首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The gene hetN encodes a putative oxidoreductase that is known to suppress heterocyst differentiation when present on a multicopy plasmid in Anabaena sp. PCC 7120. To mimic the hetN null phenotype and to examine where HetN acts in the regulatory cascade that controls heterocyst differentiation, we replaced the native chromosomal hetN promoter with the copper-inducible petE promoter. In the presence of copper, heterocyst formation was suppressed in undifferentiated filaments. When hetN expression was turned off by transferring cells to media lacking copper, the filaments initially displayed the wild-type pattern of single heterocysts but, 48 h after the induction of heterocyst formation, a pattern of multiple contiguous heterocysts predominated. Suppression of heterocyst formation by HetN appears to occur both upstream and downstream of the positive regulator HetR: overexpression of hetN in undifferentiated filaments prevents the wild-type pattern of hetR expression as well as the multiheterocyst phenotype normally observed when hetR is expressed from an inducible promoter. Green fluorescent protein fusions show that the expression of hetN in wild-type filaments normally occurs primarily in heterocysts. We propose that HetN is normally involved in the maintenance of heterocyst spacing after the initial heterocyst pattern has been established, but ectopic expression of hetN can also block the initial establishment of the pattern.  相似文献   

2.
3.
In the filamentous cyanobacterium Anabaena sp. strain PCC 7120, heterocysts are formed in the absence of combined nitrogen, following a specific distribution pattern along the filament. The PatS and HetN factors contribute to the heterocyst pattern by inhibiting the formation of consecutive heterocysts. Thus, inactivation of any of these factors produces the multiple contiguous heterocyst (Mch) phenotype. Upon N stepdown, a HetN protein with its C terminus fused to a superfolder version of green fluorescent protein (sf-GFP) or to GFP-mut2 was observed, localized first throughout the whole area of differentiating cells and later specifically on the peripheries and in the polar regions of mature heterocysts, coinciding with the location of the thylakoids. Polar localization required an N-terminal stretch comprising residues 2 to 27 that may represent an unconventional signal peptide. Anabaena strains expressing a version of HetN lacking this fragment from a mutant gene placed at the native hetN locus exhibited a mild Mch phenotype. In agreement with previous results, deletion of an internal ERGSGR sequence, which is identical to the C-terminal sequence of PatS, also led to the Mch phenotype. The subcellular localization in heterocysts of fluorescence resulting from the fusion of GFP to the C terminus of HetN suggests that a full HetN protein is present in these cells. Furthermore, the full HetN protein is more conserved among cyanobacteria than the internal ERGSGR sequence. These observations suggest that HetN anchored to thylakoid membranes in heterocysts may serve a function besides that of generating a regulatory (ERGSGR) peptide.  相似文献   

4.
5.
6.
Transposon-generated mutant N10 of Anabaena sp. strain PCC 7120 has a Het- phenotype (A. Ernst, T. Black, Y. Cai, J.-M. Panoff, D. N. Tiwari, and C. P. Wolk, J. Bacteriol. 174:6025-6032, 1992). Reconstruction of the transposon mutation reproduced a Het- phenotype, but reconstructions with other insertions at the position of the transposon produced strains that form multiple contiguous heterocysts. Sequence analysis around the site of insertion of the transposon showed that the insertion lies within the 5' end of an 861-bp open reading frame (ORF) (hetN). The product of translation of hetN (HetN) shows extensive similarity to NAD(P)H-dependent oxidoreductases that are involved in biosyntheses of fatty acids, poly-beta-hydroxybutyrate, nod factor, and polyketides. A second, 1,518-bp ORF (hetM) that ends 556 bp 5' from the start of hetN appears to encode a protein that has at least two functional domains: its amino terminus is similar to an acyl carrier protein, while its central portion is similar to domains of proteins that perform reductive reactions. A third, 711-bp ORF (hetI) encoded on the opposite strand ends 42 bp away from the 3' end of hetN. The protein encoded by hetI, HetI, is similar to Sfp from Bacillus subtilis and EntD from Escherichia coli, proteins that are required for the biosynthesis or export of cyclic peptides. Clones from a lambda-EMBL3 library that contain the wild-type DNA for hetN do not complement the hetN::Tn5-1063 mutation in N10. The presence of hetN, as the only ORF, on a replicating plasmid suppresses heterocyst formation in wild-type cells, whereas the additional presence of hetI alleviates this effect.  相似文献   

7.
8.
Nitrogen-fixing heterocysts are arranged in a periodic pattern on filaments of the cyanobacterium Anabaena sp. strain PCC 7120 under conditions of limiting combined nitrogen. Patterning requires two inhibitors of heterocyst differentiation, PatS and HetN, which work at different stages of differentiation by laterally suppressing levels of an activator of differentiation, HetR, in cells adjacent to source cells. Here we show that the RGSGR sequence in the 287-amino-acid HetN protein, which is shared by PatS, is critical for patterning. Conservative substitutions in any of the five amino acids lowered the extent to which HetN inhibited differentiation when overproduced and altered the pattern of heterocysts in filaments with an otherwise wild-type genetic background. Conversely, substitution of amino acids comprising the putative catalytic triad of this predicted reductase had no effect on inhibition or patterning. Deletion of putative domains of HetN suggested that the RGSGR motif is the primary component of HetN required for both its inhibitory and patterning activity, and that localization to the cell envelope is not required for patterning of heterocysts. The intercellular signalling proteins PatS and HetN use the same amino acid motif to regulate different stages of heterocyst patterning.  相似文献   

9.
hetR is a central regulatory gene inducing and possibly maintaining irreversible heterocyst differentiation in filamentous cyanobacteria. A plasmid was constructed which enabled IPTG-mediated, controlled expression of hetR from a p tac promoter in Anabaena . When introduced into a heterocyst-deficient hetR mutant, induction led to massive formation of heterocysts in a medium free of combined nitrogen. In nitrate-containing cultures, induction elicited formation of only a few heterocysts, but led to nitrogen chlorosis in vegetative cells as evidenced from degradation of phycobiliproteins. Removal of the inducer IPTG caused chlorosis and death of the organisms in nitrate-free medium, but no reversal of heterocyst formation. This indicates that constant synthesis of HetR is not the (sole) reason for irreversibility of heterocyst formation.  相似文献   

10.
11.
12.
Dong Y  Huang X  Wu XY  Zhao J 《Journal of bacteriology》2000,182(6):1575-1579
HetR is a serine-type protease required for heterocyst differentiation in heterocystous cyanobacteria under conditions of nitrogen deprivation. We have identified the active Ser residue of HetR from Anabaena sp. strain PCC 7120 by site-specific mutagenesis. By changing the S152 residue to an Ala residue, the mutant protein cannot be labeled by Dansyl fluoride, a specific serine-type protein inhibitor. The mutant protein showed no autodegradation in vitro. The mutant hetR gene was introduced into Anabaena strain 884a, a hetR mutant. The resultant strain, Anabaena strain S152A, could not form heterocysts under conditions of nitrogen deprivation even though the up-regulation of the mutant hetR gene was induced upon removal of combined nitrogen. The Anabaena strain 216, which carries a mutant hetR gene encoding S179N HetR and could not form heterocysts, also produced HetR protein upon induction. Sequence comparison shows that Ser152 is conserved in all cyanobacterial HetR. Immunoblotting was used to study HetR induction in both the wild-type and mutant strains. The amount of mutant HetR in strain S152A and in strain 216 increased continuously for 24 h after nitrogen step-down, while the amount of HetR in wild-type cells reached a maximum level within 6 h after nitrogen step-down. Our results show the Ser152 is the active site of HetR. The protease activity is required for heterocyst differentiation and might be needed for repression of HetR overproduction under conditions of nitrogen deprivation.  相似文献   

13.
The patB gene product is required for growth and survival of the filamentous cyanobacterium Anabaena sp. strain PCC 7120 in the absence of combined nitrogen. A patB::gfp fusion demonstrated that this gene is expressed exclusively in heterocysts. patB mutants have a normal initial pattern of heterocyst spacing along the filament but differentiate excess heterocysts after several days in the absence of combined nitrogen. Expression of hetR and patS, two critical regulators of the heterocyst development cascade, are normal for patB mutants, indicating that patB acts downstream of them in the differentiation pathway. A patB deletion mutant suffers an almost complete cessation of growth and nitrogen fixation within 24 h of combined nitrogen removal. In contrast, a new PatB mutant that is defective in its N-terminal ferredoxin domain, or a previously described mutant that has a frameshift removing its C-terminal helix-turn-helix domain, grows very slowly and differentiates multiple contiguous heterocysts under nitrogen-deficient conditions.  相似文献   

14.
Summary In the filamentous cyanobacterium Anabaena sp. PCC 7120 patS and hetN suppress the differentiation of vegetative cells into nitrogen-fixing heterocysts to establish and maintain a pattern of single heterocysts separated by approximately 10 undifferentiated vegetative cells. Here we show that the patS- and hetN-dependent suppression pathways are the only major factors that prevent vegetative cells from differentiating into heterocysts when a source of ammonia is not present. The patS and hetN pathways are independent of each other, and inactivation of both patS and hetN leads to differentiation of almost all cells of a filament in the absence of a source of fixed nitrogen, compared with approximately 9% in the wild type. Complete differentiation of filaments also occurs when nitrate is supplied as a source of fixed nitrogen, conditions that do not induce differentiation of wild-type filaments. However, ammonia is still capable of suppressing differentiation. The percentage of cells that differentiate into heterocysts appears to be a function of time when a source of fixed nitrogen is absent or a function of growth phase when nitrate is supplied. Although differentiation proceeds unchecked in the absence of patS and hetN expression, differentiation is asynchronous and non-random.  相似文献   

15.
16.
HetR, a serine type protease, plays an important role in heterocyst differentiation in filamentous cyanobacteria. We isolated and sequenced the hetR genes from different heterocystous and filamentous nonheterocystous cyanobacteria. The hetR gene in the heterocyst forming Anabaena variabilis ATCC 29413 FD was interrupted by interposon mutagenesis (mutant strain WSIII8). This mutant does not form heterocysts and shows no diazotrophic growth under aerobic conditions. However, under anaerobic N(2)-fixing conditions, the WSIII8 cells are able to grow, and high nitrogenase (Nif2) activity is detectable. Nif2 expression was demonstrated in each vegetative cell of the filament by immunolocalization 4 h after nitrogen step-down.  相似文献   

17.
The novel asr1734 gene of Anabaena (Nostoc) sp. strain PCC 7120 inhibited heterocyst development when present in extra copies. Overexpression of asr1734 inhibited heterocyst development in several strains including the wild type and two strains that form multiple contiguous heterocysts (Mch phenotype): a PatS null mutant and a hetR(R223W) mutant. Overexpression of asr1734 also caused increased nblA messenger RNA levels, and increased loss of autofluorescence in vegetative cells throughout filaments after nitrogen or sulphur depletion. Unlike the wild type, an asr1734 knockout mutant formed 5% heterocysts after a nitrogen shift from ammonium to nitrate, and formed 15% heterocysts and a weak Mch phenotype after step-down to medium lacking combined nitrogen. After nitrogen step-down, the asr1734 mutant had elevated levels of ntcA messenger RNA. A green fluorescent protein reporter driven by the asr1734 promoter, P(asr1734)-gfp, was expressed specifically in differentiating proheterocysts and heterocysts after nitrogen step-down. Strains overexpressing asr1734 and containing P(hetR)-gfp or P(patS)-gfp reporters failed to show normal patterned upregulation 24 h after nitrogen step-down even though hetR expression was upregulated at 6 h. Apparent orthologues of asr1734 are found only in two other filamentous nitrogen-fixing cyanobacteria, Anabaena variabilis and Nostoc punctiforme.  相似文献   

18.
19.
20.
Transposon-generated mutant C3 of Anabaena sp. strain PCC 7120 is unable to form heterocysts upon deprivation of combined nitrogen but forms a pattern of spaced, weakly fluorescent cells after 2 days of deprivation. Sequence analysis of chromosomal DNA adjacent to the ends of transposon Tn5-1058 in mutant C3 showed a 1,044-amino-acid open reading frame, designated hetC, whose predicted protein product throughout its C-terminal two-thirds has extensive similarity to the HlyB family of bacterial protein exporters. Its N-terminal third is unique and does not resemble any known protein. hetC lies 1,165 bp 5' from the previously described gene hetP. Reconstruction of the C3 mutation and its complementation in trans with a wild-type copy of hetC confirmed that hetC has an essential regulatory role early in heterocyst development. hetC is induced ca. 4 h after nitrogen stepdown, hours after induction of hetR. Expression of hetC depends on HetR and may depend on HetC. Highly similar sequences are present 5' from the initiation codons and in the 3' untranslated regions of hetC and of two heterocyst-specific genes, devA and hetP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号