首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The glucose-6-phosphate dehydrogenase (G6PDH) activity of isolated male rat hepatocytes has been investigated in relationship to the ploidy classes of the cells during the first 20 weeks of postnatal growth. The G6PDH activity in the individual cells was measured with an improved quantitative cytochemical method. The data obtained showed that throughout the whole period of postnatal growth there existed a proportional relationship between the genome copies per cell and the amount of G6PDH activity per cell for binuclear diploid (BD), mononuclear tetraploid (MT) and binuclear tetraploid (BT) cells but not for mononuclear diploid (MD) cells. In the MD cells, which are the stem cells of the liver parenchyma, the activity measured was 1.5 times higher than expected. Furthermore, during postnatal growth, the G6PDH activity per hepatocyte was low at the age of 2 weeks, increased somewhat after weaning (5 weeks) and then more dramatically after 8 weeks to reach a maximum between 12 and 16 weeks. This development occurred in MT and BT cells at an earlier age than in MD and BD cells, in which the increase in enzyme activity followed some 3 weeks later. Castration of the rats before puberty did not influence the development of the amount of G6PDH activity per cell of any of the ploidy classes.  相似文献   

2.
The time-dependent variations over 24 h of glucose-6-phosphate dehydrogenase (G6PDH) activity, succinate dehydrogenase (SDH) activity and single-stranded RNA (ssRNA) content have been investigated by cytophotometric analysis of cytochemically stained isolated hepatocytes of different ploidy classes from adult male rats. A marked variation of 48 % over the day in G6PDH activity of the mononuclear diploid cells was revealed, but no significant variation in the binuclear tetraploid cells. The cells of the inbetween ploidy classes showed an amplitude of variation of 38 % (binuclear diploid cells) and 24% (mononuclear tetraploid cells), respectively. All cells showed a maximum activity of the enzyme at the middle of the day and a minimum during the night. The relative enzyme activity per mononuclear diploid cell was significantly higher than the relative activity in the other cells, especially at its maximum. The variation of the SDH activity in hepatocytes isolated from the same rats was similar in all cells, irrespective of their ploidy class. The activity was highest at the end of the activity phase of the animals. The SDH activity per cell was directly proportional to the quantity of genome copies. The ssRNA content of the hepatocytes showed a time-dependent variation with a maximum during the resting phase of the animals and a minimum during their activity phase. The variation was larger in the mononuclear diploid cells than in the cells of other ploidy classes and the ssRNA content was also significantly higher in these cells than in the hepatocytes of other ploidy classes when calculated on the basis of genome copies. It is concluded that the large amplitude of variation over the day and the high relative amount of G6PDH activity and ssRNA content in mononuclear diploid cells is related to the function of these cells as stem cells of the liver parenchyma.  相似文献   

3.
Summary Immunocytochemistry of bromodeoxyuridine (BrdU) incorporated in DNA was performed on cryostat sections of rat liver and on isolated hepatocytes after partial hepatectomy using a two-step labeling technique. The method enabled the detection of S-phase nuclei in both tissue preparations. Quantification of the number of labeled nuclei in sections showed that the number of nuclei in S-phase increased from 0.3% in control liver to about 36% at 24 h after partial hepatectomy. The detection of BrdU in isolated hepatocytes showed the same labeling index of binuclear diploid, mononuclear tetraploid and binuclear tetraploid cells. A special role for mononuclear diploid cells in proliferation did not seem to occur.  相似文献   

4.
Intoxication of rats with CCl4 (1 ml/kg) resulted in the almost complete loss of glutamine synthetase (GS) specific activity and immunologically detectable enzyme protein known to be expressed exclusively in some hepatocytes of the perivenous zone of the liver acinus. During regeneration the specific activity as well as the original number of GS-positive (GS+) hepatocytes were reestablished. However, while the GS+ hepatocytes in control livers were arranged in up to 3 cell layers surrounding the central veins the same number of GS+ hepatocytes in regenerated livers formed a single cell layer only, most likely because the central veins were enlarged in diameter. Investigation of the nuclear pattern of GS+ and GS- hepatocytes of control animals in primary cultures revealed striking differences characterized by significantly more mononuclear diploid, binuclear diploid, and binuclear tetraploid cells among the GS+ hepatocytes and predominantly mononuclear tetraploid cells (70%) among the GS- hepatocytes. Immediately after liver damage by CCl4 and during regeneration small but significant changes in the nuclear pattern were noted for GS- hepatocytes. However, the first GS+ cells appearing during early regeneration showed a pattern of ploidy classes close to the original one found for GS- hepatocytes. These results indicate that new GS+ hepatocytes may be derived from formerly GS- cells which are induced to express GS if they have reached the border of the central veins.  相似文献   

5.
Immunocytochemistry of bromodeoxyuridine (BrdU) incorporated in DNA was performed on cryostat sections of rat liver and on isolated hepatocytes after partial hepatectomy using a two-step labeling technique. The method enabled the detection of S-phase nuclei in both tissue preparations. Quantification of the number of labeled nuclei in sections showed that the number of nuclei in S-phase increased from 0.3% in control liver to about 36% at 24 h after partial hepatectomy. The detection of BrdU in isolated hepatocytes showed the same labeling index of binuclear diploid, mononuclear tetraploid and binuclear tetraploid cells. A special role for mononuclear diploid cells in proliferation did not seem to occur.  相似文献   

6.
Processes of polyploidization in the liver parenchyma were investigated in the course of postnatal organism growth, stabilization of growth and ageing, using cytophotometry on the slides of isolated hepatocytes from normal livers of 140 donors aged from 1 day to 92 years. In addition, livers of human embryos (4, 5, 6 and 7 month old) were investigated. It is concluded that polyploid cells in the human liver appear in individuals aged from 1 to 5 years. However, during the postnatal development their relative number increases insignificantly. At the end of the intensive postnatal growth period the share of polyploid human liver cells is less than 3%. Binuclear cells with diploid nuclei are seen as early as in the embryonic liver. After birth their number increases slowly to reach 7.1% in the 16-20 year age group. The postnatal growth of human liver is due mainly to mitotic divisions of mononuclear diploid hepatocytes whose relative number is more than 90% during the postnatal growth. During the period of maturity (from 21 to 50 years), when the liver practically stops to grow, the levels of hepatocyte ploidy are changed insignificantly: part of 2c-hepatocytes decreases slowly (up to 84.8% by the end of period) and (2c x 2)-hepatocyte number increases slowly too. The number of polyploid cells increases by several times, but is equal only to 6.6% of all the hepatocytes counted. Under ageing, on the background of human liver atrophy, acceleration of hepatocyte polyploidization takes place. In the age group of 86-92 years parts of 2c- and (2c x 2)-hepatocytes reach 60.3 and 14.3%, resp., and the total share of polyploid cells is as much as near 25%, calculated from the cell population of liver parenchyma. The maximum ploidy levels in hepatocytes of normal human liver during ageing is becoming 16c and 8c x 2 for mononuclear and binuclear cells, resp. Transition rates among hepatocytes of different ploidy classes (2c--2c, 2c--2c x 2, 2c x 2--4c, 2c--4c) were calculated in addition to the coefficient of changing of the hepatocyte proliferative activity with the increase in its ploidy and cell death rate in different periods of human life. A rather high hepatocyte proliferative activity in the early postnatal period of human life was seen to lower during the following years of life. In maturity it is the lowermost to make less than 5% of that in newborns. During ageing the hepatocyte DNA-synthesizing activity being almost 1.6-1.7 times as much as in maturity.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
Thirty-day-old rats were exposed to intermittent high altitude in barochamber (7000 m, 4 h per day, 4 exposures) and number of mono- and binucleated myocytes as well as DNA content per nucleus were determined in the right ventricular myocardium. The data indicate enhancement of mitotic division of mono- and binuclear diploid cells in hypoxic animals. Simultaneously, an increase in mononuclear and binuclear tetraploid cells occurred; the latter is probably due to DNA synthesis not followed by mitosis of some binuclear diploid cells.  相似文献   

8.
With the aid of cytofluorimetry and interference microscopy, the ploidy level and the hepatocyte ploidy class distribution were studied and the dry mass of hepatocytes was measured in hepatocytes in liver of Chinese hamsters Cricetulus griseus and of Balb/c mice before and one month after partial hepatectomy. The mean ploidy level in hepatocytes of the Chinese hamster normal liver amounted to 2.35 ± 0.03 c. The modal class was mononuclear hepatocytes with diploid nuclei (82.4 ± 1.3%). The mean dry mass of hepatocytes amounted to 605.2 ± 4.8 pg. In the process of liver regeneration in the Chinese hamsters, the ratio of ploidy classes and the hepatocyte dry mass did not change. After a similar liver resection in the mice, a significant polyploidization of liver parenchyma occurred. The mean ploidy level in hepatocytes rose by 32%. Instead of 4cx2-hepatocytes, the modal class became mononuclear octaploid cells the relative portion of which increased, on average, by five times. The portion of binuclear hepatocytes with octaploid nuclei in mouse liver rose by more than five times. Thus, in the Chinese hamsters Cricetulus griseus, unlike mice, regeneration of liver occurred exclusively at the expense of proliferation of hepatocytes.  相似文献   

9.
Hepatocytes have the ability to go through specialized cell cycles, which, during normal developmental liver growth, result in the formation of binuclear and polyploid cells. In the adult rat liver, the majority of the hepatocytes (about 70%) are tetraploid, 15-20% are octoploid, and only 10-15% are diploid (about 50% in humans). One-third of the hepatocytes in either rats or humans are binuclear (with two diploid or two tetraploid nuclei). Among cultured rat hepatocytes stimulated with growth factors (EGF and insulin), one-half of the mitoses are of the binucleating type (suggesting a "quantal" mechanism), causing one-third of the postmitotic cells to become binuclear. In contrast, regenerative liver growth, induced by partial hepatectomy, is predominantly nonbinucleating. During rat liver carcinogenesis, the early populations of phenotypically altered cells (foci) are predominantly diploid, as are the later neoplastic nodules and carcinomas, which can be shown to have a regeneration-like, largely nonbinucleating growth pattern. A negative correlation between growth capacity and ploidy can be demonstrated in cultured hepatocytes, regenerating livers, neoplastic nodules, and hepatocellular carcinomas, suggesting that suppression of binucleation and polyploidization may carry a growth advantage, in addition to helping to maintain a large population of diploid, potential stem cells. Since a diploid genome is less protected against mutagenic change than a polyploid genome, diploid tumor cells may, furthermore, be more prone than polyploid cells to undergo mutation-based progression toward increasing malignancy. The ability of liver tumor promoters like 2-acetylaminofluorene, cyproterone acetate, -hexachlorocyclohexane and methylclofenapate to induce nonbinucleating hepatocyte growth may, therefore, cooperate with the selective growth stimulation of cancer cells and cancer cell precursors to promote liver carcinogenesis.Autophagy, a mechanism for the bulk degradation of cytoplasm, contributes to intracellular protein turnover and serves to restrict cellular growth. Rat liver carcinogenesis is accompanied by a progressive reduction of autophagic capacity, preneoplastic livers having 50% and hepatocellular carcinoma cells only 20% as much autophagy as normal hepatocytes. The ascites hepatoma cell line AH-130 has virtually no autophagy during logarithmic growth, but some autophagy is turned on when the cells become growth-arrested at high cell density. Ascitic fluid from AH-130 cells is able to completely inhibit autophagy in normal hepatocytes, suggesting that the cancer cells may improve their growth ability through an autocrine, autophagy-suppressive mechanism. Hepatocytes from preneoplastic livers similarly maintain a low autophagic activity under restrictive culture conditions, thereby surviving much better than normal hepatocytes, which switch on their autophagy. In the presence of an autophagy inhibitor (3-methyladenine), normal and preneoplastic hepatocytes survive equally well, testifying to the importance of autophagy as a determinant of cell survival and growth.  相似文献   

10.
Summary Intoxication of rats with CCl4 (1 ml/kg) resulted in the almost complete loss of glutamine synthetase (GS) specific activity and immunologically detectable enzyme protein known to be expressed exclusively in some hepatocytes of the perivenous zone of the liver acinus. During regeneration the specific activity as well as the original number of GS-positive (GS+) hepatocytes were reestablished. However, while the GS+ hepatocytes in control livers were arranged in up to 3 cell layers surrounding the central veins the same number of GS+ hepatocytes in regenerated livers formed a single cell layer only, most likely because the central veins were enlarged in diameter. Investigation of the nuclear pattern of GS+ and GS hepatocytes of control animals in primary cultures revealed striking differences characterized by significantly more mononuclear diploid, binuclear diploid, and binuclear tetraploid cells among the GS+ hepatocytes and predominantly mononuclear tetraploid cells (70%) among the GS hepatocytes. Immediately after liver damage by CCl4 and during regeneration small but significant changes in the nuclear pattern were noted for GS hepatocytes. However, the first GS+ cells appearing during early regeneration showed a pattern of ploidy classes close to the original one found for GS hepatocytes. These results indicate that new GS+ hepatocytes may be derived from formerly GS cells which are induced to express GS if they have reached the border of the central veins.  相似文献   

11.
The processes of polyploidization in normal human liver parenchyma from 155 individuals aged between 1 day and 92 years were investigated by Feulgen-DNA cytophotometry. It was shown that polyploid hepatocytes appear in individuals from 1 to 5 years old. Up to the age of 50 years the accumulation rate of binucleate and polyploid cells is very slow, but subsequently hepatocyte polyploidization is intensified, and in patients aged 86–92 years the relative number of cells with polyploid nuclei is about 27%. Only a few hepatocytes in the normal human liver reach 16C and 8C×2 ploidy levels for mononucleate and binucleate cells respectively. Using a mathematical modeling method, it was shown that during postnatal liver growth the polyploidization process in human liver is similar to that in the rat, and that polyploid cells are formed mainly from binucleate cells. As in rats, prior to an increase in ploidy level, diploid human hepatocytes can pass several times through the usual mitotic cycles maintaining their initial ploidy level. After birth, only one in ten hepatocytes starting DNA synthesis enters the polyploidization process. At maturity about 60% of 2C-hepatocytes starting DNA synthesis divide by conventional mitosis, the rest dividing by acytokinetic mitosis leading to the formation of binucleate cells. During ageing the probability of hepatocyte polyploidization increases and in this period there are two polyploid or binucleate cells for every diploid dividing by conventional mitosis.  相似文献   

12.
Upon epidermal growth factor (EGF) stimulation, fetal (20 days of gestation) and regenerating (44-48 h after partial hepatectomy) rat hepatocytes, isolated and cultured under identical conditions, increased DNA synthesis and entered into S-phase and mitosis, measured as [3H]thymidine incorporation and DNA content per nucleus in a flow cytometer, respectively. Fetal hepatocytes consisted of a homogeneous population of diploid (2C) cells. Two different populations of cells were present in regenerating liver, diploid (2C) and tetraploid (4C) cells, that responded to EGF. Glucagon or norepinephrine did not affect EGF stimulation of DNA synthesis in fetal liver cells, but they potentiated EGF response in regenerating hepatocyte cultures. Glucocorticoid hormones (dexamethasone) inhibited DNA synthesis in fetal hepatocyte cultures, an effect potentiated by the presence of glucagon or norepinephrine. In contrast, in regenerating hepatocytes, dexamethasone increased EGF-induced proliferation. EGF-dependent DNA synthesis was inhibited by TGF-beta in both fetal and regenerating cultured hepatocytes. TGF-beta action was partially suppressed by norepinephrine in regenerating hepatocytes, but was without effect in fetal hepatocyte cultures, whereas a synergistic action between TGF-beta and dexamethasone inhibiting growth in fetal but not in regenerating hepatocytes was found. Taken together, these results may suggest that there are significant differences between fetal and regenerating hepatocyte growth in their response to various hormones.  相似文献   

13.
This study investigated the ability of HCB (0.1% in the diet for 15 days) to cause early changes in the cellular ploidy of rat liver. Treatment caused marked hepatomegaly, increase of microsomal proteins and cytochrome P-450 content and reduction of hepatocyte microviscosity. Microscopic examination showed that the hepatocytes were enlarged, with hyaline cytoplasm and vacuoles. The size distribution of the isolated hepatocytes showed a larger percentage of bigger cells. Flow-cytometric DNA/protein analysis was performed on whole (fixed) cells and on nuclei. From the combined results of both analyses it was possible to exclude significant changes in the percentages of diploid, mononucleated tetraploid, binucleated tetraploid and octoploid hepatocytes. The DNA and protein content of each subpopulation remained unchanged. Our results suggest that HCB does not cause early diploidization of liver cells and that hepatomegaly and cytochrome P-450 induction seem not to be correlated with effects on total DNA and total protein contents.Abbreviations HCB hexachlorobenzene - PI propidium iodide - FITC fluorescein isothiocyanate - DN diploid nuclei - SN 2N-4N nuclei in S-phase - TN tetraploid nuclei - DC diploid cells - SDC 2N-4N diploid cells in S-phase - TC tetraploid cells - STC 4N-8N tetraploid cells in S-phase - OC octoploid cells - MDC mononucleated diploid cells - SMDC mononucleated diploid cells in S-phase - BOC binucleated octoploid cells - SBTC binucleated tetraploid cells in S-phase - BTC binucleated tetraploid cells - MTC mononucleated tetraploid cells.  相似文献   

14.
Diploid and tetraploid rat hepatocyte subpopulations were isolated by elutriation and cultured for 24 h. Albumin secretion and protein synthesis rates were two-fold lower in 2n than in 4n hepatocytes. [35S]methionine-labelled proteins analysed by acrylamide gel electrophoresis showed a strikingly similar pattern in the two cell subpopulations. No differences in cellular proteins or in the intensity of labelling were observed. These results show (1) that viable diploid and tetraploid hepatocyte subpopulations can be separated by elutriation under sterile conditions and then cultured; and (2) strongly suggest that the same genes are transcribed and further translated at the same rate in both hepatocyte subpopulations.  相似文献   

15.
During postnatal growth in the liver of the rat, a characteristic shift towards binuclear cells and cells of higher ploidy class occurs. When the protein content of individual isolated hepatocytes of different ploidy classes is analysed cytophotometrically using the specific protein stain Naphthol Yellow S, it appears that the growth in mass in the period 30-99 days is due mainly to increase of protein content of binuclear diploid (BD) and mononuclear tetraploid (MT) cells. The mononuclear diploid (MD) cells play a quickly diminishing role in the parenchymal population after the initial growth phase and cells of highest ploidy degree remain unimportant quantitatively. The quickly growing BD and MT cells only reach a Naphthol Yellow S protein value twice that of MD cells after a certain period of growth, whereas changes in protein content are slight or absent from 99 days onwards in all cell types investigated.  相似文献   

16.
Methodological approaches to kinetics of cell polyploidization in the rat liver parenchyma are discussed. Different ways of hepatocyte polyploidization in the course of postnatal liver growth have been assessed. The intensities of hepatocyte transitions from one ploidy class to another were determined. On the basis of literary experimental data the following is summarized: With the increase in the animal age, there is a decrease in hepatocyte transition from one ploidy class to and ther; in young animals the intensity of formation of tetraploid hepatocytes through the stage of binuclear cells (2c----2c X 2----4c) is 0.39-0.55 within two weeks, the intensity of direct transitions (2c----4c) being 0.00-0.19 within the same time. The intensity of entering to DNA synthesis is reduced with the increase in hepatocyte ploidy levels; in this case the coefficient of the reducing of mitotic activity is calculated as 0.10-0.22, and 0.01-0.05 for 4c- and 8c-hepatocytes, resp. The factors stimulating proliferation in the liver increase the intensity of the direct cell transition (2c----4c) by several times which can exceed the intensity of transition through the binuclear cell stage.  相似文献   

17.
The liver cell polyploidy phenomenon, a characteristic of many species of mammals, is reviewed. The liver parenchyma of adult animals represents a mixed population of mononuclear and binuclear cells with different number of chromosome sets and, therefore DNA content per nucleus. The polyploid hepatocytes are formed during postnatal liver growth as a result of a change from normal mitoses to polyploidizing ones. Hence, the polyploidization of hepatocytes is regarded as an equivalent of cell multiplication.An hypothesis of the biological significance of liver cell polyploidy is based on the fact of a high level of spontaneous chromosome aberrations in mitotic hepatocytes. Ploidy increase is known to give resistance against different kinds of genome alteration. Polyploidization of the liver cells ensures protection against deleterious consequences of the aberrant genome formation resulting from aberrant mitoses.Some implications of the hypothesis are discussed: the reasons for species-specific differences of liver cell polyploidy; the mechanisms of hepatocyte radioresistance; the relation of polyploidy to liver cell aging. The prerequisite factors for unbalanced cell genome formation are adduced: DNA and chromosome damage as the first step in the process, stimulation of mitosis as the second one. The aberrant polyploid genome of hepatocytes is assumed to be the cytogenetic basis for some chronic liver diseases in man.  相似文献   

18.
The aim of the present study was to examine the relation between hepatocyte size and ploidy in Sprague-Dawley rat liver. Therefore, subpopulations of hepatocytes of various sizes were separated from the isolated crude hepatocyte population either mechanically or by using centrifugal elutriation. Hepatocyte size was determined on scanning electron microscopy photographs. Ploidy of hepatocytes was assessed by flow cytometry. The crude hepatocyte population was very heterogeneous in sizes, with diameters ranging from 8 to 39 microm. Hepatocyte ultrastructure was well preserved as demonstrated by transmission electron microscopy. The distribution of hepatocytes within the ploidy classes was the following: 19.6+/-3.6% diploid, 56.2+/-3.2% tetraploid and 3.4+/-0.6% octoploid mononucleated cells. Thus approximately 79% of hepatocytes appeared mononucleated. The binucleated hepatocytes (21%) had two diploid nuclei (18.7+/-2.9%) or two tetraploid nuclei (2.1+/-0.6%). A similar distribution of hepatocytes into ploidy classes was obtained in subpopulations of hepatocytes of various sizes. Our findings suggest that distribution into ploidy classes is not strictly correlated with hepatocyte size. In accordance with previous observations, our results on hepatocyte ploidy from periportal or perivenous origin using digitonin perfusion, is in favour of the existence of ploidy zonation within the rat hepatic lobule.  相似文献   

19.
Using the electron microscope it was shown that in interphase hepatocytes with ploidies equal to 2n, 2n.2, 4n, 4n.2 and 8n, the number of centrioles per cell exactly corresponded to the ploidy of the cell. Both in mononuclear and binuclear cells all the centrioles are accumulated in one complex in which each pair of centrioles forms a diplosome. In binuclear cells, the complex of diplosomes is situated at equal distances from each nucleus, thus making the cell centre. The involvement of the supernumerous centrioles in polyploid metaphase cells was detected for the regenerating liver of old mice. It was found that each mitotic pole had at least four centrioles. In the pole, a pair of centrioles forms diplosomes tightly connected to each other. It is suggested that the initially tetraploid cell might divide in this manner. In addition, a question is discussed on how the existence of centrioles can be associated with the mechanism of polyploidization.  相似文献   

20.
Using cytofluorimetry and absorptional cytophotometry, hepatocyte DNA and total protein contents were measured in intact and cirrhotic rats in 1, 3 and 6 months after partial hepatectomy (PH). It has been found that within one month of intact rat liver regeneration the level of hepatocyte ploidy rised by 25% to remain elevated for the next 6 months. This was due mainly to reducing the number of cells with diploid nuclei (2c 2-fold, 2c x 2 - 6.6-fold) and to rising the number of octaploid hepatocytes. In cirrhotic animals the ploidy level in hepatocytes increased in 3 months after PH, and decreased by 15% in 6 months. The number of hepatocytes with diploid nuclei (2c and 2c x 2) increased within 3-6 months in both control and cirrhotic rats. The protein content per diploid hepatocyte rised by 30% within 3-6 months of liver regeneration after PH. Special calculations have shown that within 3 months after PH the increase in the liver mass of control and cirrhotic rats was due completely to hepatocyte DNA synthesis, i. e. proliferation and polyploidization. Within the next 3 months of liver regeneration after PH, the contribution of polyploidization to liver mass increase was negative because of depolyploidization of liver parenchyma cell population. At this time hypertrophy was the main process determining the liver mass increase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号