首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
We studied the morphological changes in rat Harderian glands 30 min after injection of cholinergic secretagogues. In controls, the glands exhibited a tubuloalveolar structure with relatively wide lumina, in which some osmiophilic dense droplets exocytosed from glandular cells were observed. Also two types of glandular cells (type A cells and type B cells sometimes showing exocytotic figures of lipid-secretory vacuoles) and myoepithelial cells were recognized. After injection of carbamylcholine chloride (subcutaneously, 0.1 mg/kg body weight), which has both nicotinic and muscarinic actions, many of the alveolar lumina dilated and contained a small number of osmiophilic droplets. Exocytotic figures in both types of cells and a pronounced decrease in the number of vacuoles in the glandular cells were observed. However, there was no evidence of apocrine or holocrine secretion. The injection of the higher dose of carbamylcholine (1.0 mg/kg) caused fusion of secretory vacuoles in the apical cytoplasm and contraction of myoepithelial cells. Most alveoli showed no clear lumina; their centers were jammed with cytoplasmic fragments and accumulated secretory products. Massive discharge of cytoplasmic fragments containing some secretory vacuoles was often observed. This may be classified as apocrine secretion. Bethanechol chloride (subcutaneous injection, 1.0 mg/kg), a muscarinic agonist, stimulated the Harderian-gland secretion, and enhanced exocytosis was observed. The discharge from the glandular cells, following injection of various doses of carbamylcholine, were almost inhibited by atropine sulfate, a muscarinic antagonist. The present results suggested that the cholinergic systems regulate the secretion of rat Harderian-gland cells which have muscarinic receptors.  相似文献   

2.
Hattori T  Wang PL 《Life sciences》2007,81(8):683-690
Ca2+ antagonists cause dry mouth by inhibiting saliva secretion. The present study was undertaken to elucidate the mechanism by which Ca2+ antagonists cause dry mouth. Since the intracellular Ca2+ concentration ([Ca2+]i) is closely related to saliva secretion, [Ca2+]i was measured with a video-imaging analysis system by using human submandibular gland (HSG) cells as the material. The Ca2+ antagonist, nifedipine, inhibited the elevation in [Ca2+]i induced by 1-10 microM carbachol (CCh), but had no inhibitory effect on that induced by 30 and 100 microM CCh. The other kinds of Ca2+ antagonists, verapamil (10 microM), diltiazem (10 microM), and the inorganic Ca2+ channel blocker, CdCl2 (50 microM), also inhibited the [Ca2+]i elevation induced by 10 microM CCh. The Ca2+ channel activator, Bay K 8644 (5 microM), significantly enhanced the CCh (10 microM)-induced [Ca2+]i elevation. Endothelin-1 and norepinephrine also increased the CCh (10 microM)-induced [Ca2+]i elevation. SKF-96365 reversed the enhancement of the CCh (10 microM)-induced [Ca2+]i elevation caused by AlF4- and phenylephrine. The phospholipase Cbeta (PLCbeta) inhibitor, U-73122 (5 microM), significantly inhibited the [Ca2+]i elevation induced by 100 microM CCh compared with that induced by 10 microM CCh, while the PLCbeta activator, m-3M3FBS (20 microM), significantly increased the [Ca2+]i elevation induced by 100 microM CCh compared with that induced by 10 microM CCh. We therefore conclude that non-selective cation and voltage-dependent Ca2+ channels are involved in resting salivation and that Ca2+ antagonists depress H2O secretion by blocking the Ca2+ channels and thereby cause dry mouth.  相似文献   

3.
Histology and lectin histochemistry were performed in the infraorbital gland of the Japanese serow. The gland is composed of glandular tissues and a pouch filled with the secretion. The tissues consist of an inner layer of sebaceous glands and an outer layer of apocrine glands. The male sebaceous layer is made up of the ordinary type, whereas the female's layer consists of the ordinary and modified types. In the apocrine gland stained with Arachis hypogaea (PNA), nine different patterns of glandular tubules were distinguished on the basis of staining of the cytoplasm, the Golgi area of secretory cells and secretion. Secretory modes of apocrine secretion and exocytosis were included in these stainings. Myoepithelial cells stained constantly with Glycine max (SBA) except when only the Golgi area of secretory cells was positive. The modified sebaceous gland was stained with PNA, SBA, Ricinus communis I (RCA), Triticum vulgaris (WGA), Canavalia ensiformis (Con A) and Ulex europaeus I (UEA), while the ordinary type was positive in PNA, RCA, SBA, WGA and Con A. The secretion in the pouch was stained with PNA, RCA, SBA, Dolichos biflorus (DBA), WGA and Con A. These findings suggest that the modified sebaceous gland contains large amounts of glycoconjugates and the apocrine gland shows a cyclic secretory process of apocrine secretion and exocytosis.  相似文献   

4.
Summary To determine the effect of cholinergic secretagogue on the Harderian gland of rats, several light- and electron-microscopic parameters were morphometrically assessed at different time intervals after carbamylcholine injection. In controls, two types of glandular cells (type A cells having 40–55 large vacuoles per cell profile and type B cells containing 30–38 smaller vacuoles per cell profile) and myoepithelial cells were recognized. At 5 min after injection of carbamylcholine, when rats secreted bloody tears, many alveoli showing narrower lumina and exocytotic figures in both types of cells were observed. Some vacuoles, which were covered by thin cytoplasmic sheets, protruded into the alveolar lumina. However, there was no evidence of apocrine or holocrine secretion. At 30 min and 120 min after injection, most of the alveolar lumina were dilated, and a pronounced decrease in the number of vacuoles in the glandular cells was observed. At 300 min after injection, the secretory vacuoles in both cell types reaccumulated. Transitional forms between the two cell types were not observed. The two types of Harderian gland cells can therefore be considered independent populations rather than different secretory stages of the same cell. It appears that the secretory process of the Harderian gland of rat is affected by cholinergic stimulation of the two types of glandular cells and of myoepithelial cells.  相似文献   

5.
To determine whether lipid-secreting cells have cytosolic Ca2+ concentration ([Ca2+]c)-related secretory mechanisms, morphological changes and intracellular calcium dynamics of Harderian glands of guinea pigs stimulated by secretagogs were studied by electron microspy and Fura-2/AM digital image analysis. Control glandular cells contained large lipid vacuoles that were bordered by multi-layered membranes. Rough-surfaced endoplasmic reticulum, mitochondria, and smooth-surfaced endoplasmic reticulum may be involved in lipid vacuole formation. Myoepithelial cells surrounded alveoli. After carbamylcholine (CCh, 10–6, 10–5, and 10–3 M) stimulation, lipid materials within the membranous structures were frequently discharged by an exocytotic mechanism. Conspicuous deformation of glandular cells caused by vigorous contraction of myoepithelial cells was observed in isolated alveoli after 10–6M CCh stimulation, whereas the deformaties of glandular tissues perfused via vessels were small even after 10–3M CCh stimulation. Connective tissue between glandular alveoli inhibited unbridled myoepithelial-cell contraction. Fura-2/AM digital imaging analysis revealed that CCh stimulation caused an increase in [Ca2+]c in isolated alveoli. The morphological reactions and changes in [Ca2+]c were prevented by atropine. When extracellular calcium ions were absent, enhanced extrusion of lipid vacuoles, myoepithelial-cell contraction, and a rise in [Ca2+]c after CCh stimulation were not observed. Nicotine and catecholamines had no effect on the secretion or on the dynamics of [Ca2+]c. It can be concluded that acetylcholine elicits exocytosis in glandular cells and contraction of the myoepithelial cells of Harderian glands, accompanied by an increase in [Ca2+]c. The dynamics of [Ca2+]c of the gland alveoli are mostly dependent on extracellular Ca2+.  相似文献   

6.
The cytosolic free calcium concentration ([Ca2+]i) and exocytosis of chromaffin granules were measured simultaneously from single, intact bovine adrenal chromaffin cells using a novel technique involving fluorescent imaging of cocultured cells. Chromaffin cell [Ca2+]i was monitored with fura-2. To simultaneously follow catecholamine secretion, the cells were cocultured with fura-2-loaded NIH-3T3t cells, a cell line chosen because of their irresponsiveness to chromaffin cell secretagogues but their large Ca2+ response to ATP, which is coreleased with catecholamine from the chromaffin cells. In response to the depolarizing stimulus nicotine (a potent secretagogue), chromaffin cell [Ca2+]i increased rapidly. At the peak of the response, [Ca2+]i was evenly distributed throughout the cell. This elevation in [Ca2+]i was followed by a secretory response which originated from the entire surface of the cell. In response to the inositol 1,4,5-trisphosphate (InsP3)-mobilizing agonist angiotensin II (a weak secretagogue), three different responses were observed. Approximately 30% of chromaffin cells showed no rise in [Ca2+]i and did not secrete. About 45% of the cells responded with a large (greater than 200 nM), transient elevation in [Ca2+]i and no detectable secretory response. The rise in [Ca2+]i was nonuniform, such that peak [Ca2+]i was often recorded only in one pole of the cell. And finally, approximately 25% of cells responded with a similar Ca2+-transient to that described above, but also gave a secretory response. In these cases secretion was polarized, being confined to the pole of the cell in which the rise in [Ca2+]i was greatest.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The Harderian gland of the gecko, Tarentola mauritanica, was studied at the histological, histochemical, and ultrastructural levels. It is a nonlobate compound acinar gland surrounded by a thin capsule of connective tissue. Numerous connective tissue-type mast cells, ultrastructurally similar to those described in other higher vertebrates, were identified in the interstitial tissue between the acini. Pyramidal or columnar-shaped secretory glandular cells were observed in the acini. In the glandular cells, two types of structures could be distinguished on the basis of their high or low electron density. Lipid droplets were found in the cytoplasm of the Harderian gland of both sexes. Histochemical tests showed that the Harderian gland of the gecko is a seromucous gland. The secretion is essentially merocrine, although an apocrine type of secretion is sometimes observed.  相似文献   

8.
The distribution and frequency of immunoglobulin (Ig)-containing plasma cells, their variations due to sex, and the mode of secretion of Ig cells into the duct system of the Harderian gland was investigated in broiler and native chickens of both sexes in Bangladesh. The Harderian gland is covered by a capsule, and the connective tissue septa divide the gland into numerous unequal-sized numerous lobes and lobules. The Ig-containing plasma cells were located in the interstitial space, interacinar space, apical part of the lobule, and lumina of the lobules of the Harderian gland in both broiler and native chickens. The population of these Ig-containing plasma cells varied in between broiler and native chickens, and also between male and female broiler and native chickens. In the broiler, the number of IgM-containing plasma cells was higher; in contrast, in the native chickens, the population of IgA-containing plasma cells was larger. In the broiler, there were more IgA- and IgG-containing plasma cells in the male; in contrast, there were more IgM-containing plasma cells in female. In native chickens the frequency of IgA-containing plasma cells was greater in the female than male. When the data for broiler and native birds were compared, it was found that there were significantly more IgA- and IgG-containing plasma cells in the native male and female chickens than in the broiler males and females. The secretory Igs were located in the lumina of acini and the duct system of the Harderian gland. In the present study Ig-containing plasma cells were observed to be released in the lumina of the lobules of Harderian gland by the breakdown of acinar tissues in broilers, and by holocrine mode of secretion in the native chicken. These results suggested that the Harderian gland, even though it is not a lymphoid organ as a whole, but acts as an immunopotent organ in chickens, and that the gland in native chicken contains more Ig-containing plasma cells due to their scavenging.  相似文献   

9.
Cytosolic free calcium concentration, [Ca2+]i, and exocytosis of azurophil granules (beta-glucuronidase), specific granules (vitamin B12-binding protein), and secretory vesicles (gelatinase) were measured concomitantly in intact human neutrophils under steady state [Ca2+]i. The cells were loaded with the fluorescent calcium indicator quin2 in the presence or absence of extracellular Ca2+, and steady state [Ca2+]i levels ranging from 20 to greater than 2,000 nM were obtained by adding the Ca2+ ionophore ionomycin at various concentrations of extracellular calcium. The extent of exocytosis from the three granule populations was found to be a function of [Ca2+]i. The minimal [Ca2+]i that caused significant release (threshold [Ca2+]i) was approximately 200-300 nM and was similar for all three compartments. Marked differences, however, were found when the [Ca2+]i for half-maximal exocytosis (EC50) was determined. In the absence of cytochalasin B the EC50 was 1,100 +/- 220 nM and 1,600 +/- 510 nM for specific granules and secretory vesicles, respectively, and approximately 6,000 nM for azurophil granules. Cytochalasin B did not affect the threshold [Ca2+]i but decreased the EC50 and enhanced the rate of exocytosis. In the presence of cytochalasin B the EC50 was approximately 600 nM both for secretory vesicles and specific granules, and approximately 2,600 nM for azurophil granules. The addition of the chemotactic peptide N-formyl-methionyl-leucyl-phenylalanine dramatically changed the [Ca2+]i dependency of granule secretion: It decreased the threshold [Ca2+]i to less than 20 and less than 50 nM, and the EC50 to 50 and 200 nM for specific and azurophil granules, respectively, and it significantly increased the rate of exocytosis. Thus, the additional signal(s) provided by receptor activation markedly lower(s) the Ca2+ requirement of the exocytotic process. Furthermore, these results indicate that the secretion from three different granule populations within the same cell type are differently modulated by [Ca2+]i.  相似文献   

10.
The Harderian gland in Rana esculenta has been studied during the annual cycle at the histological, histochemical and ultrastructural levels. The Harderian gland has an acinar structure and is the only orbital gland in anuran amphibia. It develops at the medial corner of the orbit from the conjunctival epithelium at the premetamorphic stage. In the adult the glandular secretion reaches a maximum during the months of July and August, drops in September and resumes slowly from October onwards. The secretion is seromucoid and the secretory granules are released into the acinar lumen, mainly by exocytosis. Porphyrins were not detected. No sexual dimorphism was observed in the glandular cells. The resumption of secretory activity in October and the enhancement of secretion in May are marked by the appearance of "blue nuclei" (Mallory stain) in a relatively high percentage of glandular cells. This unusual blue colour, using the Mallory stain (by which nuclei stain red), disappears after digestion of paraffin sections with RNAase, but not with DNAase and trypsin. The blue staining may, therefore, indicate an increased amount of nuclear RNA. The Harderian gland in the frog most probably serves to lubricate and moisten the eye in the absence of the lacrimal gland. However, the gland may also represent an immunoactive organ owing to the presence of numerous mast cells and plasma cells in the interacinar spaces.  相似文献   

11.
The alteration in the concentration of cytosolic free calcium ([Ca2+]i) in isolated rat parotid cells caused by autonomic agents was directly measured using the Ca-sensitive fluorescent probe, quin2. [Ca2+]i of unstimulated cells was estimated to be 162.7 +/- 3.2 nM in normal medium. Carbachol (CCh) and isoproterenol (ISP) caused a rapid rise in [Ca2+]i in a dose-dependent manner. Maximum increases in [Ca2+]i induced by CCh and ISP were approximately 100% and 25% of resting level, respectively. In Ca-free medium, CCh produced a small, rapid rise in [Ca2+]i, followed by a slow decay and a return to resting level within 3-4 min, while all doses of ISP tested failed to change [Ca2+]i. These results suggest that CCh mobilizes Ca2+ from both extracellular and intracellular pools and then results in a rise in [Ca2+]i, whereas ISP may slightly mobilize only the extracellular Ca pool.  相似文献   

12.
In NG108-15 cells, bradykinin (BK) and thapsigargin (TG) caused transient increases in a cytosolic free Ca2+ concentration ([Ca2+]i), after which [Ca2+]i elevated by TG only declined to a higher, sustained level than an unstimulated level. In PC12 cells, carbachol (CCh) evoked a transient increase in [Ca2+]i followed by a sustained rise of [Ca2+]i, whereas [Ca2+]i elevated by TG almost maintained its higher level. In the absence of extracellular Ca2+, the sustained elevation of [Ca2+]i induced by each drug we used was abolished. In addition, the rise in [Ca2+]i stimulated by TG was less affected after CCh or BK, whereas CCh or BK caused no increase in [Ca2+]i after TG. TG neither increased cellular inositol phosphates nor modified the inositol phosphates format on stimulated by CCh or BK. We conclude that TG may release Ca2+ from both IP3-sensitive and -insensitive intracellular pools and that some kinds of signalling to link the intracellular Ca2+ pools and Ca2+ entry seem to exist in neuronal cells.  相似文献   

13.
The effect of caffeine on catecholamine secretion and intracellular free Ca2+ concentration [( Ca2+]i) in bovine adrenal chromaffin cells was examined using single fura-2-loaded cells and cell populations. In cell populations caffeine elicited a large (approximately 200 nM) transient rise in [Ca2+]i that was independent of external Ca2+. This rise in [Ca2+]i triggered little secretion. Single cell measurements of [Ca2+]i showed that most cells responded with a large (greater than 200 nM) rise in [Ca2+]i, whereas a minority failed to respond. The latter, whose caffeine-sensitive store was empty, buffered a Ca2+ load induced by a depolarizing stimulus more effectively than those whose store was full. The caffeine-sensitive store in bovine chromaffin cells may be involved in Ca2+ homeostasis rather than in triggering exocytosis.  相似文献   

14.
In the pancreatic beta-cell, insulin secretion is stimulated by glucose metabolism resulting in membrane potential-dependent elevation of cytosolic Ca2+ ([Ca2+]c). This cascade involves the mitochondrial membrane potential (delta psi[m]) hyperpolarization and elevation of mitochondrial Ca2+ ([Ca2+]m) which activates the Ca(2+)-sensitive NADH-generating dehydrogenases. Metabolism-secretion coupling requires unidentified signals, other than [Ca2+]c, possibly generated by the mitochondria through the rise in [Ca2+]m. To test this paradigm, we have established an alpha-toxin permeabilized cell preparation permitting the simultaneous monitoring of [Ca2+] with mitochondrially targeted aequorin and insulin secretion under conditions of saturating [ATP] (10 mM) and of clamped [Ca2+]c at substimulatory levels (500 nM). The tricarboxylic acid (TCA) cycle intermediate succinate hyperpolarized delta psi(m), raised [Ca2+]m up to 1.5 microM and stimulated insulin secretion 20-fold, without changing [Ca2+]c. Blockade of the uniporter-mediated Ca2+ influx into the mitochondria abolished the secretory response. Moreover, glycerophosphate, which raises [Ca2+]m by hyperpolarizing delta psi(m) without supplying carbons to the TCA cycle, failed to stimulate exocytosis. Activation of the TCA cycle with citrate evoked secretion only when combined with glycerophosphate. Thus, mitochondrially driven insulin secretion at permissive [Ca2+]c requires both a substrate for the TCA cycle and a rise in [Ca2+]m. Therefore, mitochondrial metabolism generates factors distinct from Ca2+ and ATP capable of inducing insulin exocytosis.  相似文献   

15.
The aliphatic alcohol octanol is thought to modulate enzyme secretion from the exocrine pancreas by the inhibition of gap junction permeability. We have now investigated the effects of octanol on salivary secretion and intracellular calcium concentration ([Ca2+]i), measured in isolated perfused rat mandibular glands and in isolated mandibular acinar cells respectively. Stimulation of perfused glands with 10 microM carbachol (CCh) evoked a rapid increase in fluid secretion followed by a decrease to a sustained elevated level. Application of 1 mM octanol during CCh stimulation inhibited fluid secretion reversibly. In isolated acini, the CCh-induced [Ca2+]i increase was reversibly inhibited by the same concentration of octanol. However, octanol also inhibited the increase in [Ca2+]i in single acinar cells where gap junctions were no longer functional, indicating that octanol directly affected the intracellular Ca2+ signalling pathway. The initial increase in [Ca2+]i induced by 0.5-10 microM CCh, which is due to Ca2+ release from IP3-sensitive Ca2+ stores, was not affected by pretreatment with octanol. In contrast, CCh-, phenylephrine- or thapsigargin-induced Ca2+ entry was almost completely and reversibly inhibited by octanol. Octanol also blocked agonist-evoked Ca2+ entry in pancreatic acinar cells, and thapsigargin-evoked Ca2+ entry in fibroblasts. These data strongly suggest that octanol blocks salivary secretion from mandibular gland by the inhibition of capacitative Ca2+ entry, and raise the possibility that octanol may be a useful tool for inhibiting agonist-evoked Ca2+ entry pathways.  相似文献   

16.
The effects of ryanodine, a selective inhibitor of the Ca(2+)-induced Ca2+ release mechanism, on caffeine-evoked changes in cytosolic Ca2+ concentration ([Ca2+]i) and catecholamine secretion were investigated using cultured bovine adrenal chromaffin cells. Caffeine (5-40 mM) caused a concentration-dependent transient rise in [Ca2+]i and catecholamine secretion in Ca2+/Mg(2+)-free medium containing 0.2 mM EGTA. Ryanodine (5 x 10(-5) M) alone had no effect on either [Ca2+]i or catecholamine secretion. Although the application of ryanodine plus caffeine caused the same increase in both [Ca2+]i and catecholamine secretion as those induced by caffeine alone, ryanodine (4 x 10(-7) - 5 x 10(-5) M) irreversibly prevented the increase in both [Ca2+]i and catecholamine secretion resulting from subsequent caffeine application over a range of concentrations. The secretory response to caffeine was markedly enhanced by replacement of Na+ with sucrose in Ca2+/Mg(2+)-free medium, and this enhanced response was also blocked by ryanodine. Caffeine was found to decrease the susceptibility of the secretory apparatus to Ca2+ in digitonin-permeabilized cells. These results indicate that caffeine mobilizes Ca2+ from intracellular stores, the function of which is irreversibly blocked by ryanodine, resulting in the increase in catecholamine secretion in the bovine adrenal chromaffin cell.  相似文献   

17.
S Matsumoto  A Isogai  A Suzuki 《FEBS letters》1985,189(1):115-118
Catecholamine release from chromaffin cells in response to carbamylcholine and high K+ is transient. Monitoring intracellular free calcium ([Ca2+]i) using quin2 demonstrated a transient rise in [Ca2+]i in response to carbamylcholine. The termination of secretion due to carbamylcholine is probably a consequence of the return of [Ca2+]i to resting levels as the nicotinic receptors desensitise. Depolarisation with 55 mM K+ led to a long-lasting rise in [Ca2+]i which persisted after the secretory response had terminated. The maintained rise in [Ca2+]i appeared to be due to continued opening of verapamil-sensitive Ca2+ channels. These results suggest that inactivation of voltage-dependent Ca2+ channels does not account for the transient nature of the secretory response in chromaffin cells.  相似文献   

18.
R Penner  E Neher 《FEBS letters》1988,226(2):307-313
The patch-clamp technique was used to investigate the secretory responses of rat peritoneal mast cells at various intracellular calcium concentrations ([Ca2+]i). When Calcium was introduced into the cell with pipette-loaded dibromo-BAPTA, elevation of [Ca2+]i into the range 1-10 microM induced membrane capacitance increases indicative of exocytosis in a concentration-dependent manner. At higher concentrations a decrease of the response was observed. Cells that were exposed to micromolar [Ca2+]i underwent morphological alterations resulting in swelling, which is indicative of cytoskeletal alterations. The presence of dibromo-BAPTA (4 mM) strongly inhibited secretion induced by GTP-gamma-S, thus hampering the contribution of G-protein-mediated stimulation. Application of the Ca2+ ionophore ionomycin resulted in transient increases in [Ca2+]i which were parallelled by Ca2+-dependent secretion. Effective buffering of the cytosolic calcium level below 1 microM abolished the secretory response. Our results show that an increase in [Ca2+]i can trigger secretion, but only if it is high and sustained. During physiological stimulation, however, secretion proceeds at [Ca2+]i below 1 microM. It is, therefore, concluded that mast cell degranulation under physiological conditions is not simply a result of an increase in [Ca2+]i, but that other second messenger systems in conjunction with calcium act synergistically in order to ensure fast and efficient secretion.  相似文献   

19.
At concentrations greater than 0.01 microM, thapsigargin (ThG) dose-dependently caused an increase in cytosolic free Ca2+ concentration ([Ca2+]i) in rat parotid acinar cells, as measured by the fluorescent Ca(2+)-indicator fura-2. In the absence of extracellular Ca2+, a transient increase in [Ca2+]i by ThG was observed, and subsequent addition of carbachol (CCh) did not produce a further [Ca2+]i response, suggesting that ThG released Ca2+ from the CCh-sensitive intracellular Ca2+ pool. Since ThG did not stimulate formation of inositol phosphates, the ThG-induced Ca2+ mobilization is independent of phosphoinositide breakdown. High concentrations (greater than 0.1 microM) of ThG induced amylase release from rat parotide acini, but the effect was very poor as compared with that of CCh or the protein kinase C activator, PMA (phorbol 12-myristate 13-acetate). Combined addition of ThG and PMA modestly potentiated amylase release induced by PMA alone. These results support the view that amylase release by muscarinic stimulation is mediated mainly by activation of protein kinase C rather than a rise in [Ca2+]i, although Ca2+ may modulate the secretory response.  相似文献   

20.
Harderian glands of the Wistar albino rats normal and adrenalectomized were investigated by light microscopy. In normal, these glands have a tubuloalveolar structure. The gland is located in the medio posterior aspect of the orbit. It is lobulated and appears homogeneous in colour and texture. Harderian gland consist of tubules with wide lumina lined by a single layer of columnar epithelial cells surrounded by myoepithelial cells within their basal lamina. It contains porphyrin pigment which is stored as solid intraluminal deposits. The glandular epithelium possesses two cell types, termed A and B. Type A cells are more numerous. The single excretory duct of the gland is directly continuous with endpieces at the hilus and opens nasally and ventrally to the third eyelid. The excretory duct is accompanied by many acini of small serous glands around it. The tubuloalveoli of the gland is not divided into lobules. There is no branched duct system within the gland. The secretion seems to be associated with porphyrins, is essentially released by exocytosis, but holocrine secretion also occurs. The single excretory duct is lined by a stratified epithelium. The gland is surrounded by a collagenous capsule. The adrenalectomy, caused degenerative changes in the glands. Epithelial height was lower than in normal gland epithelium. Most of the acini were completely disorganised. The acinar lumina were filled with porphyrin debris. The results suggest that rat harderian glands are sensitive to adrenal androgen changes in both male and female rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号