首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Uncoupling proteins 1 and 3 are regulated differently   总被引:3,自引:0,他引:3  
Hagen T  Zhang CY  Vianna CR  Lowell BB 《Biochemistry》2000,39(19):5845-5851
Using a heterologous yeast expression system, we have previously found a marked discordance between the effects of uncoupling protein (UCP) 1 and UCP3L on basal O(2) consumption in whole yeast versus isolated mitochondria. In whole yeast, UCP3L produces a greater stimulation of basal O(2) consumption, while in isolated mitochondria, UCP1 produces a much greater effect. As shown previously and in this report, UCP3L, in contrast to UCP1, is not inhibited by purine nucleotides. In the present study, we addressed two hypothetical mechanisms that could account for the observed discordance: (i) in whole yeast, purine nucleotides inhibit UCP1 but not UCP3L and (ii) preparations of isolated mitochondria lack an activator of UCP3L that is normally present in vivo. By use of a mutant of UCP1 that lacks purine nucleotide inhibition, it is demonstrated that cytosolic concentrations of purine nucleotides present in yeast effectively inhibit UCP1 activity. This suggests that the lower activity of UCP1 compared to UCP3L in whole yeast is due to purine nucleotide inhibition of UCP1 but not UCP3L. As potential activators of UCP3L we tested free fatty acids in whole yeast and isolated mitochondria. While UCP1 was strongly activated by free fatty acids, no stimulatory effect on UCP3L was observed. In summary, this study indicates that UCP1 and UCP3L differ in their regulation by purine nucleotides and free fatty acids. This different regulation may be related to different physiological functions of the two proteins.  相似文献   

2.
The uncoupling proteins (UCPs) are thought to uncouple oxidative phosphorylation in the mitochondria and thus generate heat. One of the UCP isoforms, UCP3, is abundantly expressed in skeletal muscle, the major thermogenic tissue in humans. UCP3 has been overexpressed at high levels in yeast systems, where it leads to the uncoupling of cell respiration, suggesting that UCP3 may indeed be capable of dissipating the mitochondrial proton gradient. This effect, however, was recently shown to be a consequence of the high level of expression and incorrect folding of the protein and not to its intrinsic uncoupling activity. In the present study, we investigated the properties of UCP3 overexpressed in a relevant mammalian host system such as the rat myoblast L6 cell line. UCP3 was expressed in relatively low levels (< 1 microg x mg(-1) membrane protein) with the help of an adenovirus vector. Immunofluorescence microscopy of transduced L6 cells showed that UCP3 was expressed in more than 90% of the cells and that its staining pattern was characteristic for mitochondrial localization. The oxygen consumption of L6 cells under nonphosphorylating conditions increased concomitantly with the levels of UCP3 expression. However, uncoupling was associated with an inhibition of the maximal respiratory capacity of mitochondria and was not affected by purine nucleotides and free fatty acids. Moreover, recombinant UCP3 was resistant to Triton X-100 extraction under conditions that fully solubilize membrane bound proteins. Thus, UCP3 can be uniformly overexpressed in the mitochondria of a relevant muscle-derived cell line resulting in the expected increase of mitochondrial uncoupling. However, our data suggest that the protein is present in an incompetent conformation.  相似文献   

3.
The uncoupling protein (UCP) from mammalian brown adipose tissue is an integral component of the mitochondrial inner membrane where it dissipates the proton electrochemical gradient. UCP is transported into mitochondria from the cytosol but lacks a cleavable targeting peptide. We have expressed the rat UCP in Saccharomyces cerevisiae and shown that this protein, which is not normally found in yeast, is targeted to the mitochondria where it disrupts mitochondrial function, probably by uncoupling oxidative phosphorylation. The observed growth defect is dependent upon the level of expression of UCP. When the unmodified UCP cDNA is expressed in yeast under the control of the GAL10 promoter no defect in growth is observed. We have inserted the UCP coding sequence behind the strong phosphoglycerate kinase promoter under the control of the GAL1-10 upstream activation site and introduced a yeast consensus sequence (ATAATG) at the translation start site. We have found that UCP expressed in S. cerevisiae is targeted to mitochondria and that its expression induces a marked growth defect on non-fermentable carbon sources in a manner dependent on induction with galactose.  相似文献   

4.
The impact of uncoupling protein (UCP) 1, UCP3 and UCP3s expressed in yeast on oxidative phosphorylation, membrane potential and H+ transport is determined. Intracellular ATP synthesis is inhibited by UCP3, much more than by UCP1, while similar levels of UCP3 and UCP1 exist in the mitochondrial fractions. Measurements of membrane potential and H+ efflux in isolated mitochondria show that, different from UCP1, with UCP3 and UCP3s there is a priori a preponderant uncoupling not inhibited by GDP. The results are interpreted to show that UCP3 and UCP3s in yeast mitochondria are in a deranged state causing uncontrolled uncoupling, which does not represent their physiological function.  相似文献   

5.
We assessed the ability of human uncoupling protein 2 (UCP2) to uncouple mitochondrial oxidative phosphorylation when expressed in yeast at physiological and supraphysiological levels. We used three different inducible UCP2 expression constructs to achieve mitochondrial UCP2 expression levels in yeast of 33, 283, and 4100 ng of UCP2/mg of mitochondrial protein. Yeast mitochondria expressing UCP2 at 33 or 283 ng/mg showed no increase in proton conductance, even in the presence of various putative effectors, including palmitate and all-trans-retinoic acid. Only when UCP2 expression in yeast mitochondria was increased to 4 microg/mg, more than an order of magnitude greater than the highest known physiological concentration, was proton conductance increased. This increased proton conductance was not abolished by GDP. At this high level of UCP2 expression, an inhibition of substrate oxidation was observed, which cannot be readily explained by an uncoupling activity of UCP2. Quantitatively, even the uncoupling seen at 4 microgram/mg was insufficient to account for the basal proton conductance of mammalian mitochondria. These observations suggest that uncoupling of yeast mitochondria by UCP2 is an overexpression artifact leading to compromised mitochondrial integrity.  相似文献   

6.
7.
Skunk cabbage, Symplocarpus foetidus, expresses two uncoupling proteins (UCPs), termed SfUCPA and SfUCPB, in the thermogenic organ spadix. SfUCPB exhibits unique structural features characterized by the absence of the putative fifth transmembrane domain (TM5) observed in SfUCPA, which is structurally similar to UCP1, and is abundantly expressed in the thermogenic spadix. Here, we conducted a series of comparative analyses of UCPs with six transmembrane domains, SfUCPA and rat UCP1, and TM5-deficient SfUCPB, using a heterologous yeast expression system. All UCPs were successfully expressed and targeted to the mitochondria, although the expression level of SfUCPB protein was approximately 10% of rat UCP1. The growth rate, mitochondrial membrane potential, and ATP content were significantly lower in cells expressing SfUCPB than in those expressing rat UCP1 and SfUCPA. These results suggest that SfUCPB, a novel TM5-deficient UCP, acts as an uncoupling protein in yeast cells.  相似文献   

8.
Mammalian uncoupling protein 1 (UCP1) mediates nonshivering thermogenesis in brown adipose tissue. We previously reported on the presence of a UCP1 orthologue in ectothermic fish and observed downregulation of UCP1 gene expression in the liver of the common carp. Neither the function of UCP1, nor the mode of UCP1 activation is known in carp liver mitochondria. Here, we compared the proton conductance at 25°C of liver mitochondria isolated from carp either maintained at 20°C (warm-acclimated, WA) or exposed to 8°C (cold-acclimated, CA) water temperature for 7–10 days. Liver mitochondria from WA carp had higher state four rates of oxygen consumption and greater proton conductance at high membrane potential. Liver mitochondria from WA, but not from CA, carp showed a strong increase in proton conductance when palmitate (or 4-hydroxy-trans-2-nonenal, HNE) was added, and this inducible proton conductance was prevented by addition of GDP. This fatty acid sensitive proton leak is likely due to the expression of UCP1 in the liver of WA carp. The observed biochemical properties of proton leak strongly suggest that carp UCP1 is a functional uncoupling protein with broadly the same activatory and inhibitory characteristics as mammalian UCP1. Significant UCP1 expression was also detected in our previous study in whole brain of the carp. We here observed a twofold increase of UCP1 mRNA in carp brain following cold exposure, suggesting a role of UCP1 in the thermal adaptation of brain metabolism. In situ hybridization located the UCP1 gene expression to the optic tectum responsible for visual system control, the descending trigeminal tract and the solitary tract. Taken together, this study characterises uncoupling protein activity in an ectotherm for the first time. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
10.
We report the molecular cloning of a novel cDNA fragment from lamprey encoding a 313-amino acid protein that is highly homologous to human uncoupling proteins (UCP). We therefore named the protein lamprey UCP. This lamprey UCP, rat UCP1, human UCP2, and human mitochondrial oxoglutarate carrier were individually expressed in Saccharomyces cerevisiae and the recombinant yeast mitochondria were isolated and assayed for the state 4 respiration rate and proton leak. Only UCP1 showed a strong (3.6-fold increase of the ratio of mitochondrial state 4 respiration rate to FCCP-stimulated fully uncoupled respiration rate) and GDP-inhibitable uncoupling activity, while the uncoupling activities of both UCP2 and lamprey UCP were relatively weak (1.5-fold and 1.4-fold, respectively) and GDP-insensitive. The oxoglutarate carrier had no effect on the studied parameters. In conclusion, the lamprey UCP has a mild, unregulated uncoupling activity in the yeast system, which resembles UCP2, but not UCP1.  相似文献   

11.
Oxidative stress and mitochondrial dysfunction are associated with disease and aging. Oxidative stress results from overproduction of reactive oxygen species (ROS), often leading to peroxidation of membrane phospholipids and production of reactive aldehydes, particularly 4-hydroxy-2-nonenal. Mild uncoupling of oxidative phosphorylation protects by decreasing mitochondrial ROS production. We find that hydroxynonenal and structurally related compounds (such as trans-retinoic acid, trans-retinal and other 2-alkenals) specifically induce uncoupling of mitochondria through the uncoupling proteins UCP1, UCP2 and UCP3 and the adenine nucleotide translocase (ANT). Hydroxynonenal-induced uncoupling was inhibited by potent inhibitors of ANT (carboxyatractylate and bongkrekate) and UCP (GDP). The GDP-sensitive proton conductance induced by hydroxynonenal correlated with tissue expression of UCPs, appeared in yeast mitochondria expressing UCP1 and was absent in skeletal muscle mitochondria from UCP3 knockout mice. The carboxyatractylate-sensitive hydroxynonenal stimulation correlated with ANT content in mitochondria from Drosophila melanogaster expressing different amounts of ANT. Our findings indicate that hydroxynonenal is not merely toxic, but may be a biological signal to induce uncoupling through UCPs and ANT and thus decrease mitochondrial ROS production.  相似文献   

12.
Mitochondria represent a major source of reactive oxygen species (ROS), particularly during resting or state 4 respiration wherein ATP is not generated. One proposed role for respiratory mitochondrial uncoupling proteins (UCPs) is to decrease mitochondrial membrane potential and thereby protect cells from damage due to ROS. This work was designed to examine superoxide production during state 4 (no ATP production) and state 3 (active ATP synthesis) respiration and to determine whether uncoupling reduced the specific production of this radical species, whether this occurred in endothelial mitochondria per se, and whether this could be modulated by UCPs. Superoxide formation by isolated bovine aortic endothelial cell (BAE) mitochondria, determined using electron paramagnetic resonance spectroscopy, was approximately fourfold greater during state 4 compared with state 3 respiration. UCP1 and UCP2 overexpression both increased the proton conductance of endothelial cell mitochondria, as rigorously determined by the kinetic relationship of respiration to inner membrane potential. However, despite uncoupling, neither UCP1 nor UCP2 altered superoxide formation. Antimycin, known to increase mitochondrial superoxide, was studied as a positive control and markedly enhanced the superoxide spin adduct in our mitochondrial preparations, whereas the signal was markedly impaired by the powerful chemical uncoupler p-(trifluoromethoxyl)-phenyl-hydrazone. In summary, we show that UCPs do have uncoupling properties when expressed in BAE mitochondria but that uncoupling by UCP1 or UCP2 does not prevent acute substrate-driven endothelial cell superoxide as effluxed from mitochondria respiring in vitro.  相似文献   

13.
The phenotypes observed in mice whose uncoupling protein (Ucp2) gene had been invalidated by homologous recombination (Ucp2(-/-) mice) are consistent with an increase in mitochondrial membrane potential in macrophages and pancreatic beta cells. This could support an uncoupling (proton transport) activity of UCP2 in the inner mitochondrial membrane in vivo. We used mitochondria from lung or spleen, the two organs expressing the highest level of UCP2, to compare the proton leak of the mitochondrial inner membrane of wild-type and Ucp2(-/-) mice. No difference was observed under basal conditions. Previous reports have concluded that retinoic acid and superoxide activate proton transport by UCP2. Spleen mitochondria showed a higher sensitivity to retinoic acid than liver mitochondria, but this was not caused by UCP2. In contrast with a previous report, superoxide failed to increase the proton leak rate in kidney mitochondria, where no UCP2 expression was detected, and also in spleen mitochondria, which does not support stimulation of UCP2 uncoupling activity by superoxide. Finally, no increase in the ATP/ADP ratio was observed in spleen or lung of Ucp2(-/-) mice. Therefore, no evidence could be gathered for the uncoupling activity of the UCP2 present in spleen or lung mitochondria. Although this may be explained by difficulties with isolated mitochondria, it may also indicate that UCP2 has another physiological significance in spleen and lung.  相似文献   

14.
The long form of human uncoupling protein-3 (hUCP3L) is highly homologous to thermogenin (UCPI), the uncoupling protein of brown fat mitochondria, but is expressed predominantly in skeletal muscle. Its putative role is to regulate the coupling efficiency of oxidative phosphorylation and thus thermogenesis in skeletal muscle, a major thermogenic tissue in higher mammals. To study the functional relevance of hUCP3L, the protein was expressed in yeast cells under the control of the galactose promoter. Expression of hUCP3L induced a series of phenotype changes in the yeast cells. The cellular growth and the mitochondrial membrane potential were both diminished. The portion of cellular respiration coupled to oxidative phosphorylation decreased from 57% to 11% (P<0.001) and the cellular heat production, as measured by direct microcalorimetry, was increased by 33.3 +/- 3.2% (P<0.001) after induction of UCP3L. These observations demonstrate for the first time the intrinsic thermogenic properties of hUCP3L in intact cells.  相似文献   

15.
The present study describes the molecular cloning of a novel cDNA fragment from amphioxus (Branchiostoma belcheri) encoding a 343-amino acid protein that is highly homologous to human uncoupling proteins (UCP), this protein is therefore named amphioxus UCP. This amphioxus UCP shares more homology with and is phylogenetically more related to mammalian UCP2 as compared with UCP1. To further assess the functional similarity of amphioxus UCP to mammalian UCP1 and −2, the amphioxus UCP, rat UCP1, and human UCP2 were separately expressed in Saccharomyces cerevisiae, and the recombinant yeast mitochondria were isolated and assayed for the state 4 respiration rate and proton leak, using pYES2 empty vector as the control. UCP1 increased the state 4 respiration rate by 2.8-fold, and the uncoupling activity was strongly inhibited by GDP, while UCP2 and amphioxus UCP only increased the state 4 respiration rate by 1.5-fold and 1.7-fold in a GDP-insensitive manner, moreover, the proton leak kinetics of amphioxus UCP was very similar to UCP2, but much different from UCP1. In conclusion, the amphioxus UCP has a mild, unregulated uncoupling activity in the yeast system, which resembles mammalian UCP2, but not UCP1.  相似文献   

16.
The ability of native uncoupling protein-3 (UCP3) to uncouple mitochondrial oxidative phosphorylation is controversial. We measured the expression level of UCP3 and the proton conductance of skeletal muscle mitochondria isolated from transgenic mice overexpressing human UCP3 (UCP3-tg) and from UCP3 knockout (UCP3-KO) mice. The concentration of UCP3 in UCP3-tg mitochondria was approximately 3 microg/mg protein, approximately 20-fold higher than the wild type value. UCP3-tg mitochondria had increased nonphosphorylating respiration rates, decreased respiratory control, and approximately 4-fold increased proton conductance compared with the wild type. However, this increased uncoupling in UCP3-tg mitochondria was not caused by native function of UCP3 because it was not proportional to the increase in UCP3 concentration and was neither activated by superoxide nor inhibited by GDP. UCP3 was undetectable in mitochondria from UCP3-KO mice. Nevertheless, UCP3-KO mitochondria had unchanged respiration rates, respiratory control ratios, and proton conductance compared with the wild type under a variety of assay conditions. We conclude that uncoupling in UCP3-tg mice is an artifact of transgenic expression, and that UCP3 does not catalyze the basal proton conductance of skeletal muscle mitochondria in the absence of activators such as superoxide.  相似文献   

17.
18.
We characterized the uncoupling activity of the plant uncoupling protein from Solanum tuberosum (StUCP) using mitochondria from intact potato tubers or from yeast (Saccharomyces cerevisiae) expressing the StUCP gene. Compared with mitochondria from transfected yeast, StUCP is present at very low levels in intact potato mitochondrial membranes (at least thirty times lower) as shown by immunodetection with anti-UCP1 antibodies. Under conditions that ruled out undesirable effects of nucleotides and free fatty acids on uncoupling activity measurement in plant mitochondria, the linoleic acid-induced depolarization in potato mitochondria was insensitive to the nucleotides ATP, GTP, or GDP. In addition, sensitivity to linoleic acid was similar in potato and in control yeast mitochondria, suggesting that uncoupling occurring in potato mitochondria was because of a UCP-independent proton diffusion process. By contrast, yeast mitochondria expressing StUCP exhibited a higher sensitivity to free fatty acids than those from the control yeast and especially a marked proton conductance in the presence of low amounts of linoleic acid. However, this fatty acid-induced uncoupling was also insensitive to nucleotides. Altogether, these results suggest that uncoupling of oxidative phosphorylation and heat production cannot be the dominant feature of StUCP expressed in native potato tissues. However, it could play a role in preventing reactive oxygen species production as proposed for mammalian UCP2 and UCP3.  相似文献   

19.
To examine the thermogenic significance of the classical uncoupling protein-1 (UCP1), the thermogenic potential of brown adipocytes isolated from UCP1-ablated mice was investigated. Ucp1(-/-) cells had a basal metabolic rate identical to wild-type; the mitochondria within them were coupled to the same degree. The response to norepinephrine in wild-type cells was robust ( approximately 10-fold increase in thermogenesis); Ucp1(-/-) cells only responded approximately 3% of this. Ucp1(-/-) cells were as potent as wild-type in norepinephrine-induced cAMP accumulation and lipolysis and had a similar mitochondrial respiratory complement. In wild-type cells, fatty acids induced a thermogenic response similar to norepinephrine, but fatty acids (and retinoate) were practically without effect in Ucp1(-/-) cells. It is concluded that no other adrenergically induced thermogenic mechanism exists in brown adipocytes except that mediated by UCP1 and that entopic expression of UCP1 does not lead to overt innate uncoupling, and it is suggested that fatty acids are transformed to an intracellular physiological activator of UCP1. High expression of UCP2 and UCP3 in the tissue was not associated with an overt innate highly uncoupled state of mitochondria within the cells, nor with an ability of norepinephrine or endo- or exogenous fatty acids to induce uncoupled respiration in the cells. Thus, UCP1 remains the only physiologically potent thermogenic uncoupling protein in these cells.  相似文献   

20.
The availability of a UCP1-ablated mouse has enabled critical studies of the function of UCP1,UCP2, and UCP3. Concerning UCP1, its presence in brown-fat mitochondria is associatedwith innate uncoupling, high GDP-binding capacity, and GDP-inhibitable Cl- permeabilityand uncoupling—but the high fatty acid sensitivity found in these mitochondria is observedeven in the absence of UCP1. The absence of UCP1 leads to low cold tolerance but not toobesity. UCP1 ablation also leads to an augmented expression of UCP2 and UCP3 in brownadipose tissue, making this tissue probably the one that boasts the highest expression ofthese UCPs. However, these very high expression levels are not associated with any inherentuncoupling, or with a specific GDP-binding capacity, or with a GDP-sensitive Cl- permeability,or with any effect of GDP on mitochondrial membrane potential, or with an increased basalmetabolism of cells, or with the presence of norepinephrine- or fatty acid-induced thermogenesisin cells, and not with a cold-acclimation recruited, norepinephrine-induced thermogenicresponse in the intact animal. Therefore, it can be discussed whether any uncoupling effect isassociated with UCP2 or UCP3 when they are endogenously expressed and, consequently,whether (loss of) uncoupling (thermogenic) effects of UCP2 or UCP3 can be invoked toexplain metabolic phenomena, such as obesity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号