首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The use of saline water as secondary quality water in urban environments for sanitation is a promising alternative towards mitigating fresh water scarcity. However, this alternative will increase the salinity in the wastewater generated that may affect the biological wastewater treatment processes, such as biological phosphorus removal. In addition to the production of saline wastewater by the direct use of saline water in urban environments, saline wastewater is also generated by some industries. Intrusion of saline water into the sewers is another source of salinity entering the wastewater treatment plant. In this study, the short-term effects of salinity on the anaerobic metabolism of phosphate-accumulating organisms (PAO) and glycogen-accumulating organisms (GAO) were investigated to assess the impact of salinity on enhanced biological phosphorus removal. Hereto, PAO and GAO cultures enriched at a relatively low salinity level (0.02 % W/V) were exposed to salinity concentrations of up to 6 % (as NaCl) in anaerobic batch tests. It was demonstrated that both PAO and GAO are affected by higher salinity levels, with PAO being the more sensitive organisms to the increasing salinity. The maximum acetate uptake rate of PAO decreased by 71 % when the salinity increased from 0 to 1 %, while that of GAO decreased by 41 % for the same salinity increase. Regarding the stoichiometry of PAO, a decrease in the P-release/HAc uptake ratio accompanied with an increase in the glycogen consumption/HAc uptake ratio was observed for PAO when the salinity increased from 0 to 2 % salinity, indicating a metabolic shift from a poly-P-dependent to a glycogen-dependent metabolism. The anaerobic maintenance requirements of PAO and GAO increased as the salinity concentrations risen up to 4 % salinity.  相似文献   

2.
Glycogen-accumulating organisms (GAO) have the potential to directly compete with polyphosphate-accumulating organisms (PAO) in EBPR systems as both are able to take up VFA anaerobically and grow on the intracellular storage products aerobically. Under anaerobic conditions GAO hydrolyse glycogen to gain energy and reducing equivalents to take up VFA and to synthesise polyhydroxyalkanoate (PHA). In the subsequent aerobic stage, PHA is being oxidised to gain energy for glycogen replenishment (from PHA) and for cell growth. This article describes a complete anaerobic and aerobic model for GAO based on the understanding of their metabolic pathways. The anaerobic model has been developed and reported previously, while the aerobic metabolic model was developed in this study. It is based on the assumption that acetyl-CoA and propionyl-CoA go through the catabolic and anabolic processes independently. Experimental validation shows that the integrated model can predict the anaerobic and aerobic results very well. It was found in this study that at pH 7 the maximum acetate uptake rate of GAO was slower than that reported for PAO in the anaerobic stage. On the other hand, the net biomass production per C-mol acetate added is about 9% higher for GAO than for PAO. This would indicate that PAO and GAO each have certain competitive advantages during different parts of the anaerobic/aerobic process cycle.  相似文献   

3.
An increasing number of studies shows that the glycogen-accumulating organisms (GAOs) can survive and may indeed proliferate under the alternating anaerobic/aerobic conditions found in EBPR systems, thus forming a strong competitor of the polyphosphate-accumulating organisms (PAOs). Understanding their behaviors in a mixed PAO and GAO culture under various operational conditions is essential for developing operating strategies that disadvantage the growth of this group of unwanted organisms. A model-based data analysis method is developed in this paper for the study of the anaerobic PAO and GAO activities in a mixed PAO and GAO culture. The method primarily makes use of the hydrogen ion production rate and the carbon dioxide transfer rate resulting from the acetate uptake processes by PAOs and GAOs, measured with a recently developed titration and off-gas analysis (TOGA) sensor. The method is demonstrated using the data from a laboratory-scale sequencing batch reactor (SBR) operated under alternating anaerobic and aerobic conditions. The data analysis using the proposed method strongly indicates a coexistence of PAOs and GAOs in the system, which was independently confirmed by fluorescent in situ hybridization (FISH) measurement. The model-based analysis also allowed the identification of the respective acetate uptake rates by PAOs and GAOs, along with a number of kinetic and stoichiometric parameters involved in the PAO and GAO models. The excellent fit between the model predictions and the experimental data not involved in parameter identification shows that the parameter values found are reliable and accurate. It also demonstrates that the current anaerobic PAO and GAO models are able to accurately characterize the PAO/GAO mixed culture obtained in this study. This is of major importance as no pure culture of either PAOs or GAOs has been reported to date, and hence the current PAO and GAO models were developed for the interpretation of experimental results of mixed cultures. The proposed method is readily applicable for detailed investigations of the competition between PAOs and GAOs in enriched cultures. However, the fermentation of organic substrates carried out by ordinary heterotrophs needs to be accounted for when the method is applied to the study of PAO and GAO competition in full-scale sludges.  相似文献   

4.
Enhanced biological phosphorus removal (EBPR) performance is directly affected by the competition between polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs). This study investigates the effects of carbon source on PAO and GAO metabolism. Enriched PAO and GAO cultures were tested with the two most commonly found volatile fatty acids (VFAs) in wastewater systems, acetate and propionate. Four sequencing batch reactors (SBRs) were operated under similar conditions and influent compositions with either acetate or propionate as the sole carbon source. The stimulus for selection of the PAO and GAO phenotypes was provided only through variation of the phosphorus concentration in the feed. The abundance of PAOs and GAOs was quantified using fluorescence in situ hybridisation (FISH). In the acetate fed PAO and GAO reactors, "Candidatus Accumulibacter phosphatis" (a known PAO) and "Candidatus Competibacter phosphatis" (a known GAO) were present in abundance. A novel GAO, likely belonging to the group of Alphaproteobacteria, was found to dominate the propionate fed GAO reactor. The results clearly show that there are some very distinctive differences between PAOs and GAOs in their ability to take up acetate and propionate. PAOs enriched with acetate as the sole carbon source were immediately able to take up propionate, likely at a similar rate as acetate. However, an enrichment of GAOs with acetate as the sole carbon source took up propionate at a much slower rate (only about 5% of the rate of acetate uptake on a COD basis) during a short-term switch in carbon source. A GAO enrichment with propionate as the sole carbon source took up acetate at a rate that was less than half of the propionate uptake rate on a COD basis. These results, along with literature reports showing that PAOs fed with propionate (also dominated by Accumulibacter) can immediately switch to acetate, suggesting that PAOs are more adaptable to changes in carbon source as compared to GAOs. This study suggests that the PAO and GAO competition could be influenced in favour of PAOs through the provision of propionate in the feed or even by regularly switching the dominant VFA species in the wastewater. Further study is necessary in order to provide greater support for these hypotheses.  相似文献   

5.
Proliferation of glycogen accumulating organisms (GAO) has been identified as a potential cause of enhanced biological phosphorus removal (EBPR) failure in wastewater treatment plants (WWTP). GAO compete for substrate with polyphosphate accumulating organisms (PAO) that are the microorganisms responsible for the phosphorus removal process. In the present article, the effects of temperature on the anaerobic metabolism of GAO were studied in a broad temperature range (from 10 to 40 degrees C). Additionally, maximum acetate uptake rate of PAO, between 20 and 40 degrees C, was also evaluated. It was found that GAO had clear advantages over PAO for substrate uptake at temperatures higher than 20 degrees C. Below 20 degrees C, maximum acetate uptake rates of both microorganisms were similar. However, lower maintenance requirements at temperature lower than 30 degrees C give PAO metabolic advantages in the PAO-GAO competition. Consequently, PAO could be considered to be psychrophilic microorganisms while GAO appear to be mesophilic. These findings contribute to understand the observed stability of the EBPR process in WWTP operated under cold weather conditions. They may also explain the proliferation of GAO in WWTP and thus, EBPR instability, observed in hot climate regions or when treating warm industrial effluents. It is suggested to take into account the observed temperature dependencies of PAO and GAO in order to extend the applicability of current activated sludge models to a wider temperature range.  相似文献   

6.
The main processes involved in enhanced biological phosphorus removal (EBPR) under anaerobic and subsequently aerobic conditions are widely described in the literature. Polyphosphate accumulating organisms (PAO) are the organisms responsible for this process. However, the mechanisms of PAO are not fully established yet under conditions that differ from the classical anaerobic/aerobic conditions. In this work, we made a comparison between the behavior of PAO under classical EBPR conditions and its behavior when consuming substrate under only aerobic conditions. In addition, oxygen uptake rate (OUR) was measured in the set of experiments under aerobic conditions to improve the characterization of the process. A kinetic and stoichiometric model based on Activated Sludge Model No.2 (ASM2) and including glycogen economy (AnOx model), calibrated for classical anaerobic/aerobic conditions, was not able to describe the experimental data since it underestimated the acetate consumption, the PHB storage, and the OUR. Two different hypotheses for describing the experimental measurements were proposed and modeled. Both hypotheses considered that PAO, under aerobic conditions, uptake acetate coupled to PHB storage, glycogen degradation, and phosphorus release as in anaerobic conditions. Moreover, the first hypothesis (PAO-hypothesis) considered that PAO were able to store acetate as PHB linked to oxygen consumption and the second one (OHO hypothesis) considered that this storage was due to ordinary heterotrophic organisms (OHO). Both hypotheses were evaluated by simulation extending the AnOx model with additional equations. The main differences observed were the predictions for PHB degradation during the famine phase and the OUR profile during both feast and famine phases. The OHO hypothesis described the experimental profiles more accurately than the PAO hypothesis.  相似文献   

7.
Long-term influences of different steady-state pH conditions on microbial community composition were determined by fluorescence in situ hybridization (FISH) in a laboratory scale reactor configured for enhanced biological phosphorus removal (EBPR). Chemical profiles were consistent with shifts in populations from polyphosphate-accumulating organisms (PAO) to glycogen-accumulating organisms (GAO) when pH fell from pH 7.5 to 7.0 and then to 6.5. While biomass was both dispersed and flocculated at pH 7.5, almost complete granulation occurred gradually after pH was dropped to 7.0, and these granules increased in size as the pH was reduced further to 6.5. Reverting back to pH 7.5 led to granule breakdown and corresponding increases in anaerobic phosphate release. Granules consisted almost entirely of Accumulibacter PAO cells, while putative GAO populations were always present in small numbers. Results suggest that low pH may contribute to granulation under these operational conditions. While chemical profiles suggested the PAO:GAO balance was changing as pH fell, FISH failed to reveal any marked corresponding increase in GAO abundances. Instead, TEM evidence suggested the Accumulibacter PAO phenotype was becoming more like that of a GAO. These data show how metabolically adaptable the Accumulibacter PAO can be under anaerobic:aerobic conditions in being able to cope with marked changes in plant conditions. They suggest that decreases in EBPR capacity may not necessarily reflect shifts in community composition, but in the existing population metabolism.  相似文献   

8.
One of the main limitations in bacterial polyhydroxyalkanoate (PHA) production with mixed cultures is the fact that primarily polyhydroxybutyrate (PHB) homopolymers are generated from acetate as the main carbon source, which is brittle and quite fragile. The incorporation of different 3-hydroxyalkanoate (HA) components into the polymers requires the addition of additional carbon sources, leading to extra costs and complexity. In this study, the production of poly(3-hydroxybutyrate (3HB)-co-3-hydroxyvalerate (3HV)-co-3-hydroxy-2-methylvalerate (3HMV)), with 7-35C-mol% of 3HV fractions from acetate as the only carbon source was achieved with the use of glycogen accumulating organisms (GAOs). An enriched GAO culture was obtained in a lab-scale reactor operated under alternating anaerobic and aerobic conditions with acetate fed at the beginning of the anaerobic period. The production of PHAs utilizing the enriched GAO culture was investigated under both aerobic and anaerobic conditions. A polymer content of 14-41% of dry cell weight was obtained. The PHA product accumulated by GAOs under anaerobic conditions contained a relatively constant proportion of non-3HB monomers (30+/-5C-mol%), irrespective of the amount of acetate assimilated. In contrast, under aerobic conditions, GAOs only produced 3HB monomers from acetate causing a gradually decreasing 3HV fraction during this aerobic feeding period. The PHAs were characterized by gel permeation chromatography (GPC) and differential scanning calorimetry (DSC). The data demonstrated that the copolymers possessed similar characteristics to those of commercially available poly(3HB-co-3HV) (PHBV) products. The PHAs produced under solely anaerobic conditions possessed lower melting points and crystallinity, higher molecular weights, and narrower molecular-weight distributions, compared to the aerobically produced polymers. This paper hence demonstrates the significant potential of GAOs to produce high quality polymers from a simple and cheap carbon source, contributing considerably to the growing research body on bacterial PHA production by mixed cultures.  相似文献   

9.
The ecophysiology of uncultured Rhodocyclus-related polyphosphate-accumulating organisms (PAO) present in three full-scale enhanced biological phosphorus removal (EBPR) activated sludge plants was studied by using microautoradiography combined with fluorescence in situ hybridization. The investigations showed that these organisms were present in all plants examined and constituted 5 to 10, 10 to 15, and 17 to 22% of the community biomass. The behavior of these bacteria generally was consistent with the biochemical models proposed for PAO, based on studies of lab-scale investigations of enriched and often unknown PAO cultures. Rhodocyclus-related PAO were able to accumulate short-chain substrates, including acetate, propionate, and pyruvate, under anaerobic conditions, but they could not assimilate many other low-molecular-weight compounds, such as ethanol and butyrate. They were able to assimilate two substrates (e.g., acetate and propionate) simultaneously. Leucine and thymidine could not be assimilated as sole substrates and could only be assimilated as cosubstrates with acetate, perhaps serving as N sources. Glucose could not be assimilated by the Rhodocyclus-related PAO, but it was easily fermented in the sludge to products that were subsequently consumed. Glycolysis, and not the tricarboxylic acid cycle, was the source that provided the reducing power needed by the Rhodocyclus-related PAO to form the intracellular polyhydroxyalkanoate storage compounds during anaerobic substrate assimilation. The Rhodocyclus-related PAO were able to take up orthophosphate and accumulate polyphosphate when oxygen, nitrate, or nitrite was present as an electron acceptor. Furthermore, in the presence of acetate growth was sustained by using oxygen, as well as nitrate or nitrite, as an electron acceptor. This strongly indicates that Rhodocyclus-related PAO were able to denitrify and thus played a role in the denitrification occurring in full-scale EBPR plants.  相似文献   

10.
The role of glycogen in the uptake of acetate in anaerobic-aerobic activated sludge without enhanced biological phosphorus removal were investigated. Although the polyphosphate content of the sludge was minimized by lowering the phosphorus feeding concentration, significant acetate uptake and accumulation of polyhydroxyalkanoates (PHAs) were observed in proportion to glycogen consumption under anaerobic conditions. The results of anaerobic inhibition studies, which showed suppressive effects on acetate uptake by a glycolysis inhibitor (iodoacetate) but not by a membrane ATPase inhibitor (N,N′-dicyclohexyl carbodiimide), supported an assumption that glycogen degradation through glycolysis supplies the required ATP and reducing power for PHA synthesis from acetate and consumed glycogen. Under subsequent aerobic conditions, the accumulated PHAs were depleted and the consumed glycogen recovered to the same level as that at the start of the anaerobic phase. Iodoacetate also inhibited the recovery of glycogen under aerobic conditions, suggesting that nearly 50% of the PHAs depleted was used for glycogen synthesis through reversed glycolysis.  相似文献   

11.
Glycogen-accumulating organisms (GAOs) are found in enhanced biological phosphorus removal systems where they compete with polyphosphate-accumulating organisms for external carbon substrates. (13)C nuclear magnetic resonance ((13)C-NMR) was used to elucidate the metabolic pathways operating in an enriched GAO culture dominated by two known GAOs (81.2%). The experiments consisted of adding (13)C-acetate (labelled on position 1 or 2) to the culture under anaerobic conditions, and operating the culture through a cycle consisting of an anaerobic, an aerobic and a further anaerobic phase. The carbon transformations over the cycle were monitored using in vivo(13)C-NMR. The two-carbon moieties in hydroxybutyrate and hydroxyvalerate were derived from acetate, while the propionyl precursor of hydroxyvalerate was primarily derived from glycogen, with only a small fraction originating from acetate. Comparison of the labelling patterns in hydroxyvalerate at the end of the first and the second anaerobic periods in pulse experiments with 2-(13)C-acetate showed that the Entner-Doudoroff (ED) pathway was used for the breakdown of glycogen. This conclusion was further supported by the labelling pattern on glycogen observed in the pulse experiments with 1-(13)C-acetate, which can only be explained by the operation of ED with recycling of pyruvate and glyceraldehyde 3-phosphate via gluconeogenesis. The activity of the ED pathway for glycogen degradation by GAOs is demonstrated here for the first time. In addition, the decarboxylating part of the tricarboxylic acid cycle was confirmed to operate also under anaerobic conditions.  相似文献   

12.
Aims: To investigate the ecophysiology of populations of polyphosphate-accumulating organisms (PAO) and glycogen-accumulating organisms (GAO) in communities of a novel acetate fed process removing phosphate from wastewater. Attempts were made to see if acetate could be replaced by an alternative carbon source which did not support the growth of the GAO. Methods and Results: A continuously aerated sequencing batch reactor was operated with different acetate feed levels. Fluorescence in situ hybridization (FISH) showed that Defluviicoccus GAO numbers increased at lower acetate feed levels. With FISH/microautoradiography (MAR) both detected morphotypes of Defluviicoccus assimilated a wider range of substrates aerobically than Accumulibacter PAO. Their uptake profile differed from that reported for the same phylotype in full scale anaerobic : aerobic EBPR plants. Conclusions: This suggests that replacing acetate with another substrate is unlikely to provide Accumulibacter with a selective advantage in this process. Why Defluviicoccus appeared to out-compete Accumulibacter at lower acetate concentrations was not clear. Data suggest physiological and morphological diversity may exist within a single Defluviicoccus phylotype. Significance and Impact of the Study: This study implies that the current FISH probes for Defluviicoccus GAO may not reveal the full extent of their biodiversity, and that more information is required before strategies for their control can be devised.  相似文献   

13.
A metabolic model for the stoichiometry of acetate uptake under anaerobic conditions by an enriched culture of glycogen accumulating organisms (GAOs) was developed and tested by experimental studies. Glycogen served as the source of both reducing power and energy to drive the process of acetate uptake. The amount of glycogen consumed and poly-beta-hydroxyvalerate (PHV) accumulated in the cells increased with increasing pH, indicating that the energy requirements for acetate uptake increased with pH. The composition of the accumulated poly-beta-hydroxyalkanoates (PHAs) was adequately predicted using the assumption that acetyl-CoA and propionyl-CoA condense randomly to produce PHA. In addition, the rate of acetate uptake was strongly affected by the pH. The rate decreased with increasing pH and this dependence could be described with a saturation type of expression. A comparison of the rate of acetate uptake at low pH with the rates observed in enriched cultures of phosphorus accumulating organisms (PAOs) indicated that GAOs are able to compete effectively with PAOs in nutrient removal systems under certain conditions.  相似文献   

14.
The glycogen-accumulating organism (GAO) ‘Candidatus Competibacter'' (Competibacter) uses aerobically stored glycogen to enable anaerobic carbon uptake, which is subsequently stored as polyhydroxyalkanoates (PHAs). This biphasic metabolism is key for the Competibacter to survive under the cyclic anaerobic-‘feast'': aerobic-‘famine'' regime of enhanced biological phosphorus removal (EBPR) wastewater treatment systems. As they do not contribute to phosphorus (P) removal, but compete for resources with the polyphosphate-accumulating organisms (PAO), thought responsible for P removal, their proliferation theoretically reduces the EBPR capacity. In this study, two complete genomes from Competibacter were obtained from laboratory-scale enrichment reactors through metagenomics. Phylogenetic analysis identified the two genomes, ‘Candidatus Competibacter denitrificans'' and ‘Candidatus Contendobacter odensis'', as being affiliated with Competibacter-lineage subgroups 1 and 5, respectively. Both have genes for glycogen and PHA cycling and for the metabolism of volatile fatty acids. Marked differences were found in their potential for the Embden–Meyerhof–Parnas and Entner–Doudoroff glycolytic pathways, as well as for denitrification, nitrogen fixation, fermentation, trehalose synthesis and utilisation of glucose and lactate. Genetic comparison of P metabolism pathways with sequenced PAOs revealed the absence of the Pit phosphate transporter in the Competibacter-lineage genomes—identifying a key metabolic difference with the PAO physiology. These genomes are the first from any GAO organism and provide new insights into the complex interaction and niche competition between PAOs and GAOs in EBPR systems.  相似文献   

15.
Enhanced biological phosphorus removal (EBPR) is an efficient and sustainable technology to remove phosphorus from wastewater preventing eutrophication in natural waters. It is widely accepted that EBPR requires an optimal anaerobic hydraulic retention time to obtain stable P-removal from wastewater. Thus, it is suggested that deterioration of the EBPR efficiency regularly observed in full-scale wastewater treatment plants (WWTPs) is normally caused by an excessive aeration of activated sludge that increments the amount of oxygen recycled to the anaerobic reactor and consequently, the anaerobic conditions are not totally preserved. Furthermore, it has been reported a progressive decrease in P-removal capacity in an EBPR lab-scale system enriched with acetate as the sole carbon source under permanent aerobic conditions. Hence, to evaluate the stability of P-removal with a different carbon source, an EBPR-SBR was operated with propionate under permanent aerobic conditions. As a result, net P-removal was successfully accomplished in the SBR without any anaerobic phase during 46 days of aerobic operation. Moreover, the system was shifted after this period to the standard anaerobic–aerobic conditions and reliable P-removal was maintained. FISH (fluorescence in situ hybridisation) analysis showed a significant presence of Accumulibacter (70, 50 and 72%, in different periods) and the absence of Competibacter. The results indicate that using propionate as carbon source it is possible to maintain in a long term an enriched culture of phosphorus accumulating organisms (PAO) able to remove phosphorus under permanent aerobic conditions.  相似文献   

16.
The influence of sludge age on granular sludge formation and microbial population dynamics in a methanol- and acetate-fed aerobic granular sludge system operated at 35°C was investigated. During anaerobic feeding of the reactor, methanol was initially converted to methane by methylotrophic methanogens. These methanogens were able to withstand the relatively long aeration periods. Lowering the anaerobic solid retention time (SRT) from 17 to 8 days enabled selective removal of the methanogens and prevented unwanted methane formation. In absence of methanogens, methanol was converted aerobically, while granule formation remained stable. At high SRT values (51 days), γ-Proteobacteria were responsible for acetate removal through anaerobic uptake and subsequent aerobic growth on storage polymers formed [so called metabolism of glycogen-accumulating organisms (GAO)]. When lowering the SRT (24 days), Defluviicoccus-related organisms (cluster II) belonging to the α-Proteobacteria outcompeted acetate consuming γ-Proteobacteria at 35°C. DNA from the Defluviicoccus-related organisms in cluster II was not extracted by the standard DNA extraction method but with liquid nitrogen, which showed to be more effective. Remarkably, the two GAO types of organisms grew separately in two clearly different types of granules. This work further highlights the potential of aerobic granular sludge systems to effectively influence the microbial communities through sludge age control in order to optimize the wastewater treatment processes.  相似文献   

17.
Microautoradiography combined with fluorescence in situ hybridization (MAR-FISH) was used to screen for potential polyphosphate-accumulating organisms (PAO) in a full-scale enhanced biological phosphorus removal (EBPR) plant. The results showed that, in addition to uncultured Rhodocyclus-related PAO, two morphotypes hybridizing with gene probes for the gram-positive Actinobacteria were also actively involved in uptake of orthophosphate (Pi). Clone library analysis and further investigations by MAR-FISH using two new oligonucleotide probes revealed that both morphotypes, cocci in clusters of tetrads and short rods in clumps, were relatively closely related to the genus Tetrasphaera within the family Intrasporangiaceae of the Actinobacteria (93 to 98% similarity in their 16S rRNA genes). FISH analysis of the community biomass in the treatment plant investigated showed that the short rods (targeted by probe Actino-658) were the most abundant (12% of all Bacteria hybridizing with general bacterial probes), while the cocci in tetrads (targeted by probe Actino-221) made up 7%. Both morphotypes took up Pi aerobically only if, in a previous anaerobic phase, they had taken up organic matter from wastewater or a mixture of amino acids. They could not take up short-chain fatty acids (e.g., acetate), glucose, or ethanol under anaerobic or aerobic conditions. The storage compound produced during the anaerobic period was not polyhydroxyalkanoates, as for Rhodocyclus-related PAO, and its identity is still unknown. Growth and uptake of Pi took place in the presence of oxygen and nitrate but not nitrite, indicating a lack of denitrifying ability. A survey of the occurrence of these actinobacterial PAO in 10 full-scale EBPR plants revealed that both morphotypes were widely present, and in several plants more abundant than the Rhodocyclus-related PAO, thus playing a very important role in the EBPR process.  相似文献   

18.
Short-term temperature effects on the aerobic metabolism of glycogen-accumulating organisms (GAO) were investigated within a temperature range from 10 to 40 degrees C. Candidatus Competibacter Phosphatis, known GAO, were the dominant microorganisms in the enriched culture comprising 93 +/- 1% of total bacterial population as indicated by fluorescence in situ hybridization (FISH) analysis. Between 10 and 30 degrees C, the aerobic stoichiometry of GAO was insensitive to temperature changes. Around 30 degrees C, the optimal temperature for most of the aerobic kinetic rates was found. At temperatures higher than 30 degrees C, a decrease on the aerobic stoichiometric yields combined with an increase on the aerobic maintenance requirements were observed. An optimal overall temperature for both anaerobic and aerobic metabolisms of GAO appears to be found around 30 degrees C. Furthermore, within a temperature range (10-30 degrees C) that covers the operating temperature range of most of domestic wastewater treatment systems, GAOs aerobic kinetic rates exhibited a medium degree of dependency on temperature (theta = 1.046-1.090) comparable to that of phosphorus accumulating organisms (PAO). We conclude that GAO do not have metabolic advantages over PAO concerning the effects of temperature on their aerobic metabolism, and competitive advantages are due to anaerobic processes.  相似文献   

19.
Production of polyhydroxyalkanoates (PHAs) by an open mixed culture enriched in glycogen accumulating organisms (GAOs) under alternating anaerobic–aerobic conditions with acetate as carbon source was investigated. The culture exhibited a stable enrichment performance over the 450‐day operating period with regards to phenotypic behavior and microbial community structure. Candidatus Competibacter phosphatis dominated the culture at between 54% and 70% of the bacterial biomass throughout the study, as determined by fluorescence in situ hybridization. In batch experiments under anaerobic conditions, PHA containing 3‐hydroxybutyrate (3HB) and 27 mol‐% 3‐hydroxyvalerate (3HV) was accumulated up to 49% of cell dry weight utilizing the glycogen pool stored in the SBR cycle. Under aerobic and ammonia limited conditions, PHA comprising only 3HB was accumulated to 60% of cell dry weight. Glycogen was consumed during aerobic PHA accumulation as well as under anaerobic conditions, but with different stoichiometry. Under aerobic conditions 0.31 C‐mol glycogen was consumed per consumed C‐mol acetate compared to 0.99 under anaerobic conditions. Both the PHA biomass content and the specific PHA production rate obtained were similar to what is typically obtained using the more commonly applied aerobic dynamic feeding strategy. Biotechnol. Bioeng. 2009; 104: 698–708 © 2009 Wiley Periodicals, Inc.  相似文献   

20.
Denitrifying glycogen-accumulating organisms (DGAO) were successfully enriched in a lab-scale sequencing batch reactor (SBR) running with anaerobic/anoxic cycles and acetate feeding during the anaerobic period. Acetate was completely taken up anaerobically, which was accompanied by the consumption of glycogen and the production of poly-beta-hydroxy-alkanoates (PHA). In the subsequent anoxic stage, nitrate or nitrite was utilized as electron acceptor for the oxidation of PHA, resulting in glycogen replenishment and cell growth. The above phenotype showed by the enrichment culture demonstrates the existence of DGAO. Further, it was found that the anaerobic behavior of DGAO could be predicted well by the anaerobic GAO model of Filipe et al. (2001) and Zeng et al. (2002a). The final product of denitrification during anoxic stage was mainly nitrous oxide (N(2)O) rather than N(2). The data strongly suggests that N(2)O production may be caused by the inhibition of nitrous oxide reductase by an elevated level of nitrite accumulated during denitrification. The existence of these organisms is a concern in biological nutrient removal systems that typically have an anaerobic/anoxic/aerobic reactor sequence since they are potential competitors to the polyphosphate-accumulating organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号