首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gladish DK  Xu J  Niki T 《Annals of botany》2006,97(5):895-902
BACKGROUND AND AIMS: Pea (Pisum sativum) primary roots form long vascular cavities when grown under wet or flooded conditions at 25 degrees C. It is thought that the cavities are a form of aerenchyma. At 25 degrees C short roots continue to grow after flooding. After roots reach 10 cm long flooding causes rapid cessation of growth, and root tips often become curled. In longer roots the cavities do not extend into the base of the roots, perhaps rendering them ineffective as aerenchyma. It was hypothesized that the resulting growth arrest was due to programmed cell death (PCD) rather than necrosis. METHODS AND KEY RESULTS: Histological examination by light microscope showed that some cells in the primary meristem (elongation) zone of the primary root tips had morphological abnormalities, including misshapen and fragmented nuclei, and cytoplasmic shrinking and fragmentation. Transmission electron microscopy revealed lobing, invagination and chromatin aggregation in nuclei. The affected cells were positive for terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling. Extracted DNA formed a "DNA ladder" during electrophoresis. Cell death usually began in procambium at one or two protoxylem poles and seemed to spread out to nearby tissues, which asymmetrically inhibited growth and resulted in tip curling. CONCLUSIONS: The above are symptoms of apoptosis-like PCD. Programmed root tip death may rapidly reduce oxygen demand and sink strength, allowing more rapid diversion of resources to lateral roots growing in more permissive conditions.  相似文献   

2.
Flooding at warm temperatures induces hypoxic stress in Pisum sativum seedling roots. In response, some undifferentiated cells in the primary root vascular cylinder start degenerating and form a longitudinal vascular cavity. Changes in cellular morphology and cell wall ultrastructure detected previously in the late stages of cavity formation suggest possible involvement of programmed cell death (PCD). In this study, cytological events occurring in the early stages of cavity formation were investigated. Systematic DNA fragmentation, a feature of many PCD pathways, was detected in the cavity‐forming roots after 3 h of flooding in situ by terminal deoxynucleotidyl transferase‐mediated dUTP nick end‐labeling assay and in isolated total DNA by gel electrophoresis. High molecular weight DNA fragments of about 20–30 kb were detected by pulse‐field gel electrophoresis, but no low‐molecular weight internucleosomal DNA fragments were detected by conventional gel electrophoresis. Release of mitochondrial cytochrome c protein into the cytosol, an integral part of mitochondria‐dependent PCD pathways, was detected in the cavity‐forming roots within 2 h of flooding by fluorescence microscopy of immunolabeled cytochrome c in situ and in isolated mitochondrial and cytosolic protein fractions by western blotting. DNA fragmentation and cytochrome c release remained confined to the undifferentiated cells in center of the root vascular cylinders, even after 24 h of flooding, while outer vascular cylinder cells and cortical cells maintained cellular integrity and normal activity. These findings confirm that hypoxia‐induced vascular cavity formation in P. sativum roots involves PCD, and provides a chronological model of cytological events involved in this rare and understudied PCD system.  相似文献   

3.
A total of 21 esterase, 3 acid phosphatase and 2 leucinc aminopeptidase isoenzymes, in addition to peroxidases and catalases, were demonstrated in onion seedlings by starch-gel electrophoresis. In seedlings two weeks old, the root tip and the differentiated zone show very little enzymatic activity, whereas the secondary roots, hypo-cotyl and cotyledon are enzymatically very active. These differences are correlated with the intensity of cell division. Some esterase isoenzymes are apparently restricted to root, others to shoot tissues. At pH 8.1, anodically moving peroxidases are totally absent from shoot tissues. A developmental study of esterase isoenzyme patterns indicated that no great differences exist between primary root tips from roots 6–18 mm long and seeds germinated for three days, whereas a sudden decrease in enzymatic activity occurs in root tips after seven days' germination when the roots are about 25 mm long. This coincides with the decrease in mitotic Frequency. Actinomycin D and gamma irradiation decreased mitotic frequency almost to zero but did not significantly affect the esterase isoenzyme pattern in root tips. This shows that the activity of these isoenzymes, at least, is not necessarily dependent on cell division but may well be a prerequisite for it.  相似文献   

4.
The reorganization of vascular cylinders of pea (Pisum sativum, cv. Alaska) primary roots following the formation of vascular cavities was examined by light and electron microscopy. Cavities usually began forming ~20 mm from the root tip and were continuous to ~90 mm from the tips in roots 150 mm long, where they began filling with specialized parenchyma cells (SP cells). SP cells were usually produced by enlargement of parenchymous cells of the primary xylem at cavity margins. Depending on the extent and shape of the cavity, they were also sometimes produced by primary phloem parenchyma and early derivatives of the vascular cambium. Enlargement and some divisions of SP cells continued until a cavity was completely filled by them. SP cells proceeded through a series of cytoplasmic changes as they developed. First the cytoplasmic layer became thicker and more electron dense than surrounding cells. As SP cells enlarged there was an increase in vesicular traffic and the cytoplasm became less electron dense. Ultimately the cytoplasm thinned further, organelles degenerated, and the tonoplast sometimes broke down. SP cells did not form secondary walls. X-ray microanalysis revealed that SP cells accumulated potassium and rubidium to the same degree as cortical and xylem parenchyma cells and to a greater degree than immature secondary and late-maturing tracheary elements.  相似文献   

5.
The spacing of lateral root primordia in the primary root of Pisum sativum (cv. Alaska) seedlings is influenced by both predetermined lateral root initiation sites in the embryonic radicle and by factors present during seedling growth. When pea seeds were germinated in the presence of the mitotic inhibitor, colchicine, the triarch radicle produced three ranks of primordiomorphs indicating sites of embryonic lateral root primordia. The number of primordiomorphs was not the same along the three xylem strands in the radicle. Normally germinated seedling roots (5 days old) also showed a different number of lateral root primordia associated with the three strands. In both cases, the strand with the greatest number of primordia (or primordiomorphs) was associated with a cotyledonary trace. This indicated a possible role for the cotyledons in setting the pattern of lateral root distribution during radicle development. The spacing of lateral root primordia could be altered by the application of growth regulators. Seedling root tips (2 mm) were removed (? rt) and replaced with indoleacetic acid (+IAA), and in some instances seedlings were also treated with the auxin transport inhibitor, 3,3a-dihydro-2-(p-methoxyphenyl)-8H-pyrazolo[5, 1-α]isoindol-8-one (+DPX). In the growth regulator treatments, primary root elongation was inhibited, a greater number of lateral root primordia were initiated compared to controls, and the spacing intervals between primordia were greatly reduced. The — rt, +IAA, +DPX-treatment resulted in the closest possible spacing intervals (av. 0.4 ? 0.6 mm), but resulted in fused or fasciated laterals. The — rt, + IAA-treatment produced the shortest spacing intervals which resulted in “normal” lateral roots (0.8 ? 1.1 mm).  相似文献   

6.
We cloned a cDNA encoding an Arabidopsis Ran binding protein, AtRanBP1c, and generated transgenic Arabidopsis expressing the antisense strand of the AtRanBP1c gene to understand the in vivo functions of the Ran/RanBP signal pathway. The transgenic plants showed enhanced primary root growth but suppressed growth of lateral roots. Auxin significantly increased lateral root initiation and inhibited primary root growth in the transformants at 10 pM, several orders of magnitude lower than required to induce these responses in wild-type roots. This induction was followed by a blockage of mitosis in both newly emerged lateral roots and in the primary root, ultimately resulting in the selective death of cells in the tips of both lateral and primary roots. Given the established role of Ran binding proteins in the transport of proteins into the nucleus, these findings are consistent with a model in which AtRanBP1c plays a key role in the nuclear delivery of proteins that suppress auxin action and that regulate mitotic progress in root tips.  相似文献   

7.
Pterocarpus officinalis (Jacq.) seedlings inoculated with the arbuscular mycorrhizal fungus, Glomus intraradices, and the strain of Bradyrhizobium sp. (UAG 11A) were grown under stem-flooded or nonflooded conditions for 13 weeks after 4 weeks of nonflooded pretreatment under greenhouse conditions. Flooding of P. officinalis seedlings induced several morphological and physiological adaptive mechanisms, including formation of hypertrophied lenticels and aerenchyma tissue and production of adventitious roots on submerged portions of the stem. Flooding also resulted in an increase in collar diameter and leaf, stem, root, and total dry weights, regardless of inoculation. Under flooding, arbuscular mycorrhizas were well developed on root systems and adventitious roots compared with inoculated root systems under nonflooding condition. Arbuscular mycorrhizas made noteworthy contributions to the flood tolerance of P. officinalis seedlings by improving plant growth and P acquisition in leaves. We report in this study the novel occurrence of nodules connected vascularly to the stem and nodule and arbuscular mycorrhizas on adventitious roots of P. officinalis seedlings. Root nodules appeared more efficient fixing N2 than stem nodules were. Beneficial effect of nodulation in terms of total dry weight and N acquisition in leaves was particularly noted in seedlings growing under flooding conditions. There was no additive effect of arbuscular mycorrhizas and nodulation on plant growth and nutrition in either flooding treatment. The results suggest that the development of adventitious roots, aerenchyma tissue, and hypertrophied lenticels may play a major role in flooded tolerance of P. officinalis symbiosis by increasing oxygen diffusion to the submerged part of the stem and root zone, and therefore contribute to plant growth and nutrition.  相似文献   

8.
Responses to soil flooding and oxygen shortage were studied in field, glasshouse and controlled environment conditions. Established stools ofSalix viminalis L., were compared at five field sites in close proximity but with contrasting water table levels and flooding intensities during the preceding winter. There was no marked effect of site on shoot extension rate, time to half maximum length or final length attained. When rooted cuttings were waterlogged for 4 weeks in a glasshouse, soil redox potentials quickly decreased to below zero. Shoot extension was slowed after a delay of 20 d, while, in the upper 100 mm of soil, formation and outgrowth of unbranched adventitious roots with enhanced aerenchyma development was promoted after 7 d. At depths of 100–200 mm and 200–300 mm, extension by existing root axes was halted by soil flooding, while adventitious roots from above failed to penetrate these deeper zones. After 4 weeks waterlogging, all arrested root tips recommenced elongation when the soil was drained; their extension rates exceeding those of roots that were well-drained throughout. Growth in fresh mass was also stimulated. The additional aerenchyma found in adventitious roots in the upper 100 mm of soil may have been ethylene regulated since gas space development was inhibited by silver nitrate, an ethylene action inhibitor. The effectiveness of aerenchyma was tested by blocking the entry of atmospheric oxygen into plants with lanolin applied to lenticels of woody shoots of plants grown in solution culture. Root extension was halved, while shoot growth remained unaffected. H Lambers Section editor  相似文献   

9.
Cellular degeneration is essential for many developmental and stress acclimation processes. Undifferentiated parenchymatous cells in the central vascular cylinder of pea primary roots degenerate under hypoxic conditions created by flooding at temperatures >15°C, forming a long vascular cavity that seems to provide a conduit for longitudinal oxygen transport in the roots. We show that specific changes in the cell wall ultrastructure accompanied previously detected cytoplasmic and organellar degradation in the cavity-forming roots. The degenerating cells had thinner primary cell walls, less electron-dense middle lamellae, and less abundant cell wall homogalacturonans in altered patterns, compared to healthy cells of roots grown under cold, nonflooded conditions. Cellular breakdown and changes in wall ultrastructure, however, remained confined to cells within a 50-μm radius around the root center, even after full development of the cavity. Cells farther away maintained cellular integrity and had signs of wall synthesis, perhaps from tight regulation of wall metabolism over short distances. These observations suggest that the cell degeneration might involve programmed cell death. We also show that warm, nonflooded or cold, flooded conditions that typically do not induce vascular cavity formation can also induce variations in cell wall ultrastructure.  相似文献   

10.
Pea seeds (Pisum sativum L.) of six cultivars were planted in the field, in the greenhouse, or in growth chambers, in five different media, in light or dark, and at various temperatures (10–32 C). Under all conditions above 15 C the central portion of the vascular cylinder, in all cultivars except “Ageotropum,” tended to form cavities in almost every primary root examined. These cavities then became filled by the ingrowth of specialized parenchyma cells (SP cells). The formation of cavities and SP cells was temperature dependent since the roots grown below 15 C always formed central metaxylem tracheary elements (MTEs), without cavities and SP cells. Cavities and SP cells did not form over the entire root length. When the roots were longer than 3 cm, they started to form cavities and SP cells and continued for an additional 10–30 cm. After that, late MTEs formed in the central vascular cylinder, and no cavities and SP cells occurred regardless of temperature. Within an individual root grown above 15 C, cavities and SP cells tended to form during periods of fast growth, while during periods of slow growth large central MTEs formed instead.  相似文献   

11.
Betula papyrifera Marsh, seedlings adapted very poorly to flooding for up to 60 days. Responses to flooding included increased ethylene production; stomatal closure; leaf senescence; drastic inhibition of shoot growth, cambial growth, and root growth; decay of roots, and death of many seedlings. Flooding inhibited growth of leaves that formed prior to flooding, inhibited formation of new leaves, and induced abscission of old leaves. As a result of extensive leaf abscission, fewer leaves were present after flooding than before flooding was initiated. The drastic reduction in leaf area was associated with greatly decreased growth of the lower stem and roots. No evidence was found of adaptive morphological changes to flooding. The data indicate that intolerance of B. papyrifera seedlings to flooding is an important barrier to regeneration of the species on sites subject to periodic inundation.  相似文献   

12.
Responses of Melaleuca quinquenervia seedlings to flooding   总被引:1,自引:0,他引:1  
Abstract Studies were conducted on effects of flooding for 15, 30, 60, and 90 days on morphological changes, stomatal aperture, water potential, and growth of seedlings of Melaleuca quinquenervia, a species often planted for reclamation of swamps. Flooding rapidly induced formation of many hair-like adventitious roots as well as a few thick adventitious roots that originated on the original root system. Some adventitious roots also formed on submerged portions of the stem. Melaleuca seedlings were very tolerant of flooding as shown by only slight reduction in dry weight increment of shoots after 30 days of flooding in stagnant water. Although flooding for 60 or 90 days significantly reduced dry weight increment of leaves, dry weight increment of roots was not inhibited by any flooding treatment, reflecting both degeneration of some of the original roots and compensatory growth of adventitious roots. On certain days flooding induced stomatal closure on both adaxial and abaxial leaf surfaces. Extensive production of adventitious roots and some stomatal reopening after a critical period of flooding appeared to be important factors in the flooding tolerance of Melaleuca and are consistent with its aggressiveness and vigorous growth on wet sites.  相似文献   

13.
14.
Flooding of soil for 60 days drastically reduced height growth, cambial growth, dry weight increment, and relative growth rate of 150-day-old Betula papyrifera Marsh. seedlings. Comparisons of responses to flooding of 150-day-old and 230-day-old seedlings indicated important differences between the two age classes. Whereas the younger seedlings produced abundant adventitious roots on submerged portions of stems, the older seedlings did not. Flooding also induced much more leaf abscission in the older seedlings. Flooding generally reduced root-shoot ratios of both age classes, largely as a result of inhibition of growth and decay of root systems. However, root-shoot ratios were altered appreciably by formation of adventitious roots in the younger seedlings and by extensive leaf abscission in the older seedlings.  相似文献   

15.
16.
Are Roots a Source of Abscisic Acid for the Shoots of Flooded Pea Plants?   总被引:4,自引:1,他引:3  
Flooding the soil for 2–5 d decreased stomatal conductancesof pea plants (Pisum sativum L., cv. Sprite) with six or sevenleaves. This coincided with slower transpiration, increasedleaf water potentials and increased concentrations of abscisicacid (ABA) in the leaves. No increase in ABA was found in theterminal 20 mm of roots of flooded plants over the same timeperiod. Small stomatal conductances associated with increases in foliarABA were also found in plants grown in nutrient solution whenaeration was halted, causing the equilibrium partial pressuresof dissolved oxygen to fall below 05 It Pa. No increase in ABAconcentration in young secondary roots of the non-aerated plantswas detected after 24, 48 or 72 h, even when the shoot, thepresumed site of deposition for any ABA from the roots, wasremoved 5–6 h before analysis. Similarly, ABA concentrations in roots were not increased whenthe nutrient solution was de-oxygenated by continuous purgingwith nitrogen gas. The abscisic acid concentration in leaf epidermis,the tissue most likely to be the recipient of any ABA movingin the transpiration stream from oxygen-deficient roots, waslower than in the remaining parts of the leaf when examinedin the mutant Argenteum which possesses easily removable epidermallayers. It is concluded that the leaves of plants subjectedto flooding of the soil or oxygen shortage in the root environmentare not enriched substantially with ABA from the roots. A moreprobable source of this growth regulator is the leaf itself. Key words: Pisum sativum, flooding, roots, hormones, aeration stress, abscisic acid, Argenteum mutant  相似文献   

17.
18.
The morphometry of the root system, the meristematic activity and the level of indole-3-acetic acid (IAA), abscisic acid (ABA) and zeatin in the primary root tips of rapeseed seedlings were analyzed as functions of time on a slowly rotating clinostat (1 rpm) or in the vertical controls (1 rpm). The fresh weight of the root system was 30% higher throughout the growth period (25 days) in clinorotated seedlings. Morphometric analysis showed that the increase in biomass on the clinostat was due to greater primary root growth, earlier initiation and greater elongation of the secondary roots, which could be observed even in 5-day-old seedlings. However, after 15 days, the growth of the primary root slowed on the clinostat, whereas secondary roots still grew faster in clinorotated plants than in the controls. At this time, the secondary roots began to be initiated closer to the root tip on the clinostat than in the control. Analysis of the meristematic activity and determination of the levels in IAA, ABA and zeatin in the primary root tips demonstrated that after 5 days on the clinostat, the increased length of the primary root could be the consequence of higher meristematic activity and coincided with an increase in both IAA and ABA concentrations. After 15 days on the clinostat, a marked increase in IAA, ABA and zeatin, which probably reached supraoptimal levels, seems to cause a progressive disturbance of the meristematic cells, inducing a decrease of primary root growth between 15 and 25 days. These modifications in the hormonal balance and the perturbation of the meristematic activity on the clinostat were followed by a loss of apical dominance, which was responsible for the early initiation of secondary roots, the greater elongation of the root system and the emergence of the lateral roots near the tip of the primary root.  相似文献   

19.
Flooding stress has negative impact on soybean cultivation as it severely impairs plant growth and development. To examine whether nuclear function is affected in soybean under flooding stress, abundance of nuclear proteins and their mRNA expression were analyzed. Two-day-old soybean seedlings were treated with flooding for 2 days, and nuclear proteins were purified from root tips. Gel-free proteomics analysis identified a total of 39 flooding-responsive proteins, of which abundance of 8 and 31 was increased and decreased, respectively, in soybean root tips. Among these differentially regulated proteins, the mRNA expression levels of five nuclear-localized proteins were further analyzed. The mRNA levels of four proteins, which are splicing factor PWI domain-containing protein, epsilon2-COP, beta-catenin, and clathrin heavy chain decreased under flooding stress, were also down-regulated. In addition, mRNA level of a receptor for activated protein kinase C1(RACK1) was down-regulated, though its protein was accumulated in the soybean nucleus in response to flooding stress. These results suggest that several nuclear-related proteins are decreased at both the protein and mRNA level in the root tips of soybean under flooding stress. Furthermore, RACK1 might have an important role with accumulation in the soybean nucleus under flooding-stress conditions.  相似文献   

20.
Mitotic activity was investigated in the primary meristem of horizontally oriented excised root tips of Zea mays during the first six hours of their georeaction. The only statistically significant change that could be detected in the meristem was a decrease of the length of its upper half. No significant difference in mitotic activity was found between the upper and lower halves of roots kept continuously horizontal for 6 h. Cell proliferation thus seems relatively insensitive to changes in the redistribution of endogenous growth regulators that are believed to occur within the meristem during the onset of geotropism. In the zone of bending proximal to the meristem cell length was significantly greater in the upper half than in either the lower half or in the equivalent position in vertical control roots. Thus, cell elongation seems to be promoted in the upper half of the horizontal root. Thus, The differences in cell length were not accompanied by any change in the proportion of nuclei synthesising DNA in these elongating, non-meristematic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号