首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fusarium fujikuroi and Fusarium proliferatum are two phylogenetically closely related species of the Gibberella fujikuroi species complex (GFC). In some cases, strains of these species can cross and produce a few ascospores. In this study, we analyzed 26 single ascospore isolates of an interspecific cross between F. fujikuroi C1995 and F. proliferatum D4854 for their ability to produce four secondary metabolites: gibberellins (GAs), the mycotoxins fusarin C and fumonisin B(1), and a family of red polyketides, the fusarubins. Both parental strains contain the biosynthetic genes for all four metabolites, but differ in their ability to produce these metabolites under certain conditions. F. fujikuroi C1995 produces GAs and fusarins, while F. proliferatum D4854 produces fumonisins and fusarubins. The segregation amongst the progeny of these traits is not the expected 1:1 Mendelian ratio. Only eight, six, three and three progeny, respectively, produce GAs, fusarins, fumonisin B(1) and fusarubins in amounts similar to those synthesized by the producing parental strain. Beside the eight highly GA(3)-producing progeny, some of the progeny produce small amounts of GAs, predominantly GA(1), although these strains contain the GA gene cluster of the non-GA-producing F. proliferatum parental strain. Some progeny had recombinant secondary metabolite profiles under the conditions examined indicating that interspecific crosses can yield secondary metabolite production profiles that are atypical of the parent species.  相似文献   

2.
3.
Fumonisins are mycotoxins produced by the maize pathogen Gibberella fujikuroi mating population A and frequently contaminate maize. Wild-type G. fujikuroi produces four B-series fumonisins, FB1, FB2, FR3 and FB4. These toxins are identical in structure except for the number and positions of hydroxyls along their linear carbon backbone. To elucidate the genetic and biosynthetic relationships among these fumonisins, we conducted meiotic and biochemical analyses of G. fujikuroi mutants with altered fumonisin production that resulted from defective alleles at three loci, Fum1, Fum2 and Fum3. These mutants produced either no fumonisins, only FR2 and FB4, or only FR3 and FR4. Genetic analyses revealed the orientation of the Fum loci along linkage group 1 of the fungus. The mutants were grown together in pair-wise combinations to determine if their fumonisin production phenotypes could be complemented. When FR3- and FB2-producing mutants were grown together, complementation occurred. However, when a nonproducing mutant was grown with a FR2- or FB3-producing mutant, complementation did not occur or was incomplete. When purified FR2, FR3, or FB4 was fed to mutant cultures, FR4 was converted primarily to FR2, FR3 was converted to FB1 and FB2 was not converted. The results from these assays suggest a previously unrecognized branch in the fumonisin biosynthetic pathway.  相似文献   

4.
The phytopathogenic fungus Gibberella fujikuroi mating population A (anamorph, Fusarium moniliforme) produces fumonisins, which are toxic to a wide range of plant and animal species. Previous studies of field strains have identified a genetic locus, designated fum1, that can determine whether fumonisins are produced. To test the relationship between fumonisin production and virulence on maize seedlings, a cross between a fum1+ field strain that had a high degree of virulence and a fum1- field strain that had a low degree of virulence was made, and ascospore progeny were scored for these traits. Although a range of virulence levels was recovered among the progeny, high levels of virulence were associated with production of fumonisins, and highly virulent, fumonisin-nonproducing progeny were not obtained. A survey of field strains did identify a rare fumonisin-nonproducing strain that was quite high in virulence. Also, the addition of purified fumonisin B1 to virulence assays did not replicate all of the seedling blight symptoms obtained with autoclaved culture material containing fumonisin. These results support the hypothesis that fumonisin plays a role in virulence but also indicate that fumonisin production is not necessary or sufficient for virulence on maize seedlings.  相似文献   

5.
Fumonisins are mycotoxins produced by strains belonging to several different mating populations of Gibberella fujikuroi (anamorphs, Fusarium section Liseola), a major pathogen of maize and sorghum worldwide. We studied the heritability of fumonisin production in mating population A by crossing fumonisin-producing strains collected from maize and sorghum in the United States with fumonisin-nonproducing strains collected from maize in Nepal. Random ascospore and tetrad progeny from three of these crosses were analyzed by gas chromatography-mass spectrometry and high-performance liquid chromatography for their ability to produce fumonisins on autoclaved cracked maize. In all three crosses, the ability to produce fumonisins, predominately fumonisin B1, segregated as a single gene or group of closely linked genes. Intercrosses between appropriate progeny and parents were poorly fertile, so we could not determine if the apparent single genes that were segregating in each of these crosses were allelic with one another. Mating type and spore-killer traits were scored in some crosses, and each segregated, as expected, as a single gene that was unlinked to the ability to produce fumonisins. We conclude that G. fujikuroi mating population A provides a powerful genetic system for the study of this important fungal toxin.  相似文献   

6.
Fumonisins are mycotoxins produced by strains belonging to several different mating populations of Gibberella fujikuroi (anamorphs, Fusarium section Liseola), a major pathogen of maize and sorghum worldwide. We studied the heritability of fumonisin production in mating population A by crossing fumonisin-producing strains collected from maize and sorghum in the United States with fumonisin-nonproducing strains collected from maize in Nepal. Random ascospore and tetrad progeny from three of these crosses were analyzed by gas chromatography-mass spectrometry and high-performance liquid chromatography for their ability to produce fumonisins on autoclaved cracked maize. In all three crosses, the ability to produce fumonisins, predominately fumonisin B1, segregated as a single gene or group of closely linked genes. Intercrosses between appropriate progeny and parents were poorly fertile, so we could not determine if the apparent single genes that were segregating in each of these crosses were allelic with one another. Mating type and spore-killer traits were scored in some crosses, and each segregated, as expected, as a single gene that was unlinked to the ability to produce fumonisins. We conclude that G. fujikuroi mating population A provides a powerful genetic system for the study of this important fungal toxin.  相似文献   

7.
Field strains of Fusarium nygamai (Gibberella nygamai) are important producers of the fumonisin mycotoxins. Such strains were mated on carrot agar to obtain ascospore progeny. Field strains and ascospore progeny of F. nygamai produced differential levels of fumonisin B1 (FB1) and B2 (FB2) suitable for genetic analyses. Most of the strains produced higher levels of FB1 than FB2. Ascospore progeny from crosses segregated in 1:1 ratios for loci controlling FB1 production and mating type. These findings can be used as the basis to elucidate the genetics of fumonisin production by F. nygamai.  相似文献   

8.
J. R. Xu  J. F. Leslie 《Genetics》1996,143(1):175-189
We constructed a recombination-based map of the fungal plant pathogen Gibberella fujikuroi mating population A (asexual stage Fusarium moniliforme). The map is based on the segregation of 142 restriction fragment length polymorphism (RFLP) markers, two auxotrophic genes (arg1, nic1), mating type (matA(+)/matA(-)), female sterility (ste1), spore-killer (Sk), and a gene governing the production of the mycotoxin fumonisin B(1) (fum1) among 121 random ascospore progeny from a single cross. We identified 12 linkage groups corresponding to the 12 chromosome-sized DNAs previously observed in contour-clamped homogeneous electric field (CHEF) gels. Linkage groups and chromosomes were correlated via Southern blots between appropriate RFLP markers and the CHEF gels. Eleven of the 12 chromosomes are meiotically stable, but the 12th (and smallest) is subject to deletions in 3% (4/121) of the progeny. Positive chiasma interference occurred on five of the 12 chromosomes, and nine of the 12 chromosomes averaged more than one crossover per chromosome. The average kb/cM ratio in this cross is ~32.  相似文献   

9.
Gibberella fujikuroi strains isolated from rice in the United States, Asia, and other geographic areas were tested for sexual fertility with members of mating population D and for production of fumonisin B(inf1) and moniliformin in culture. Of the 59 field strains tested, 32 (54%) were able to cross with tester strains of mating population D, but only a few ascospores were produced in most of these crosses. Thirty-four strains produced more than 10 (mu)g of fumonisin B(inf1) per g, but only three strains produced more than 1000 (mu)g/g. Twenty-five strains produced more than 100 (mu)g of moniliformin per g, and 15 produced more than 1,000 (mu)g/g. Seven field strains produced both fumonisin B(inf1) and moniliformin, but none of these strains produced a high level of fumonisin B(inf1) (>1,000 (mu)g/g). However, a genetic cross between a strain that produced fumonisin B(inf1) but no moniliformin and a strain that produced moniliformin but no fumonisin B(inf1) yielded progeny that produced high levels of both toxins. Strains of G. fujikuroi isolated from rice infected with bakanae disease are similar to strains of mating population D isolated from maize in their ability to produce both fumonisins and moniliformin. This finding suggests a potential for contamination of rice with both fumonisins and moniliformin.  相似文献   

10.
Most species of Fusarium that produce fumonisin mycotoxins produce predominantly B fumonisins (FBs). However, Fusarium oxysporum strain O-1890 produces predominantly C fumonisins (FCs). In this study, the nucleotide sequence of the fumonisin biosynthetic gene (FUM) cluster in strain O-1890 was determined. The order and orientation of FUM genes were the same as in the previously described clusters in Fusarium verticillioides and Fusarium proliferatum. Coding regions of F. oxysporum and F. verticillioides FUM genes were 88-92% identical, but regions flanking the clusters did not share significant identity. The FUM cluster gene FUM8 encodes an alpha-oxoamine synthase, and fum8 mutants of F. verticillioides do not produce fumonisins. Complementation of a fum8 mutant with the F. verticillioidesFUM8 restored FB production. Complementation with F. oxysporumFUM8 also restored production, but the fumonisins produced were predominantly FCs. These data indicate that different orthologues of FUM8 determine whether Fusarium produces predominantly FBs or FCs.  相似文献   

11.
Fumonisins are polyketide-derived mycotoxins produced by several agriculturally important Fusarium species. The B series fumonisins, FB(1), FB(2), FB(3), and FB(4), are fumonisins produced by wild-type Fusarium verticillioides strains, differing in the number and location of hydroxyl groups attached to the carbon backbone. We characterized the protein encoded by FUM3, a gene in the fumonisin biosynthetic gene cluster. The 33-kDa FUM3 protein (Fum3p) was heterologously expressed and purified from Saccharomyces cerevisiae. Yeast cells expressing the Fum3p converted FB(3) to FB(1), indicating that Fum3p catalyzes the C-5 hydroxylation of fumonisins. This result was verified by assaying the activity of Fum3p purified from yeast cells. The C-5 hydroxylase activity of purified Fum3p required 2-ketoglutarate, Fe(2+), ascorbic acid, and catalase, all of which are required for 2-ketoglutarate-dependent dioxygenases. The protein also contains two His motifs that are highly conserved in this family of dioxygenases. Thus, Fum3p is a 2-ketoglutarate-dependent dioxygenase required for the addition of the C-5 hydroxyl group of fumonisins.  相似文献   

12.
Novel restriction fragment length polymorphisms (RFLPs) in inbred rats were revealed with the human N-ras gene as probe. Three fragments hybridizing to the probe were detected by Southern blot hybridization under highly stringent conditions, and one of the fragments showed variation in inbred rat strains. Furthermore, on hybridization under low-stringency conditions, an additional fragment hybridizing to the probe was observed, and this fragment also showed interstrain variation. These two variant fragments showed different distributions in 27 inbred rat strains and segregated in backcross progeny as codominant alleles of independent single autosomal loci. Therefore, the loci for these RFLPs were named Nras-1 and Nras-2, respectively. Analyses of linkages between the RFLPs and 11 other loci revealed that the Nras-2 locus was closely linked to the c locus (3.7 +/- 2.6%), which belongs to rat linkage group I.  相似文献   

13.
A genetic map of the powdery mildew fungus, Blumeria graminis f. sp. hordei, an obligate biotrophic pathogen of barley, is presented. The linkage analysis was conducted on 81 segregating haploid progeny isolates from a cross between 2 isolates differing in seven avirulence genes. A total of 359 loci were mapped, comprising 182 amplified fragment length polymorphism markers, 168 restriction fragment length polymorphism markers including 42 LTR-retrotransposon loci and 99 expressed sequence tags (ESTs), all the seven avirulence genes, and a marker closely linked to the mating type gene. The markers are distributed over 34 linkage groups covering a total of 2114 cM. Five avirulence genes were found to be linked and mapped in clusters of three and two, and two were unlinked. The Avr(a6) gene was found to be closely linked to markers suitable for a map-based cloning approach. A linkage between ESTs allowed us to demonstrate examples of synteny between genes in B. graminis and Neurospora crassa.  相似文献   

14.
Fumonisins are toxins associated with several mycotoxicoses and are produced by the maize pathogen Gibberella fujikuroi mating population A (MP-A). Biochemical analyses indicate that fumonisins are a product of either polyketide or fatty acid biosynthesis. To isolate a putative polyketide synthase (PKS) gene involved in fumonisin biosynthesis, we employed PCR with degenerate PKS primers and a cDNA template prepared from a fumonisin-producing culture of G. fujikuroi. Sequence analysis of the single PCR product and its flanking DNA revealed a gene (FUM5) with a 7.8-kb coding region. The predicted FUM5 translation product was highly similar to bacterial and fungal Type I PKSs. Transformation of a cosmid clone carrying FUM5 into G. fujikuroi enhanced production in three strains and restored wild-type production in a fumonisin nonproducing mutant. Disruption of FUM5 reduced fumonisin production by over 99% in G. fujikuroi MP-A. Together, these results indicate that FUM5 is a PKS gene required for fumonisin biosynthesis.  相似文献   

15.
Isozyme and restriction fragment length polymorphism (RFLP) analyses of backcross progeny, recombinant inbred strains, and congenic strains of mice positioned eight genetic markers with respect to the Lsh-Ity-Bcg disease resistance locus. Allelic isoforms of Idh-1 and Pep-3 and RFLPs detected by Southern hybridization for Myl-1, Cryg, Vil, Achrg, bcl-2, and Ren-1,2, between BALB/cAnPt and DBA/2NPt mice, were utilized to examine the cosegregation of these markers with the Lsh-Ity-Bcg resistance phenotype in 103 backcross progeny. An additional 47 backcross progeny from a cross between C57BL/10ScSn and B10.L-Lshr/s mice were examined for the cosegregation of Myl-1 and Vil RFLPs with Lsh phenotypic differences. Similarly, BXD recombinant inbred strains were typed for RFLPs upon hybridization with Vil and Achrg. Recombination frequencies generated in the different test systems were statistically similar, and villin (Vil) was identified as the molecular marker closest (1.7 +/- 0.8 cM) to the Lsh-Ity-Bcg locus. Two other DNA sequences, nebulin (Neb) and an anonymous DNA fragment (D2S3), which map to a region of human chromosome 2q that is homologous to proximal mouse chromosome 1, were not closely linked to the Lsh-Ity-Bcg locus. This multipoint linkage analysis of chromosome 1 surrounding the Lsh-Ity-Bcg locus provides a basis for the eventual isolation of the disease gene.  相似文献   

16.
Liu C  Xu W  Liu F  Jiang S 《Mycopathologia》2007,164(3):127-134
The present work deals with the capability for producing fumonisin by Fusarium proliferatum strains isolated from asparagus in China. Fifty of F. proliferatum strains were randomly selected and incubated on cultures of maize grain and asparagus spear, respectively. Fumonisin levels (FB1 and FB2) were determined by high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). The results showed that all 50 strains produced fumonisins in maize culture within a wide range of concentrations, 10–11,499 μg/g and 2–6,598 μg/g for FB1 and FB2, respectively. On culture of asparagus spear,48 strains (96%) produced fumonisins in the range 0.2–781.6 μg/g and no detected to 40.3 μg/g for FB1 and FB2, respectively. All of F. proliferatum strains produced much higher levels of FB1, FB2 and total fumonisins (FB1 + FB2) in maize grain culture than in asparagus spear culture. Meanwhile, fumonisin B3 (FB3) was identified in all maize culture extracts and most of asparagus spear culture extracts. This is the first study carried out the fumonisin-producing ability of F. proliferatum strains isolated from asparagus in China. The information obtained is useful for assessing the risk of fumonisins contamination in asparagus spear. Electronic supplementary material The online version of this article (doi: ) contains supplementary material, which is available to authorized users.  相似文献   

17.
Fusarium verticillioides, a fungal pathogen of maize, produces fumonisin mycotoxins that adversely affect human and animal health. Basic questions remain unanswered regarding the interactions between the host plant and the fungus that lead to the accumulation of fumonisins in maize kernels. In this study, we evaluated the role of kernel endosperm composition in regulating fumonisin B1 (FB1) biosynthesis. We found that kernels lacking starch due to physiological immaturity did not accumulate FB1. Quantitative polymerase chain reaction analysis indicated that kernel development also affected the expression of fungal genes involved in FB1 biosynthesis, starch metabolism, and nitrogen regulation. A mutant strain of F. verticillioides with a disrupted a-amylase gene was impaired in its ability to produce FB1 on starchy kernels, and both the wild-type and mutant strains produced significantly less FB1 on a high-amylose kernel mutant of maize. When grown on a defined medium with amylose as the sole carbon source, the wild-type strain produced only trace amounts of FB1, but it produced large amounts of FB1 when grown on amylopectin or dextrin, a product of amylopectin hydrolysis. We conclude that amylopectin induces FB1 production in F. verticillioides. This study provides new insight regarding the interaction between the fungus and maize kernel during pathogenesis and highlights important areas that need further study.  相似文献   

18.
We have analyzed the role of fumonisins in infection of maize (Zea mays) by Gibberella moniliformis (anamorph Fusarium verticillioides) in field tests in Illinois and Iowa, United States. Fumonisin-nonproducing mutants were obtained by disrupting FUM1 (previously FUM5), the gene encoding a polyketide synthase required for fumonisin biosynthesis. Maize ear rot, ear infection, and fumonisin contamination were assessed by silk-channel injection in 1999 and 2000 and also by spray application onto maize silks, injection into maize stalks, and application with maize seeds at planting in 1999. Ear rot was evaluated by visual assessment of whole ears and by calculating percentage of symptomatic kernels by weight. Fumonisin levels in kernels were determined by high-performance liquid chromatography. The presence of applied strains in kernels was determined by analysis of recovered isolates for genetic markers and fumonisin production. Two independent fumonisin-nonproducing (fum1-3 and fum1-4) mutants were similar to their respective fumonisin-producing (FUM1-1) progenitor strains in ability to cause ear rot following silk-channel injection and also were similar in ability to infect maize ears following application by all four methods tested. This evidence confirms that fumonisins are not required for G. moniliformis to cause maize ear rot and ear infection.  相似文献   

19.
Sexual crosses were used to determine the genetic basis of resistance to the sterol 14 alpha-demethylase inhibitor fungicide prochloraz in the cereal eyespot pathogen Tapesia yallundae. Three different crosses between sensitive parental strains (22-432 and 22-433 [the concentration required to inhibit growth by 50% (IG(50)) for each was 相似文献   

20.
Fumonisins are a group of structurally related mycotoxins produced by Gibberella fujikuroi. The fungus produced fumonisin B1 (FB1) as early as 18 hour in a defined medium containing 1.25 mM or 2.5 mM ammonium phosphate, whereas fumonisin B1 production was repressed for 75 hour and 125 hour when mycelia were resuspended in media containing ammonium phosphate at 10 mM or 20 mM, respectively. Although total fumonisin B1 production was greater in resuspension cultures grown in higher concentrations of ammonium phosphate, the accumulation was independent of the inoculum size and carbon/nitrogen ratio. The addition of ammonium phosphate to cracked corn cultures also repressed fumonisin B1 production by 97%, and persisted for at least three weeks. Thus, biosynthesis of fumonisin B1 is regulated by a mechanism involving nitrogen metabolite repression, suggesting that control strategies that target the regulatory elements of nitrogen metabolism may be effective at reducing the risk of fumonisin contamination in food.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号