首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Adh1, the maize gene encoding alcohol dehydrogenase ADH1, mRNA is efficiently translated in O2-deprived roots of maize, whereas many normal cellular mRNAs are poorly translated. It has been shown that adh, the 5' untranslated region of adh1 mRNA, provides effective translation of mRNA under hypoxia and heat shock conditions in Nicotiana benthamiana plants. We found that adh contains the internal ribosome entry site (IRES) active both in vivo, in N. benthamiana cells, and in vitro, in rabbit reticulocyte lysate translation system. It is widely supposed that cap-independent internal initiation may maintain efficient translation of particular cellular mRNAs under a variety of stresses and other special conditions when cap-dependent protein synthesis is impaired. We evaluated the level of IRES activity of adh and found that its contribution to the overall translation of adh-containing mRNA in plant cells is less than 1% both under normal conditions and under heat shock. The low efficiency of this IRES is inconsistent with its possible role as a main factor ensuring efficient translation of adh1 mRNA under stress conditions.  相似文献   

3.
Three genes specify alcohol dehydrogenase (EC 1.1.1.1.; ADH) enzymes in barley (Hordeum vulgare L.) (Adh 1, Adh 2, and Adh 3). Their polypeptide products (ADH 1, ADH 2, ADH 3) dimerize to give a total of six ADH isozymes which can be resolved by native gel electrophoresis and stained for enzyme activity.

Under fully aerobic conditions, aleurone layers of cv Himalaya had a high titer of a single isozyme, the homodimer containing ADH 1 monomers. This isozyme was accumulated by the aleurone tissue during the later part of seed development, and survived seed drying and rehydration. The five other possible ADH isozymes were induced by O2 deficit. The staining of these five isozymes on electrophoretic gels increased progressively in intensity as O2 levels were reduced below 5%, and were most intense at 0% O2.

In vivo35S labeling and specific immunoprecipitation of ADH peptides, followed by isoelectric focusing of the ADH peptides in the presence of 8 molar urea (urea-IEF) demonstrated the following. (a) Aleurone layers incubated in air synthesized ADH 1 and a trace of ADH 2; immature layers from developing seeds behaved similarly. (b) At 5% O2, synthesis of ADH 2 increased and ADH 3 appeared. (c) At 2% and 0% O2, the synthesis of all three ADH peptides increased markedly.

Cell-free translation of RNA isolated from aleurone layers, followed by immunoprecipitation and urea-IEF of in vitro synthesized ADH peptides, showed that levels of mRNA for all three ADH peptides rose sharply during 1 day of O2 deprivation. Northern hybridizations with a maize Adh 2 cDNA clone established that the clone hybridized with barley mRNA comparable in size to maize Adh 2 mRNA, and that the level of this barley mRNA increased 15- to 20-fold after 1 day at 5% or 2% O2, and about 100-fold after 1 day at 0% O2.

We conclude that in aleurone layers, expression of the three barley Adh genes is maximal in the absence of O2, that regulation of mRNA level is likely to be a major controlling factor, and that whereas the ADH system of barley has strong similarities to that of maize, it also has some distinctive features.

  相似文献   

4.
5.
6.
Total cellular RNA from anaerobically stressed maize seedling roots was used to stimulate in vitro translation of authentic maize alcohol dehydrogenase (ADH) in a rabbit reticulocyte lysate system. Total products from such reactions were displayed on NEPHGE-SDS two-dimensional gels and the Adhl-specific translation products were identified by using RNA from sib seedlings segregating for Adhl charge and size variants. The application of a rapid RNA isolation procedure allowed the efficient isolation of biologically active RNAs from small amounts of seedling material. Maize ADHs translated in vitro are identical in size to in vivo ADH. Further, no ADH was detected in the products of an in vitro translation reaction stimulated by total RNA from aerobically grown seedlings. This suggests that induction of ADH protein by anaerobic stress is accomplished by production of Adh mRNA rather than activation of sequestered mRNA. The mRNAs for maize ADH1 and ADH2 are among a small class of mRNAs induced during anaerobiosis.Research was supported by NSF Grant PCM 76-11009. M.D.B. is supported by National Institute of Health Grant PHS 5 T32 GM07227-04. R.J.F. is a Predoctoral Trainee in Genetics supported by National Institute of Health Training Grants 82 and 7757 from the National Institute of General Medical Sciences.  相似文献   

7.
8.
9.
10.
11.
Ethylene treatment of carrot roots elicits a developmental program encompassing an increase in respiration rate and changes in gene expression. Both phenomena are potentiated when ethylene is administered in O2. Our previous studies showed that both respiration and a number of ethylene specific mRNAs increase together in response to ethylene through some 21 hours, whereas thereafter respiration continues to rise, while the level of induced mRNAs drops. Herein we ask whether an experimentally effected drop in the respiration rate within the first 21 hours caused by the withdrawal of ethylene, or substitution of air for O2 in the continued presence of ethylene, is linked to a drop in the level of ethylene-induced mRNA. Quantitative estimation of two ethylene evoked mRNAs by dot blot hybridization with appropriate cDNA clones has shown that under the specified treatment the induced mRNA levels remain constant while the respiration rate drops, suggesting that gene expression, as reflected in induced mRNA levels, and respiration rate are separately regulated facets of the ethylene response.  相似文献   

12.
13.
14.
15.
16.
Acorus calamus L is an amphibious plant, which is exposed to periods of flooding and consequently hypoxic conditions as a part of its natural life cycle. Previous experiments under laboratory conditions have shown that the plant can survive for two months in the complete absence of oxygen, and that during this period the expression of genes encoding the glycolytic enzymes fructose-1,6-bisphosphate aldolase (ALD), pyruvate decarboxylase (PDC) and alcohol dehydrogenase (ADH) is induced in leaves and rhizomes (Bucher and Kuhlemeier, 1993). Here we studied the expression of ALD and ADH through two years in the natural habitat of A. calamus. Under natural conditions roots and rhizomes were always submerged but newly grown leaves emerged in spring; in autumn the leaves senesced and the whole plant was submerged again. High Ald and Adh mRNA levels in leaf and rhizome were found only in winter when the leaves were entirely submerged. Upon leaf emergence in spring the mRNA levels rapidly declined. Under controlled experimental conditions expression of Ald and Adh was not induced by low temperature. The combination of laboratory and field experiments supports the hypothesis that oxygen deprivation rather than low temperature is a major regulator of glycolytic gene expression in A. calamus. The possible role of other environmental factors is also discussed.Abbreviations ADH alcohol dehydrogenase - Adh gene encoding ADH - ALD cytoplasmic fructose-1,6-bisphosphate aldolase - Ald gene encoding ALD - PDC pyruvate decarboxylase - Pdc gene encoding PDC  相似文献   

17.
18.
Recent findings have suggested that H2O2 is an important signaling molecule for regulating plant responses to abiotic stress. H2O2 plays a critical role in NaCl stress. Heme oxygenase (HO) is known to play a protective role against oxidative stress. In this study, we examined the possible involvement of H2O2 in regulating NaCl-promoted HO activity in rice roots. Treatment with NaCl increased HO activity and H2O2 content in rice roots. As well, NaCl could induce OsHO1 mRNA expression. NaCl (150 mM) and NaNO3 (150 mM) were equally effective in inducing HO activity. However, mannitol at the concentration (276 mM) iso-osmotic with 150 mM NaCl had no effect on HO activity. NaCl-promoted HO activity and OsHO1 expression in rice roots was reduced by NADPH oxidase inhibitors i.e. dipehnyleneiodonium and imidazole. Moreover, exogenous application of H2O2 enhanced the activity of HO and the mRNA level of OsHO1. Our data suggest that H2O2 production plays a positive role in NaCl- induced HO activity by enhancing its mRNA level in rice roots.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号