首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Knee injury negatively impacts routine activities and quality of life of millions of people every year. Disruption of tendons, ligaments, and articular cartilage are major causes of knee lesions, leading to social and economic losses. Besides the attempts for an optimal recovery of knee function after surgery, the joint healing process is not always adequate given the nature of intra-articular environment. Based on that, different therapeutic methods attempt to improve healing capacity. Hyperbaric oxygen therapy (HBOT) is an innovative biophysical approach that can be used as an adjuvant treatment post-knee surgery, to potentially prevent chronic disorders that commonly follows knee injuries. Given the well-recognized role of HBOT in improving wound healing, further research is necessary to clarify the benefits of HBOT in damaged musculoskeletal tissues, especially knee disorders. Here, we review important mechanisms of action for HBOT-induced healing including the induction of angiogenesis, modulation of inflammation and extracellular matrix components, and activation of parenchyma cells—key events to restore knee function after injury. This review discusses the basic science of the healing process in knee injuries, the role of oxygen during cicatrization, and shed light on the promising actions of HBOT in treating knee disorders, such as tendon, ligament, and cartilage injuries.  相似文献   

3.
Genetic effects of hyperbaric oxygen therapy   总被引:1,自引:0,他引:1  
Patients with several diseases have been examined for detection of chromosome aberrations in peripheral blood cells after 10 sessions of hyperbaric oxygen (HBO) at 0.15-0.20 MPa for 40 min. The present study reveals that HBO increases the level of chromosome aberrations, and that individual reactions to HBO differ. Pure erythrocytes treated with high-pressure oxygen (HBO) at 0.7 MPa for 1 h are clastogenic for intact syngeneic lymphocytes. The effect of HBO (0.3 MPa, 5 sessions of 1 h daily) on induction of chromosome aberrations in somatic cells and germinal tissues of rat males has been studied. Induction of aberrations in bone marrow cells after HBO was seen for 3 months. In lymphocytes of patients, it was seen for 9 months. Chromosome rearrangements at the first meiotic division were detected only 90 days after exposure. HBO affects neither the functional nor the morphological condition of gonads and does not induce dominant lethals. It is proposed that a high quantity of chromosome breaks in cells of somatic tissues is an adaptive reaction of organisms to HBO.  相似文献   

4.
5.
6.
7.
8.
9.
The goal of this review is to outline advances addressing the role that reactive species of oxygen and nitrogen play in therapeutic mechanisms of hyperbaric oxygen. The review will be organized around major categories of problems or processes where controlled clinical trials have demonstrated clinical efficacy for hyperbaric oxygen therapy. Reactive species are now recognized to play a major role in cell signal transduction cascades, and the discussion will focus on how hyperbaric oxygen acts through these pathways to mediate wound healing and ameliorate postischemic and inflammatory injuries.  相似文献   

10.
11.
Passive antibody therapy for infectious diseases   总被引:5,自引:0,他引:5  
Antibody-based therapies are currently undergoing a renaissance. After being developed and then largely abandoned in the twentieth century, many antibody preparations are now in clinical use. However, most of the reagents that are available target non-infectious diseases. Interest in using antibodies to treat infectious diseases is now being fuelled by the wide dissemination of drug-resistant microorganisms, the emergence of new microorganisms, the relative inefficacy of antimicrobial drugs in immunocompromised hosts and the fact that antibody-based therapies are the only means to provide immediate immunity against biological weapons. Given the need for new antimicrobial therapies and many recent technological advances in the field of immunoglobulin research, there is considerable optimism regarding renewed applications of antibody-based therapy for the prevention and treatment of infectious diseases.  相似文献   

12.
The treatment of cutaneous wounds is part of the veterinary routine from initial scientific reports due to being regularly present condition. Currently, several types of treatments are available to accelerate the healing process. This report presents the case of a dog with multiple lesions in the thoracic limbs resulting from a car accident, who underwent larval therapy and hyperbaric oxygen therapy (HBOT). The animal was a 2-year-old female mixed breed dog presenting severe skin degloving, fracture in the left thoracic limb (LTL), with abrasion lesions and dislocation in the right thoracic limb (RTL). The animal underwent multiple modality therapies, such as HBOT sessions associated with larval therapy; even after the LTL presented gangrene, this treatment resulted in optimal viability of the non-necrotic tissue adjacent to the gangrene. Due to chronic pain unresponsive to drug control and the presence of a fracture at a location where a possible exoprosthesis was supposed to be fixed, the LTL ended up being amputated. There are several reports of the use of HBOT or larval therapy in traumatized limbs; however, the combination of both therapies has not been previously described in the veterinary literature. Thus, we demonstrate through this report that it was possible to quickly recover the animal with good wound resolution through tissue oxygenation and a healthy granulation bed, both provided by the therapeutic combination.  相似文献   

13.
14.
BackgroundHyperbaric oxygen therapy (HBOT) is useful in the treatment of complications due to radiotherapy in patients with neoplasm. Its effects on bone metabolism are unclear. In our study, we analyzed the effects of HBOT on bone remodeling in oncological patients with radiotherapy.Materials and methodsProspective clinical study in 23 patients with neoplasms undergoing treatment with HBOT due to complications of radiotherapy (hemorrhagic cystitis, proctitis or radionecrosis) and 25 patients with chronic anal fissure. The average number of HBOT sessions was 20 ± 5 (100% oxygen, 2.3 atmospheres and 90 min per day). Serum levels of aminoterminal propeptide of type I collagen (P1NP), C terminal telopeptide of type I collagen (CTX), alkaline phosphatase (AP), 25hydroxyvitamin D (25-OHD), parathyroid hormone (PTH), were measured at 3 time points: T0 (before beginning HBOT), T1 (at the end of HBOT) and T2 (6 months after HBOT).ResultsAt baseline, the patients with neoplasm have higher bone turnover than those with anal fissure. These differences were 41% in CTX (0.238 ± 0.202 ng/mL in neoplasm and 0.141 ± 0.116 ng/mL in fissure; p = 0.04), 30% for PTH (46 ± 36 pg/mL in neoplasm and 32 ± 17 pg/mL in fissure; p = 0.04) and 15% for alkaline phosphatase (80 ± 24 U/L in neoplasm and 68 ± 16 U/L in fissure; p = 0.04). In the group with neoplasm, the values of P1NP decreased 6% after HBOT (T0: 49 ± 31 ng/mL, T2: 46 ± 12 ng/mL; p = 0.03). Also, there were non-significant decreases in PTH (−34%) and CTX (−30%).ConclusionsPatients with neoplasm and complications with radiotherapy have an increase in bone remodeling that may be diminished after HBOT.  相似文献   

15.
16.
17.
Genotoxicity of hyperbaric oxygen   总被引:5,自引:0,他引:5  
Hyperbaric oxygen (HBO) treatment is applied as a therapy for a wide variety of diseases with symptoms caused by lack of oxygen in the target tissues. However, it is known that exposure to high concentrations of oxygen may lead to oxidative stress and cause cell and tissue damage. Oxygen toxicity and possible cancer-promoting effects of HBO therapy have been a matter of serious concern. Although a cancer-inducing effect of HBO was not found to date, recent studies clearly indicated an induction of oxidative DNA damage in blood cells of healthy subjects after HBO under therapeutic conditions. The biological significance of this finding has been investigated in a series of in vitro and in vivo tests. This review summarizes these studies and critically discusses potential adverse genetic effects of HBO therapy. Furthermore, since an induction of anti-oxidative defense mechanisms has been determined after HBO exposure, a modified treatment regimen of HBO therapy is proposed which avoids genotoxic effects.  相似文献   

18.
19.
20.
The term periodontitis indicates a variety of clinical manifestations of infectious disorders in which the supporting tissues of the teeth are attacked. The initiation and progression of periodontal disease are attributed to the presence of elevated levels of pathogenic bacteria within the gingival crevice. Approaches to periodontal treatment range from surgical to regenerative therapy and anti-infective chemotherapy. Anti-infective drug therapy should be rationally based on the composition of the pathogenic microbiota. It is also important to recognize that the periodontopathic plaque constitutes a bacterial biofilm infection that may render the resident microorganisms more resistant than the same organisms grown planktonically. Hyperbaric oxygen (HBO) has been successfully used in several medical applications. The therapeutic effect is related to elevated partial oxygen pressure in the tissues. The aim of this study was to evaluate the effects of HBO on a selected number of patients suffering from adult chronic periodontitis in comparison with surgical intervention (scaling and root planning, SRP), as well as the effects of a combination of both therapies on the evolution over time of the microflora of the periodontal pockets. Bacteria were detected either by culture or by a molecular method (PCR). Microbiological data indicate that the combination of HBO and SRP substantially reduced (by up to 99.9%) the gram-negative anaerobe loads of the subgingival microflora. The low values of pathogens persisted for at least two months after the therapy. HBO or SRP alone produced a temporarily more limited effect on periodontal anaerobes. Additional experimental confirmation of these results was provided by molecular detection of the main periodontopathogenic bacteria with a significant reduction in the number of dental sites which harboured them. It is also shown that HBO both alone and in combination with SRP reduced the Gingival Index value to zero and gingival health persisted for 3 months at least. Thus, in parallel with the loss of periodontopathogenic bacteria, a substantial improvement in oral health was observed. In conclusion, this study has shown that HBO may represent a useful aid, especially in combination with SRP, as far as non-surgical periodontal therapy is concerned.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号