首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M L Fung  X Dong 《Life sciences》2001,69(19):2319-2326
N-methyl-D-aspartate (NMDA) receptors play important roles in the neural control of respiration. We hypothesized that the brainstem circuit for respiratory control is modulated in response to chronic hypoxia during postnatal maturation, and the modulation may involve changes in the neurotransmission mediated by the NMDA receptors for inspiratory termination. Electrophysiological studies were performed on anesthetized, vagotomized, paralyzed and ventilated rats. Phrenic nerve activity was recorded in normoxic control and chronically hypoxic (CH) rats maintained in normobaric hypoxia (10% O2) for 4-5 weeks from birth. In normoxic rats, the NMDA receptor antagonist, dizocilpine (MK801, i.p.) irreversibly increased inspiratory time (Ti) by 53% and decreased expiratory time (Te) by 29%. However, MK801 did not change the Ti, Te, respiratory rate and peak phrenic nerve activity in CH rats. Results suggest that brainstem mechanisms underlying inspiratory termination mediated by NMDA receptors are modulated by early chronic hypoxia.  相似文献   

2.
We previously identified functional N-methyl-D-aspartate (NMDA) glutamate receptors in mature osteoclasts and demonstrated that they are involved in bone resorption in vitro. In the present work, we studied the expression of NMDA receptors (NMDAR) by osteoclast precursors and their role in osteoclastogenesis using two in vitro models, the murine myelomonocytic RAW 264.7 cell line and mouse bone marrow cells, both of which differentiate into osteoclasts in the presence of macrophage colony-stimulating factor (M-CSF) and Rank ligand (RankL). Using RT-PCR analysis with specific probes, we showed that RAW 264.7 cells and mouse bone marrow cells express mRNA of NMDAR subunits NMDA receptor 1 (NR1) and NMDA receptor 2 (NR2) A, B, and D. These subunits are expressed all along the differentiation sequence from undifferentiated precursors to mature resorbing osteoclasts. Semi-quantitative PCR analysis showed no regulation of the expression of these subunits during the differentiation process. Two specific non competitive antagonists of NMDAR, MK801 and DEP, dose-dependently inhibited osteoclast formation in both models, indicating that osteoclastogenesis requires the activation of NMDAR expressed by osteoclast precursors. MK801 had no effect when added only during the first 2 days of culture, suggesting that NMDAR are rather involved in the late stages of osteoclast formation. Finally, we demonstrated using Western-blotting and immunofluorescence that activation of NMDAR in RAW 264.7 cells by specific agonists induces nuclear translocation of NF-kappa B, a factor required for osteoclast formation. Altogether, our results indicate that osteoclast precursors express NMDAR that are involved in the osteoclast differentiation process through activation of the NF-kappa B pathway.  相似文献   

3.
Specific proteolysis of the NR2 subunit at multiple sites by calpain   总被引:4,自引:0,他引:4  
The NMDA subtype of glutamate receptor plays an important role in the molecular mechanisms of learning, memory and excitotoxicity. NMDA receptors are highly permeable to calcium, which can lead to the activation of the calcium-dependent protease, calpain. In the present study, the ability of calpain to modulate NMDA receptor function through direct proteolytic digestion of the individual NMDA receptor subunits was examined. HEK293t cells were cotransfected with the NR1a/2A, NR1a/2B or NR1a/2C receptor combinations. Cellular homogenates of these receptor combinations were prepared and digested by purified calpain I in vitro. All three NR2 subunits could be proteolyzed by calpain I while no actin or NR1a cleavage was observed. Based on immunoblot analysis, calpain cleavage of NR2A, NR2B and NR2C subunits was limited to their C-terminal region. In vitro calpain digestion of fusion protein constructs containing the C-terminal region of NR2A yielded two cleavage sites at amino acids 1279 and 1330. Although it has been suggested that calpain cleavage of the NMDA receptor may act as a negative feedback mechanism, the current findings demonstrated that calpain cleavage did not alter [(125)I]MK801 binding and that receptors truncated to the identified cleavage sites had peak intracellular calcium levels, (45)Ca uptake rates and basal electrophysiological properties similar to wild type.  相似文献   

4.
This study examined (+)-[3H]5-methyl-10,11-dihydro-5H-dibenzo[a,d] cyclohepten-5,10-imine maleate [( 3H]MK801) binding to the N-methyl-D-aspartate (NMDA) receptor in membranes prepared from six regions of rat brain. Highest levels of binding were found in hippocampus and cortex, whereas much lower densities were found in brainstem and cerebellum. NMDA receptors in cerebellum exhibited a significantly lower affinity for [3H]MK801 than cortical NMDA receptors. To determine whether forebrain and hindbrain NMDA receptors were distinct, the actions of glutamate, NMDA, ibotenate, quinolinate, glycine, and spermine were investigated. These agents increased [3H]MK801 binding in all brain regions examined. However, agonists were uniformly less efficacious in hindbrain compared to forebrain regions. NMDA mimetics and spermine were less potent in cerebellum compared to cortex whereas glycine was equipotent. Antagonists that act at the various modulatory sites on the NMDA receptor were also examined. DL-Amino-phosphonopentanoic acid and 7-chlorokynurenate were approximately equipotent in cortex and cerebellum. However, antagonists that are believed to act inside the NMDA-operated ion channel, including Mg2+ and phencyclidine, were approximately threefold less potent in cerebellum. The diminished regulation of [3H]MK801 binding by glutamate and glycine in the cerebellum was associated with a smaller effect of these agonists on the dissociation of [3H]MK801 from its binding site. The levels of glutamate, aspartate, glycine, serine, and glutamine in the membrane preparations were determined. However, variations in the levels of endogenous amino acids were not sufficient to account for the regional differences in [3H]MK801 binding. These results do not support the hypothesis that a distinct NMDA receptor exists in hindbrian regions of the rat CNS.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
NMDA受体通道参与大鼠脊髓背角C纤维诱发电位LTP的表达   总被引:3,自引:0,他引:3  
以往研究表明,激动NMDA受体是引起海马长时程增强(LTP)的必备条件,而LTP的表达主要与AMPA受体的磷酸化及其受体组装到突触后膜有关.但是,近年来有研究表明NMDA受体通道也参与了LTP的表达.为探讨NMDA受体通道是否参与了脊髓背角C纤维诱发电位LTP的表达,诱导LTP后,分别静脉或脊髓局部给予NMDA受体拮抗剂MK801或APV,观察其作用.发现静脉注射非竞争性NMDA受体MK801(0.1mg/kg)对脊髓LTP无影响,注射0.5mg/kg显著抑制LTP,但是当剂量增高到1.0mg/kg时,抑制作用并未进一步增大.脊髓局部给予MK801也能抑制脊髓背角LTP.为验证上述结果,使用了竞争性NMDA受体拮抗剂APⅤ.结果显示,脊髓局部给予50μmol/LAPⅤ对LTP无影响,100μmol/L对LTP有显著的抑制作用,当浓度升至200μmol/L时,抑制作用并未见进一步增强.因此认为,NMDA受体通道部分地参与了脊髓背角C纤维诱发电位LTP的表达.  相似文献   

6.
The glutamate NMDA receptor has been suggested to be involved in thermoregulation. To further analyse its role, the thermoregulatory responses of rats treated with 0.5 mg.kg-1 of dizocilpine (MK801) were compared with those of control rats treated only with the same volume of saline during a 180-min exposure at one of the six different ambient temperatures, ranging from cold to heat. Colonic temperature (Tco) and tail skin temperature (Ttail) were measured throughout using Cu-Ct thermocouples. In the cold (2.4 and 12.3 degrees C), Tco decreased either sharply (MK801) or progressively (saline), reaching the same final value (2.4 degrees C) or a lower value in the MK801-treated rats (12.3 degrees C). At the same time, Ttail decreased in both groups. In the cool environment (20.7 degrees C), Tco and Ttail decreased in both groups, with lower final values in MK801-treated rats. At thermoneutrality (28.8 degrees C), the MK801-induced hyperthermia remained steady, while Ttail increased in both groups. In the heat (34.6 and 36.2 degrees C), Tco and Ttail increased in both groups, with higher final values in MK801-treated rats. Moreover, at 36.2 degrees C, only MK801-treated rats exhibited heatstroke. It is thus suggested that MK801-induced inhibition of NMDA receptors impairs thermoregulation, especially in the heat.  相似文献   

7.
The early phase of the biphasic ventilatory response to hypoxia in mammals is critically dependent on NMDA glutamate receptor activation within the nucleus of the solitary tract. However, the mechanisms underlying the subsequent development of the typical ventilatory roll-off are unclear and could underlie important roles in the functional and molecular adaptation to oxygen deprivation. Because the growth factor platelet-derived growth factor (PDGF)-BB can modulate the open channel probability of NMDA receptors by activating PDGF-beta receptors, its contribution to hypoxic ventilatory roll-off was examined. Administration of PDGF-BB, but not PDGF-AA, in the nucleus of the solitary tract was associated with significant attenuations of the early hypoxic ventilatory response in conscious rats. Furthermore, marked reductions in the magnitude of hypoxic ventilatory roll-off occurred in mice heterozygous for a mutation in the PDGF-beta receptor. Administration of a PDGF-beta receptor antagonist to wild-type littermates elicited similar declines in hypoxic ventilatory roll-off. The relative abundance of PDGF-beta receptors was confirmed in the nucleus of the solitary tract and other nuclei implicated in the hypoxic ventilatory response. In nucleus of the solitary tract lysates, PDGF-beta receptor tyrosine phosphorylation was temporally correlated with hypoxic ventilatory roll-off formation. Increased PDGF-B chain mRNA expression was induced by hypoxia in the nucleus of the solitary tract, and PDGF-B chain immunoreactivity colocalized with approximately 40% of nucleus of the solitary tract neurons, demonstrating hypoxia-induced c-Fos enhancements. Thus, PDGF-BB release and PDGF-beta receptor activation in the nucleus of the solitary tract are critical components of hypoxic ventilatory roll-off and may have important functional implications in processes underlying survival and acclimatization to hypoxic environments.  相似文献   

8.
The effect of maternal hypoxia on the modification of the fetal brain cell membrane N-methyl-d-aspartate (NMDA) receptor and its modulatory sites was investigated. Experiments were conducted in pregnant guinea pigs of 60 days of gestation. Guinea pig fetuses were exposed to maternai hypoxia (FiO2=7%) for 60 minutes. Tissue hypoxia in the fetal brain was documented biochemically by decreased levels of ATP and phosphocreatine (91.3% and 88.6% lower than normoxia, respectively). MK-801 binding characteristics (Bmax = number of receptors, Kd = affinity of receptor) were used as an index of NMDA receptor modification. P2 membrane fraction was prepared from the cortex of normoxic and hypoxic fetal brain and washed thoroughly before carrying out the binding assay. In hypoxic brains, Bmax decreased from the normoxic control level 0.79±0.03 pmol/mg protein to 0.58±0.03 pmol/mg protein (P<0.005) and Kd value decreased (increased affinity) from 8.54±0.27 nM to 4.01±0.23 nM (P<0.005) respectively. The MK-801 binding in the absence of added glutamate and glycine in hypoxic brain was 100% higher as compared to controls, indicating an increased sensitivity of the NMDA receptor to activation. The spermine dependent maximum activation of the NMDA receptor increased to 44% in the hypoxic animals as compared to 25% in controls. The Mg2+ response of the NMDA receptor was not affected by hypoxia. The increased affinity and increased basal activation (tone) of the NMDA receptor during hypoxia, as well as its increased activation by spermine, would hyperstimulate the NMDA receptor-ion channel complex function which could increase the susceptibility of the fetal brain to hypoxia. The results of this study indicate that hypoxia causes differential and selective modification of specific sites (recognition, co-activator, and modulatory) of the NMDA receptor ion channel complex. The hypoxia-induced modification of the NMDA receptor modulatory sites appears to be the potential mechanism of neuroexcitotoxicity.  相似文献   

9.
Coexpression of PSD-95(c-Myc) with NR1-1a/NR2A NMDA receptors in human embryonic kidney (HEK) 293 cells resulted in a decrease in efficacy for the glycine stimulation of [3 H]MK801 binding similar to that previously described for l-glutamate. The inhibition constants (K (I) s) for the binding of l-glutamate and glycine to NR1-1a/NR2A determined by [3 H]CGP 39653 and [3 H]MDL 105 519 displacement assays, respectively, were not significantly different between NR1-1a/NR2A receptors coexpressed +/- PSD-95(c-Myc). The increased EC(50) for l-glutamate enhancement of [3 H]MK801 binding was also found for NR1-2a/NR2A and NR1-4b/NRA receptors thus the altered EC(50) is not dependent on the N1, C1 or C2 exon of the NR1 subunit. The NR1-4b but not the NR1-1a subunit was expressed efficiently at the cell surface in the absence of NR2 subunits. Total NR1-4b and NR1-4b/NR2A expression was enhanced by PSD-95(c-Myc) but whole cell enzyme-linked immunoadsorbent assays (ELISAs) showed that this increase was not due to increased expression at the cell surface. It is suggested that PSD-95(c-Myc) has a dual effect on NMDA receptors expressed in mammalian cells, a reduction in channel gating and an enhanced expression of NMDA receptor subunits containing C-terminal E(T/S)XV PSD-95 binding motifs.  相似文献   

10.
N-Methyl-d-aspartate (NMDA) glutamate receptors, widely distributed in the nervous system, have recently been identified in bone. They are expressed and are functional in osteoclasts. In the present work, we have studied the effects of specific antagonists of NMDA receptors on osteoclast activation and bone resorption. Using an in vitro assay of bone resorption, we showed that several antagonists of NMDA receptors binding to different sites of the receptor inhibit bone resorption. Osteoclast activation requires adhesion to the bone surface, cytoskeletal reorganization and survival. We demonstrated by autoradiography that the specific NMDA receptor channel blocker, MK 801, binds to osteoclasts. This antagonist had no effect on osteoclast attachment to bone and did not induce osteoclast apoptosis. In contrast, MK 801 rapidly decreased the percentage of osteoclasts with actin ring structures that are associated with actively resorbing osteoclasts. These results suggest that NMDA receptors expressed by osteoclasts may be involved in adhesion-induced formation of the sealing zone required for bone resorption.  相似文献   

11.
The cytoskeleton is essential for the structural organization of neurons and is influenced during development by excitatory stimuli such as activation of glutamate receptors. In particular, NMDA receptors are known to modulate the function of several cytoskeletal proteins and to influence cell morphology, but the underlying molecular and cellular mechanisms remain unclear. Here, we characterized the neurofilament subunit NF-M in cultures of developing mouse cortical neurons chronically exposed to NMDA receptor antagonists. Western blots analysis showed that treatment of cortical neurons with MK801 or AP5 shifted the size of NF-M towards higher molecular weights. Dephosphorylation assay revealed that this increased size of NF-M observed after chronic exposure to NMDA receptor antagonists was due to phosphorylation. Neurons treated with cyclosporin, an inhibitor of the Ca(2+)-dependent phosphatase calcineurin, also showed increased levels of phosphorylated NF-M. Moreover, analysis of neurofilament stability revealed that the phosphorylation of NF-M, resulting from NMDA receptor inhibition, enhanced the solubility of NF-M. Finally, cortical neurons cultured in the presence of the NMDA receptor antagonists MK801 and AP5 grew longer neurites. Together, these data indicate that a blockade of NMDA receptors during development of cortical neurons increases the phosphorylation state and the solubility of NF-M, thereby favoring neurite outgrowth. This also underlines that dynamics of the neurofilament and microtubule cytoskeleton is fundamental for growth processes.  相似文献   

12.
Co-localization of activated microglia and damaged neurones seen in brain injury suggests microglia-induced neurodegeneration. Activated microglia release two potential neurotoxins, excitatory amino acids and nitric oxide (NO), but their contribution to mechanisms of injury is poorly understood. Using co-cultures of rat microglia and embryonic cortical neurones, we show that inducible NO synthase (iNOS)-derived NO aloneis responsible for neuronal death from interferon gamma (IFNgamma) +lipopolysaccharide (LPS)-activated microglia. Neurones remain sensitive to NO irrespective of maturation state but, whereas blocking NMDA receptor activation with MK801 has no effect on NO-mediated toxicity to immature neurones, MK801 rescues 60-70% of neurones matured in culture for 12 days. Neuronal expression of NMDA receptors increases with maturation in culture, accounting for increased susceptibility to excitotoxins seen in more mature cultures. We show that MK801 delays the death of more mature neurones caused by the NO-donor DETA/NO indicating that NO elicits an excitotoxic mechanism, most likely through neuronal glutamate release. Thus, similar concentrations of nitric oxide cause neuronal death by two distinct mechanisms: NO acts directly upon immature neurones but indirectly, via NMDA receptors, on more mature neurones. Our results therefore extend existing evidence for NO-mediated toxicity and show a complex interaction between inflammatory and excitotoxic mechanisms of injury in mature neurones.  相似文献   

13.
14.
Chronic hypoxia increases the sensitivity of the central nervous system to afferent input from carotid body chemoreceptors. We hypothesized that this process involves N-methyl-D-aspartate (NMDA) receptor-mediated mechanisms and predicted that chronic hypoxia would change the effect of the NMDA receptor blocker dizocilpine (MK-801) on the poikilocapnic hypoxic ventilatory response (HVR). Male Sprague-Dawley rats were studied before and after acclimatization to hypoxia (70 Torr inspiratory Po(2) for 9 days). We measured ventilation (VI) and the HVR before and after systemic MK-801 treatment (3 mg/kg ip). MK-801 resulted in a constant respiratory frequency (approximately 175 min(-1)) during acute exposure to 10% and 30% O(2) before and after acclimatization. MK-801 had no effect on tidal volume (VT) before acclimatization, but it significantly decreased Vt when the animals were breathing 10% O(2) after acclimatization. The net effect of MK-801 was to eliminate the O(2) sensitivity of Vi before (via changes in respiratory frequency) and after (via changes in VT) acclimatization. Hence, chronic hypoxia altered the effect of MK-801 on the acute HVR, primarily because of increased effects on Vt. This indicates that changes in NMDA receptor-mediated neurotransmission may be involved in ventilatory acclimatization to hypoxia. However, further experiments are necessary to determine the precise location of such plasticity in the central nervous system.  相似文献   

15.
N-methyl-D-aspartate(NMDA) glutamate receptors mediate critical components ofcardiorespiratory control in anesthetized animals. The role of NMDAreceptors in the ventilatory responses to peripheral and centralchemoreceptor stimulation was investigated in conscious, freelybehaving rats. Minute ventilation(E)responses to 10% O2, 5%CO2, and increasing intravenousdoses of sodium cyanide were measured in intact rats before and afterintravenous administration of the NMDA receptor antagonist MK-801 (3 mg/kg). After MK-801, eupcapnic tidal volume(VT) decreased while frequencyincreased, resulting in a modest reduction inE.Inspiratory time (TI) decreased, whereas expiratory time remained unchanged. TheE responsesto hypercapnia were qualitatively similar in control and MK-801conditions, with slight reductions in respiratory drive (VT/TI)after MK-801. In contrast, responses to hypoxia were markedly attenuated after MK-801 and were primarily due to reduced frequency changes, whereas VT wasunaffected. Sodium cyanide doses associated with significantEincreases were 5 and 50 µg/kg before and after MK-801,respectively. Thus 1-log shift to the right of individual dose-responsecurves occurred with MK-801. Selective carotid body denervation reducedE duringhypoxia by 70%, and residual hypoxic ventilatory responses wereabolished after MK-801. These findings suggest that, in conscious rats,carotid and other peripheral chemoreceptor-mediated hypoxic ventilatoryresponses are critically dependent on NMDA receptor activation and thatNMDA receptor mechanisms are only modestly involved during hypercapnia.

  相似文献   

16.
Visual activity refines the retinotopic map formed on tectum during regeneration and development in goldfish through an N-methyl-D-aspartate (NMDA) receptor-mediated mechanism. Retinal arbors are enlarged in fish with unrefined maps. Here, we examined the effect of NMDA receptor blockers on the development of retinotectal arbors in zebrafish. Since visual behaviors begin 68-79 h postfertilization, we blocked NMDA receptors by immersion of larvae in MK801, AP5, or CPP starting at either 48 or 72 h. We then labeled axons with DiI at 72 or 96 h and examined them 5-9 h later. Arbors at 101-105 h (31 cases) were larger than at 77-79 h (11 cases): The average number of branches increased from 4.0 to 7.6 and the area (convex polygon method) increased by 42%. Blocking NMDA receptors with MK801 from 72 to 101-105 h significantly enlarged arbor size, but the number of branches remained roughly the same. The length and area of the arbors were both significantly increased (21% and 36%), whereas the width increased by a smaller amount (6%). This increase was reflected in longer distances between branches within the arbor (interbranch segments, +13%) as well as in the summed length of all branches (+28%). This selective effect on the extent but not number of branches is in agreement with our previous report of strobe effects in both developing and regenerating projections in goldfish, and supports the role of NMDA receptors in the first 24 h of synaptic transmission. We also used DiO to label arbors in time-lapse images taken at hourly intervals from 77 to 112 h. These sequences confirmed that individual arbors grew during this time, but showed that rates of branch addition and deletion and branch lifetimes were unaltered by the MK801 treatment. This is consistent with a simple model of random insertion of new branches and selective activity-driven elimination of those at the periphery to keep the normal arbor focused. Blocking NMDA receptors is postulated to randomize the elimination allowing the periphery to expand, thus accounting for the enlarged areas, without change in branch numbers or branch dynamics.  相似文献   

17.
In this study, we demonstrated that a snake presynaptic toxin, beta-bungarotoxin (beta-BuTX), was capable of binding to NMDA receptors of the cultured primary neurons (cerebellar granule neurons, CGNs). We labeled beta-BuTX with fluorescent FITC (FITC-beta-BuTX) and showed that the binding of FITC-beta-BuTX was inhibited by unlabeled beta-BuTX and MK801 (an NMDA receptor antagonist). Meanwhile, the binding of [3H]-MK801 was also reduced by unlabeled MK801 and beta-BuTX. In addition, beta-BuTX produced a very potent neurotoxic effect on mature CGNs with the EC(50) of 3ng/ml (equivalent to 144pM), but was less effective in immature CGNs. We explored the signaling pathway of neuronal death and found that it was apparently due to the excessive production of reactive oxygen species (ROS) induced by beta-BuTX. MK801 and antioxidants (Vitamin C, N-acetylcysteine (NAC), melatonin, epigallocatechin gallate (EGCG), superoxide dismutase (SOD) and catalase) attenuated not only ROS production but also beta-BuTX-neurotoxicity. The downstream signaling of ROS was identified as the activation of caspase-3. Caspase inhibitor (z-DEVD-fmk) and antioxidants depressed both caspase-3 activation and neurotoxicity. Based on these findings and our previous reports, we conclude that the binding and activation of NMDA receptors by beta-BuTX was crucial step to produce the potent neurotoxic effect. The binding of NMDA receptors resulted in excessive Ca(2+) influx, followed by ROS production and activation of caspase-3. This snake toxin is considered not only to be a useful tool for exploring the death-signaling pathway of neurotoxicity, but also provides a model for searching neuroprotective agents.  相似文献   

18.
目的研究皮质酮对大鼠海马神经元的毒性作用及NMDA受体亚基表达的影响.方法以体外原代培养的大鼠海马神经元为研究对象,根据影响因素,即给予的不同浓度皮质酮和其它因素分为8个组:对照组、10-7mol/L皮质酮组(简称10-7组)、10-6mol/L皮质酮组(简称10-6组)、10-5mol/L皮质酮组(简称10-5组)、10-6 高糖组、10-5 高糖组、10-6mol/L MK801组和10-5mol/L MK801组,镜下观察不同浓度皮质酮作用下海马神经元形态学的变化,并采用MTT方法测量各组细胞存活率,利用免疫细胞化学结合图象分析对原代培养海马神经元NMDA受体亚基的表达进行观察.结果 10-6、10-5浓度的皮质酮对海马神经元影响较大,细胞存活率较对照组明显降低,但10-6 高糖组、 10-5mol/L 高糖组、10-6mol/L MK801及10-5mol/L MK801 4个组,分别与相同皮质酮浓度处理组比较,细胞存活率显著提高.10-6和10-5组海马神经元上NMDA受体亚基表达较对照组明显降低.10-7mol/L浓度的皮质酮对上述指标影响不大.结论过量的皮质酮对大鼠海马神经元具有损伤作用,NMDA受体参与了此过程,NMDA受体拮抗剂和高浓度葡萄糖可保护海马神经元.  相似文献   

19.
The effects of MK801 (dizocilpine), a glutamate NMDA receptor antagonist, on thermoregulation in the heat were studied in awake rats exposed to 40 degrees C ambient temperature until their body core temperature reached 43 degrees C. Under these conditions, MK801-treated rats exhibited enhanced locomotor activity and a steady rise in body core temperature, which reduced the heat exposure duration required to reach 43 degrees C. Since MK801-treated rats also showed increased striatal dopaminergic metabolism at thermoneutrality, the role of dopamine in the MK801-induced impairment of thermoregulation in the heat was determined using co-treatment with SCH23390, a dopamine D1 receptor antagonist. SCH23390 normalized the locomotor activity in the heat without any effect on the heat exposure duration. These results suggest that the MK801-induced impairment of thermoregulation in the heat is related to neither a dopamine metabolism alteration nor a locomotor activity enhancement.  相似文献   

20.
It has been reported that specific environmental influences during the postpartum period might contribute to the development of schizophrenia (SZ). Administration of MK801 during early development led to persistent brain pathology. Glutamate decarboxylase 1 (GAD67) and parvalbumin (PV), and neuregulin 1 (NRG1)/ErbB4 signaling were closely associated with SZ pathology. We postulated therefore that NMDA receptor antagonists exposure during the postpartum period may be associated with expression dysregulation of some of the SZ candidate proteins. To test this, we used mouse primary hippocampal neurons and neonatal male mice treated with the NMDA receptor antagonist, MK801 at postnatal day 4 (P4) or P7, followed by the treatments of antipsychotic drugs (i.e., olanzapine, risperidone, and haloperidol). The expressions of GAD67, PV, NRG1, and ErbB4 in in vitro and in vivo SZ models were detected with Western blot analysis and immunohistochemistry, respectively. Behavioral tests (locomotion activity, social interaction, novel object recognition and prepulse inhibition) were measured. We found MK801 decreased the expression of GAD67, PV, NRG1 and ErbB4, and induced obvious behavioral alterations, while antipsychotics reversed these alterations. These results suggest that exposure to the NMDA receptor antagonist in early development may lead to long-lasting influence on the expression of specific proteins, such as GAD67, PV, NRG1, and ErbB4. Moreover, our results suggest that rescue of the activation of the NRG1/ErbB4 signaling pathway may be one of the mechanisms by which antipsychotic drugs have an antipsychotic effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号