛋白系统   总被引:1,自引:0,他引:1  
硫氧还蛋白是一类催化二硫键氧化还原的小蛋白,它通过调控细胞中氧化还原状态发挥重要的作用。在植物中,硫氧还蛋白系统尤为复杂,参与了植物的新陈代谢、转录翻译调控、信号传导以及植物的抗逆反应等。本文主要通过对植物硫氧还蛋白分类、活性位点、结构以及3种硫氧还蛋白系统研究现状进行概述,并对植物的硫氧还蛋白及系统进行了展望,从而较为全面地综述了植物的硫氧还蛋白系统,为进一步了解硫氧还蛋白在植物体内的作用机制奠定基础,也为今后的相关研究提供参考。  相似文献   

16.
用菠菜叶制备了硫氧还蛋白,并根据它对 FBPase 和 NAD-G3PDH 的活化作用鉴定出所制得的硫氧还蛋白是有活性的。菠菜叶绿体可溶部分中的 RuBPCase(EC4.1.1.39)的活性用分光光度法测定。外加 RuBPCase 的实验证明在测定系统中它是限速的。进一步的实验证明经二硫苏糖醇还原的硫氧还蛋白确能活化叶绿体可溶部分中的 RuBPCase。本实验结果提供了光活化 RuBPCase 的一种可能的机理。  相似文献   

17.
高等植物铁氧还蛋白的结构与功能   总被引:1,自引:0,他引:1  
该文介绍了高等植物中铁氧还蛋白(Fd)的结构,铁氧还蛋白与铁氧还蛋白:NADP^+氧化还原酶(FNR)的相互作用,氧化还原电势和电子传递活性;阐述了铁氧还蛋白结构与功能的关系。  相似文献   

18.
朱晓燕  谢辉  王雅静 《四川动物》2007,26(3):721-724
氢化酶体是阴道毛滴虫重要的代谢器官,该器官内存在的铁氧还蛋白不仅是虫体代谢过程中主要的电子传递介体,而且也在甲硝唑的激活中起关键作用。近年来阴道毛滴虫的甲硝唑抵抗株在临床和实验室都有报道,实验研究发现活化药物的铁氧还蛋白减少或缺失,因此对铁氧还蛋白与甲硝唑抵抗的相关性研究越来越受到医学及药学界的重视。本文总结近年来该领域的研究成果及发展动态,以期对滴虫药物抵抗的发生机制以及滴虫病防治的研究提供有价值的资料。  相似文献   

19.
用分光光度法测定了菠菜重组叶绿体中的核酮糖-1,5-二磷酸羧化酶(RuBPCase,E.G.4.1.1.39)活性。酶可被光活化,酶活性随光强度增加而增加,在200Klux下酶活力增加2.9倍。在重组叶绿体中加入硫氧还蛋白,则光还原的硫氧还蛋白能增强酶的光活化作用。改变叶绿体层膜和可溶部分的比例以及使硫氧还蛋白与层膜预温等实验的结果,提供了在叶绿体层膜中存在有部分核酮糖-1,5-二磷酸羧化酶和硫氧还蛋白的证据。本报告的实验结果指出硫氧还蛋白可能与光系统有联系;光合作用中CO_2的固定不取决于叶绿体中RuBPCase的总量,而决定于活化的RuBPCase的量。  相似文献   

20.
光合细菌是一类含细菌叶绿素和多种类胡罗卜素等光合色素能进行光合作用的古老的细菌,它广泛分布于土壤及地球各个永圈环境中。光合细菌在分类上属于真细菌纲红螺细菌目,包括4个科18个属。这一目的微生物在厌氧光照条件下,能利用硫化氢、硫代硫酸钠、分子氢等及其他无机、有机还原物质作为氢供体,因此,在光合作用过程中产生氧。它们的形状、大小各异。因细菌内所含的色素不同,菌体培养液也呈现红、黄、褐、绿等各种不同的颜色。光合细菌在不同的环境下具有不同的功能(如固碳、固氮、脱氮等),在自然界的碳、氮、硫等元素的物质循环中起着重要作用。由于光合细菌本身具有的生理特性和特定  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号