首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A crude ribosomal wash containing the initiation factors of protein synthesis was isolated from mouse neuroblastoma cells 8 h after infection with Semliki Forest virus (SFV). The activity of this wash was compared with that of a wash from control cells in a cell-free protein-synthesizing “pH5” system, with early SFV mRNA (42S), late SFV mRNA (26S), encephalomyocarditis virus (EMC) mRNA, or neuroblastoma polyadenylated mRNA templates. A pronounced loss of activity (±80%) of the crude ribosomal wash from infected cells was observed with host mRNA (neuroblastoma polyadenylated mRNA) and early SFV mRNA, messengers which contain a cap structure at the 5′ terminus. However, these washes were only slightly less active in systems programmed with (noncapped) EMC mRNA and late SFV mRNA. Although late SFV mRNA (26S) is capped, the synthesis of late (= structural) proteins in infected lysates was insensitive to inhibition by cap analogs. Purified initiation factors eIF-4B (Mr, 80,000) and cap-binding protein (Mr, 24,000) from reticulocytes (but none of the others) were able to restore the activity of infected factors to about 90% of control levels in systems programmed with early SFV mRNA and host mRNA. These observations indicate that infection-exposed crude initiation factors have a decreased level of eIF-4B and cap-binding protein activity. However, after partial purification of these and other initiation factors from infected and control cells, we found no significant difference in activity when model assay systems were used. Furthermore, both eIF-4B and cap-binding protein from infected cells were able to restore the activity of these infection-exposed factors to the same level obtained when these factors isolated from control cells or reticulocytes were added. A possible mechanism for the shutoff of host cell protein synthesis is discussed.  相似文献   

2.
Infection of mouse L-cell spinner cultures by vesicular stomatitis virus (VSV) effected the selective translation of viral mRNA by 4h after viral adsorption. Cell-free systems prepared from mock- and VSV-infected cells reflected this phenomenon; protein synthesis was reduced in the virus-infected cell lysate by approximately 75% compared with the mock-infected (control) lysate. This effect appeared to be specific to protein synthesis initiation since (i) methionine incorporation into protein from an exogenous preparation of initiator methionyl-tRNA gave completely analogous results and (ii) the addition of a ribosomal salt wash (containing protein synthesis initiation factors) stimulated protein synthesis by the infected cell lysate but had no effect on protein synthesis by the control. Micrococcal nuclease-treated (initiation-dependent) VSV-infected cell lysates were not able to translate L-cell mRNA unless they were supplemented with a ribosomal salt wash; a salt wash from ribosomes from uninfected cells effected a quicker recovery than a salt wash from ribosomes from infected cells. When salt wash preparations from ribosomes from uninfected and infected cells were tested for initiation factor 2 (eIF-2)-dependent ternary complex capacity with added GTP and initiator methionyl-tRNA, we found that the two preparations contained equivalent levels of eIF-2. However, initiation complex formation by the factor from virus-infected cells proceeded at a reduced initial rate compared with the control. When the lysates were supplemented with a partially purified eIF-2 preparation, recovery of activity by the infected cell lysate was observed. Mechanisms by which downward regulation of eIF-2 activity might direct the selective translation of viral mRNA in VSV-infected cells are proposed.  相似文献   

3.
From ribosomal washes of neuroblastoma cells infected with Semliki Forest virus (SFV) a protein of Mr 33000 was purified, which comigrated with the viral capsid protein on sodium dodecyl sulfate/polyacrylamide gels and was recognized by antibodies against the capsid protein of SFV. This protein selectively inhibits the translation of host and early viral 42S mRNA in vitro, but has no effect on late viral 26S and encephalomyocarditis virus mRNA translation. Eukaryotic initiation factor 4B and cap-binding protein restore the translation of host and 42S mRNA to control levels. The capsid protein specifically prevents the binding of host mRNA into 80S initiation complexes, but has no effect on that of late viral mRNA. We propose that the capsid protein is the component responsible for the shut-off of host protein synthesis in SFV-infected cells and for the decreased translational activity of the crude ribosomal washes from these cells.  相似文献   

4.
Extracts from poliovirus-infected HeLa cells are unable to translate vesicular stomatitis virus or cellular mRNAs in vitro, probably reflecting the poliovirus-induced inhibition of host cell protein synthesis which occurs in vivo. Crude initiation factors from uninfected HeLa cells are able to restore translation of vesicular stomatitis virus mRNA in infected cell lysates. This restoring activity separates into the 0 to 40% ammonium sulfate fractional precipitate of ribosomal salt wash. Restoring activity is completely lacking in the analogous fractions prepared from poliovirus-infected cells. The 0 to 40% ammonium sulfate precipitates from both uninfected and infected cells contain eucaryotic initiation factor 3 (eIF-3), eIf-4B, and the cap-binding protein (CBP), which is detected by means of a cross-linking assay, as well as other proteins. The association of eIF-3 and cap binding protein was examined. The 0 to 40% ammonium sulfate precipitate of ribosomal salt wash from uninfected and infected cells was sedimented in sucrose gradients. Each fraction was examined for the presence of eIF-3 antigens by an antibody blot technique and for the presence of the CBP by cross-linking to cap-labeled mRNAs. From uninfected cells, a major proportion of the CBP cosedimented with eIF-3; however, none of the CBP from infected cells sedimented with eIF-3. The results suggest that the association of the CBP with eIF-3 into a functional complex may have been disrupted during the course of poliovirus infection.  相似文献   

5.
Infection of mouse L cells by vesicular stomatitis virus results in the inhibition of cellular protein synthesis. Lysates prepared from these infected cells are impaired in their ability to translate endogenous or exogenous cellular and viral mRNAs. The ability of initiation factors from rabbit reticulocytes to stimulate protein synthesis in these lysates was examined. Preparations of eukaryotic initiation factor 2 (eIF-2) and the guanine nucleotide exchange factor (GEF) stimulated protein synthesis strongly in L cell lysates from infected cells but only slightly in lysates from mock-infected cells. Maximal stimulation was obtained when a fraction containing eukaryotic initiation factors 4B (eIF-4B) and 4F (eIF-4F) was also present. In lysates from infected cells, these initiation factors increased endogenous cellular mRNA translation on the average 2-fold. In contrast, endogenous viral mRNA translation was increased to a much greater extent: the M protein was stimulated 8-fold, NS 5-fold, N 2.5-fold, and G 12-fold. When fractions containing eIF-4B, eIF-4F, or eIF-4A were added to these lysates in the presence of eIF-2, all three stimulated translation. Fractions containing rabbit reticulocyte initiation factors eIF-3 and eIF-6 had no effect on translation in either lysate. The results suggest that lysates from infected L cells are defective in the catalytic utilization of eIF-2 and deficient in mRNA binding protein activity.  相似文献   

6.
The eIF-2A fraction of reticulocyte ribosomal salt wash is capable of maximally stimulating the translation of endogenous messenger RNA by hen oviduct polysomes. The factor increases the initiation of protein synthesis 2--3-fold when measured by the factor-dependent synthesis of NH2-terminal peptides. The addition to these polysomes of elongation factor, EF-1, also increases protein synthesis but at a distinctly different rate and Mg2+ concentration optimum than the eIF-2A fraction. Moreover, there is no stimulation of NH2-terminal peptide synthesis with EF-1 alone. In contrast, all the known initiation factors are required for the translation of exogenous globulin mRNA on oviduct polysomes. Reticulocyte polysomes isolated by an identical procedure to that used for oviduct polysomes or by standard methods also require all the initiation factors for the translation of either endogenous mRNA or exogenous ovalbumin mRNA. Addition of 7-methylguanosine 5'-monophosphate does not inhibit the factor-dependent stimulation of oviduct polysomes except at high concentrations (1.0 mM) indicating that the sites with which 7-methylguanosine 5'-monophosphate normally competes are already occupied. These findings suggest that the messenger RNA remains bound to the oviduct polysomes or initiation factors. Hence the addition of exogenous factors which are involved with mRNA recognition and binding to the ribosome are not required. It has been previously shown that eIF-2A is capable of binding in vitro the initiatior tRNA to an existing Ado-Urd-Gua-40 S complex and initiating protein synthesis when such a complex is present. These present studies indicate that such an initiation complex may exist within the oviduct cell on membrane-associated polysomes. Under these circumstances eIF-2A mediates binding of the initiator tRNA and initiates protein synthesis.  相似文献   

7.
8.
A purification procedure is described for the initiation factors of protein synthesis from rabbit reticulocytes: (a) from the ribosomal wash and (b) from the postribosomal supernantant. A comparison is made between these preparations with respect to yield and specific activity. eIF-4A and eIF-4D occur mainly in the postribosomal supernatant; eIF-2, eIF-4C and eIF-5 are more evenly divided over both fractions, whereas eIF-1, eIF-3 and eIF-4B are found almost exclusively in the ribosomal wash. No significant difference in specific activity could be detected when factors from both sources were compared, with a possible exception of eIF-4A and eIF-4D.  相似文献   

9.
P1798 murine lymphosarcoma cells cease to proliferate upon exposure to 10(-7) M dexamethasone and exhibit a dramatic inhibition of rRNA and ribosomal protein synthesis (O. Meyuhas, E. Thompson, Jr., and R. P. Perry, Mol. Cell Biol. 7:2691-2699, 1987). These workers demonstrated that ribosomal protein synthesis is regulated primarily at the level of translation, since dexamethasone did not alter mRNA levels but shifted the mRNAs from active polysomes into inactive messenger ribonucleoproteins. We have examined the effects of dexamethasone on the biosynthesis of initiation factor proteins in the same cell line. The relative protein synthesis rates of eIF-4A and eIF-2 alpha were inhibited by about 70% by the hormone, a reduction comparable to that for ribosomal proteins. The mRNA levels of eIF-4A, eIF-4D, and eIF-2 alpha also were reduced by 60 to 70%, indicating that synthesis rates are proportional to mRNA concentrations. Analysis of polysome profiles showed that the average number of ribosomes per initiation factor polysome was only slightly reduced by dexamethasone, and little or no mRNA was present in messenger ribonucleoproteins. The results indicate that initiation factor gene expression is coordinately regulated with ribosomal protein synthesis but is controlled primarily by modulating mRNA levels rather than mRNA efficiency.  相似文献   

10.
After infection of mouse L cells with mengovirus, there is a rapid inhibition of protein synthesis, a concurrent disaggregation of polysomes, and an accumulation of 80S ribosomes. These 80S ribosomes could not be chased back into polysomes under an elongation block. The infected-cell 80S-ribosome fraction contained twice as much initiator methionyl-tRNA and mRNA as the analogous fraction from uninfected cells. Since the proportion of 80S ribosomes that were resistant to pronase digestion also increased after infection, these data suggest that the accumulated 80S ribosomes may be in the form of initiation complexes. The specific protein synthetic activity of polysomal ribosomes also decreased with time of infection. However, the transit times in mock-infected and infected cells remained the same. Cell-free translation systems from infected cells reflected the decreased protein synthetic activity of intact cells. The addition of reticulocyte initiation factors to such systems failed to relieve the inhibition. Fractionation of the infected-cell lysate revealed that the ribosomes were the predominant target affected. Washing the infected-cell ribosomes with 0.5 M KCI restored their translational activity. In turn, the salt wash from infected-cell ribosomes inhibited translation in lysates from mock-infected cells. The inhibitor in the ribosomal salt wash was temperature sensitive and micrococcal nuclease resistant. A model is proposed wherein virus infection activates (or induces the synthesis of) an inhibitor that binds to ribosomes and stops translation after the formation of the 80S-ribosome initiation complex but before elongation. The presence of such an inhibitor on ribosomes could prevent them from being remobilized into polysomes in the presence of an inhibitor of polypeptide elongation.  相似文献   

11.
The characteristics of cell-free translation systems prepared from unfertilized eggs and early cleavage stage embryos of the sea urchin, Strongylocentrotus purpuratus, closely reflect the developmentally regulated changes in protein synthesis initiation observed in vivo. Cell-free translation systems prepared over the first 0-6 h following fertilization show gradually increasing activities, mimicking the changes observed in vivo. The mechanisms underlying these increases are complex and occur at several levels. One factor contributing to the rise in protein synthetic rate is the gradual increase in eukaryotic initiation factor (eIF)-4 activity. This is correlated with the progressive inactivation of an inhibitor of eIF-4 function, which can be reactivated by in vitro manipulations. The relatively slow activation of eIF-4 follows similar kinetics to the increased utilization of maternal mRNA and ribosomes, in contrast to the rapid rise in maternal mRNA activation, and the increase in eIF-2B activity. This slow release from eIF-4 inhibition following a rapid release from eIF-2B inhibition and increased mRNA availability is reflected in the pattern of initiator tRNA binding to the small ribosomal subunit observed in cell-free translation systems. In translation systems from unfertilized eggs, initiator tRNA is unable to interact with the small ribosomal subunit, consistent with an initial block in both eIF-2B and eIF-4 activity. In translation systems from 30-min embryos, 48 S preinitiation complexes accumulate, reflecting the release from inhibition of mRNA availability and eIF-2B activity, but continued low activity of eIF-4. The accumulation of initiator tRNA in 48 S preinitiation complexes disappears gradually in translation systems from later embryos, as eIF-4 is slowly released from inhibition.  相似文献   

12.
Eukaryotic initiation factors (eIF) associate readily with 32P-labeled Semliki Forest virus (SFV) mRNA in vitro, forming complexes which can be crosslinked by 254 nm ultraviolet irradiation. After ribonuclease digestion, the initiation factors were released and analysed by gel electrophoresis. Autoradiography revealed proteins by virtue of crosslinked 32P-labeled mRNA fragments. eIF-4A, -4B and -4C as well as three subunits of eIF-3 could be crosslinked with SFV mRNA. None of these proteins bound to ribosomal RNAs.  相似文献   

13.
Selective translation of influenza viral mRNAs occurs after influenza virus superinfection of cells infected with the VAI RNA-negative adenovirus mutant dl331 (M. G. Katze, Y.-T. Chen, and R. M. Krug, Cell 37:483-490, 1984). Cell extracts from these doubly infected cells catalyze the initiation of essentially only influenza viral protein synthesis, reproducing the in vivo situation. This selective translation is correlated with a 5- to 10-fold suppression of the dl331-induced kinase that phosphorylates the alpha subunit of eucaryotic initiation factor eIF-2. This strongly suggests that influenza virus encodes a gene product that, analogous to the adenoviral VAI RNA, prevents the shutdown of overall protein synthesis caused by an eIF-2 alpha kinase turned on by viral infection. Adenoviral mRNA translation was restored to the extract from the doubly infected cells by the addition of the guanine nucleotide exchange factor eIF-2B, which is responsible for the normal recycling of eIF-2 during protein synthesis. This indicates that the residual kinase in the doubly infected cells leads to a limitation in functional (nonsequestered) eIF-2B and hence functional (GTP-containing) eIF-2 and that under these conditions influenza viral mRNAs are selectively translated over adenoviral mRNAs. Addition of double-stranded RNA to the extracts from these cells restored the eIF-2 alpha kinase to a level approaching that seen in extracts from cells infected with dl331 alone and caused the inhibition of influenza viral mRNA translation. This suggests that the putative influenza viral gene product acts against the double-stranded RNA activation of the kinase and indicates that influenza viral mRNA translation is also linked to the level of functional eIF-2. Our results thus indicate that a limitation in functional eIF-2 which causes a nonspecific reduction in the rate of initiation of protein synthesis results in the preferential translation of the better mRNAs (influenza viral mRNAs) at the expense of the poorer mRNAs (adenoviral mRNAs).  相似文献   

14.
Crude preparations of initiation factors from mock-infected and poliovirus-infected HeLa cells were analyzed for the presence of proteins which could be cross-linked to the 5' cap group of mRNA. A protein having an apparent molecular weight of 26,000, similar to the cap-binding protein in rabbit reticulocytes described by Sonenberg and Shatkin (Proc. Natl. Acad. Sci. U.S.A. 75:4843-4847, 1978), was found in the ribosomal salt wash from both uninfected and infected cells. Cross-linking of this polypeptide was inhibited by the cap analog m7GMP. In addition, cross-linking of a protein having an approximate molecular weight of 60,000 was similarly inhibited by cap analog. The smaller cap-binding protein fractionated in a 0 to 40% ammonium sulfate precipitate of ribosomal salt wash; the larger protein was found in the 40 to 70% ammonium sulfate fraction. Although the cap-binding proteins were present in both mock-infected and poliovirus-infected ribosomal salt wash, only preparations from uninfected HeLa cells were able to restore translation of capped vesicular stomatitis virus mRNA by extracts prepared from poliovirus-infected cells.  相似文献   

15.
The effect of elevated temperature on the activity of various components involved in protein synthesis was investigated in extracts from cultured Chinese hamster ovary cells. The translation of exogenous mRNA was markedly inhibited by preincubation of the extract for 15 to 20 minutes at 42°C. However, the following intermediary reactions were not affected, or only slightly inhibited, at 42°C: 1) the incorporation of Met-tRNAf into eIF-2·Met-tRNAf·GTP ternary complex; 2) the interaction of the ternary complex with 40S ribosomal subunits to form the 40S preinitiation intermediate; 3) the binding of mRNA and 60S subunits to form the 80S initiation complex; and 4) the reactions catalyzed by elongation factors EF-1 and EF-2. The activity of Met-tRNA synthetase was markedly inhibited, affecting the formation of initiator Met-tRNAf required for the initiation of protein synthesis and the translation of natural mRNA. Other aminoacyl-tRNA synthetases were not significantly affected by the elevated temperature.  相似文献   

16.
Protein synthesis was drastically inhibited in HeLa cells incubated for 5 min at 42.5 degrees C, but it resumed after 20 min at a rate about 50% that of control cells. After 10 min of heat shock, the binding of Met-tRNAf to 40 S ribosomal subunits was greatly reduced and a polypeptide identified by immunoprecipitation with the alpha subunit of eukaryotic initiation factor-2 (eIF-2) was phosphorylated. Extracts prepared from control and heat-shocked cells were assayed for in vitro protein synthesis. Both extracts were active when supplemented with hemin, but the extract from heat-shocked cells had little initiation activity without this addition. A Mr 90,000 polypeptide and eIF-2 alpha were phosphorylated in this extract, but hemin or an antibody which inhibits the protein kinase designated heme-controlled repressor reduced this phosphorylation. These findings implicated heme-controlled repressor as the kinase at least in part responsible for eIF-2 alpha phosphorylation. Furthermore, the initial inhibition of protein synthesis and eIF-2 alpha phosphorylation after heat shock were reduced by adding hemin to intact HeLa cells. These cells synthesized heat-shock proteins with some delay relative to cells without added hemin. The binding of Met-tRNAf to 40 S ribosomal subunits was inhibited by about 50% in extracts prepared from cells heat-shocked for 40 min, and eIF-2 alpha phosphorylation was increased in these cells. These results suggest that heme-controlled repressor is activated in heat-shocked cells and that eIF-2 alpha phosphorylation limits mRNA translation even after partial recovery of protein synthesis.  相似文献   

17.
《Seminars in Virology》1993,4(4):201-207
Regulation of gene expression frequently involves translational controls that operate at the level of the initiation phase. Initiation of protein synthesis in eukaryotes is promoted by greater than 10 initiation factors. Important among these are initiation factors eIF-2 and eIF-2B, which stimulate methionyl-tRNA binding to 40S ribosomal subunits, and eIF-4A, eIF-4B and eIF-4F, which stimulate mRNA binding. Many of the initiation factors are phosphorylated in vivo, and phosphorylation has been shown to regulate rates of global protein synthesis. Phosphorylation of eIF-2 on its α-subunit results in repression of translation by interfering with the recycling of the factor. Phosphorylation of eIF-4F on its α- and γ-subunits activates this limiting initiation factor and stimulates protein synthesis. Other initiation factor activities may also be regulated by phosphorylation, but these have not yet been characterized in detail. Regulating the translational activity of the cell by phosphorylation appears to be important in virus-infected cells and in the control of cell proliferation.  相似文献   

18.
Dormant and developing embryos of Artemia salina contain equivalent amounts of eIF-2, the eukaryotic initiation factor which forms a ternary complex with GTP and Met-tRNAf. The factor was purified from 0.5 M NH4Cl ribosomal washes by (NH4)2SO4 fractionation, followed by chromatography on heparin-Sepharose, DEAE-cellulose, hydroxyapatite and phosphocellulose. Purified preparations from dormant and developing embryos have similar specific activities and nucleotide requirements. The mobility of both proteins in dodecylsulfate gel electrophoresis is indistinguishable, and each contains three major polypeptide chains of molecular weight 52 000, 45 000 and 42 000. Both proteins are also immunologically identical, and each stimulates amino acid incorporation in a cell-free system of protein synthesis. The binding of [35S]Met-tRNAf to 40-S ribosomal subunits is catalyzed by eIF-2 isolated from dormant or developing embryos and is dependent upon GPT and AUG. Binding of [35S]Met-tRNAf to 40-S ribosomal subunits, and ternary complex formation with eIF-2, GTP, and [35S]Met-tRNAf is stimulated 2--3-fold by a factor present in the 0.5 M NH4Cl ribosomal wash and which elutes from DEAE-cellulose at 50 mM KCl. This protein does not exhibit GTP-dependent binding of [35S]Met-tRNAf. Binding of GDP and GTP was investigated with purified eIF-2 from developing embryos. The factor forms a binary complex with GDP or GTP, and eIF-2-bound [3H]GDP exchanges very slowly with free nucleotides. Our results suggest that eIF-2 does not limit resumption of embryo development following encystment, nor does it limit mRNA translation in extracts from dormant embryos.  相似文献   

19.
Translation of globin mRNA in a micrococcal nuclease-treated reticulocyte lysate was studied in the presence of increasing amounts of Mengovirus RNA, under conditions in which the number of translation initiation events remains constant as judged by the transfer of label from N-formyl[35S]methionyl-tRNAf into protein. The translation of globin mRNA is progressively inhibited by low concentrations of Mengovirus RNA, free of detectable traces of double-stranded RNA, concomitant with the increasing synthesis of Mengovirus RNA-directed products. On a molar basis, Mengovirus RNA apparently competes about 35 times more effectively than globin mRNA for a critical component in translation. The competition is relieved by the addition of highly purified eukaryotic initiation factor 2 (eIF-2). Addition of eIF-2 does not stimulate overall protein synthesis, but shifts it in favor of globin synthesis. No stimulation of globin mRNA translation by eIF-2 is seen when Mengovirus RNA is absent. These experiments show that Mengovirus RNA competes, directly or indirectly, with globin mRNA for eIF-2. In direct binding experiments using isolated mRNA and eIF-2, Mengovirus RNA is shown to compete with globin mRNA for eIF-2 and to exhibit a 30-fold higher affinity for this factor. The binding of Mengovirus RNA to eIF-2 is much more resistant to increasing salt concentrations than is the binding of globin mRNA, again reflecting its high affinity. These results reveal a direct correlation between the ability of these mRNA species to compete in translation and their ability to bind to initiation factor eIF-2. They suggest that the affinity of a given mRNA species for eIF-2 is essential in determining its translation, relative to that of other mRNA species. Messenger RNA competition for eIF-2 may contribute significantly to the selective translation of viral RNA in infected cells.  相似文献   

20.
The regulation of polypeptide chain initiation has been investigated in extracts from a number of well-characterized Chinese hamster ovary (CHO) cell mutants containing different temperature-sensitive aminoacyl-tRNA synthetases. These cells exhibit a large decline in the rate of initiation when cultures are shifted from the permissive temperature of 34 degrees C to the non-permissive temperature of 39.5 degrees C. During a brief incubation with [35S]Met-tRNAMetf or [35S]methionine, formation of initiation complexes on native 40S ribosomal subunits and 80S ribosomes is severely impaired in extracts from the mutant cell lines exposed to 39.5 degrees C. Wild-type cells exposed to 39.5 degrees C do not show any inhibition of protein synthesis or initiation complex formation. Inhibition of formation of 40S initiation complexes in the extracts from mutant cells, incubated at the non-permissive temperature, is shown to be independent of possible changes in mRNA binding or the rate of polypeptide chain elongation and is not due to any decrease in the total amount of initiation factor eIF-2 present. However, assays of eIF-2 X GTP X Met-tRNAMetf ternary complex formation in postribosomal supernatants from the temperature-sensitive mutants reveal a marked defect in the activity of eIF-2 after exposure of the cells to 39.5 degrees C and addition of exogenous eIF-2 to cell-free protein-synthesizing systems from cells incubated at 34 degrees C and 39.5 degrees C eliminates the difference in activity between them. The activity of the initiation factor itself is not directly temperature-sensitive in the mutant CHO cells. The results suggest that the activity of aminoacyl-tRNA synthetases can affect the ability of eIF-2 to bind Met-tRNAMetf and form 40S initiation complexes in intact cells, indicating a regulatory link between polypeptide chain elongation and chain initiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号