首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Apoptin, a chicken anemia virus-encoded protein, induces apoptosis in human tumor cells but not in normal cells. The tumor-specific activity of Apoptin is correlated with its nuclear localization in tumor cells. In an attempt to elucidate the molecular mechanism of Apoptin-induced apoptosis, we identified human Hippi, the protein interactor and apoptosis co-mediator of Huntingtin interacting protein 1, as one of the Apoptin-associated proteins by yeast two-hybrid screen. We also demonstrated that Hippi could interact with Apoptin both in vitro and in human cells. Furthermore, subcellular localization studies showed that Hippi and Apoptin perfectly colocalized in the cytoplasm of normal human HEL cells, whereas in cancerous HeLa cells most Apoptin and Hippi were located separately in the nucleus and cytoplasm and, thus, showed only a modest colocalization. Mapping studies indicate that Hippi binds within the self-multimerization domain of Apoptin, and Apoptin binds to the C-terminal half of Hippi, including its death effector domain-like motif. Our results suggest that the Apoptin-Hippi interaction may play a role in the suppression of apoptosis in normal cells.  相似文献   

2.
Apoptin, a protein of the chicken anemia virus (CAV), consists of 121 amino acids (aa) and represents a novel, potentially tumor-specific therapeutic and diagnostic agent. The C-terminal part of Apoptin (aa 81–121) is believed to contain a bipartite nuclear localization signal (NLS) (NLS1: aa 82–88 and NLS2: aa 111–121), which is only active in tumor cells after phosphorylation of threonine108 by tumor-specific cytoplasmic phosphokinases. Furthermore, a nuclear export signal (NES) (aa 97–105) seems to enable nuclear export of Apoptin only in healthy cells. The specificity for tumor cell nuclei also applies to the truncated C-terminal part of Apoptin (aa 81–121), which therefore represents a highly attractive peptide sequence for peptide synthesis. Here we describe for the first time the synthesis of fluorescein isothiocyanate (FITC)- and Dansyl-labelled conjugates containing this C-terminal part of Apoptin, with either phosphorylated or nonphosphorylated threonine108. The phosphorylated conjugates were synthesized in an attempt to achieve nuclear accumulation in healthy cells, which lack cytoplasmic tumor-specific phosphokinases. Surprisingly, all the conjugates accumulated rapidly within the cell nuclei of both tumor and non-tumor cells from the bladder, brain and prostate and led to cell death. By coupling Apoptin81–121 to FITC and DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) at either the C- or N-terminus we could exlude that the coupling site is decisive for tumor cell-specific nuclear localization. The labels FITC, DOTA and Dansyl were not responsible for cell death in healthy cells because cell death was not prevented by using an unlabelled Apoptin81–121 peptide. Cellular and nuclear uptake of the FITC-labelled Apoptin81–121 peptide was almost completely abolished after altering the NLS2 (replacement of five arginines with serines).  相似文献   

3.
A tumor-specific kinase activity regulates the viral death protein Apoptin   总被引:20,自引:0,他引:20  
Apoptin, a chicken anemia virus-encoded protein, is thought to be activated by a general tumor-specific pathway, because it induces apoptosis in a large number of human tumor or transformed cells but not in their normal, healthy counterparts. Here, we show that Apoptin is phosphorylated robustly both in vitro and in vivo in tumor cells but negligibly in normal cells, and we map the site to threonine 108. A gain-of-function point mutation (T108E) conferred upon Apoptin the ability to accumulate in the nucleus and kill normal cells, implying that phosphorylation is a key regulator of the tumor-specific properties of Apoptin. An activity that could phosphorylate Apoptin on threonine 108 was found specifically in tumor and transformed cells from a variety of tissue origins, suggesting that activation of this kinase is generally associated with the cancerous or pre-cancerous state. Moreover, analyses of human tissue samples confirm that Apoptin kinase activity is detectable in primary malignancies but not in tissue derived from healthy individuals. Taken together, our results support a model whereby the dysregulation of the cellular pathway leading to the phosphorylation of Apoptin contributes to human tumorigenesis.  相似文献   

4.
Several natural proteins, including the cellular protein TRAIL and the viral proteins E4orf4 and Apoptin, have been found to exert a tumor-preferential apoptotic activity. These molecules are potential anti-cancer agents with direct clinical applications. Also very intriguing is their possible utility as sensors of the tumorigenic phenotype. Here, we focus on Apoptin, discussing recent research that has greatly increased our understanding of its tumor-specific processes. Apoptin, which kills tumor cells in a p53- and Bcl-2-independent, caspase-dependent manner, is biologically active as a highly stable, multimeric complex consisting of 30 to 40 monomers that form distinct superstructures upon binding cooperatively to DNA. In tumor cells, Apoptin is imported into the nucleus prior to the induction of apoptosis; this contrasts with the situation in primary or low-passage normal cell cultures where nuclear translocation of Apoptin is rare and inefficient. Apoptin contains two autonomous death-inducing domains, both of which exhibit a strong correlation between nuclear localization and killing activity. Nevertheless, forced nuclear localization of Apoptin in normal cells is insufficient to allow induction of apoptosis, indicating that another activation step particular to the tumor or transformed state is required. Indeed, a kinase activity present in cancer cells but negligible in normal cells was recently found to regulate the activity of Apoptin by phosphorylation. However, in normal cells, Apoptin can be activated by transient transforming signals conferred by ectopically expressed SV40 LT antigen, which rapidly induces Apoptins phosphorylation, nuclear accumulation and the ability to induce apoptosis. The region on LT responsible for conferring this effect has been mapped to the N-terminal J domain. In normal cells that do not receive such signals, Apoptin becomes aggregated, epitope-shielded and is eventually degraded in the cytoplasm. Finally, Apoptin interacts with various partners of the human proteome including DEDAF, Nmi and Hippi, which may help to regulate either Apoptins activation or execution processes. Taken together, these recent advances illustrate that elucidating the mechanism of Apoptin-induced apoptosis can lead to the discovery of novel tumor-specific pathways that may be exploitable as anti-cancer drug targets.  相似文献   

5.
Apoptin, a viral death protein derived from chicken anemia virus, displays a number of tumor-specific behaviors. In particular, apoptin is phosphorylated, translocates to the nucleus, and induces apoptosis specifically in tumor or transformed cells, whereas it is nonphosphorylated and remains primarily inactive in the cytoplasm of nontransformed normal cells. Here, we show that in normal cells apoptin can also be activated by the transient transforming signals conferred by ectopically expressed simian virus 40 (SV40) large T antigen (LT), which rapidly induces apoptin's phosphorylation, nuclear accumulation, and the ability to induce apoptosis. Further analyses with mutants of LT showed that the minimum domain capable of inducing all three of apoptin's tumor-specific properties resided in the N-terminal J domain, a sequence which is largely shared by SV40 small t antigen (st). Interestingly, the J domain in st, which lacks its own nuclear localization signal (NLS), required nuclear localization to activate apoptin. These results reveal the existence of a cellular pathway shared by conditions of transient transformation and the stable cancerous or precancerous state, and they support a model whereby a transient transforming signal confers on apoptin both the upstream activity of phosphorylation and the downstream activity of nuclear accumulation and apoptosis induction. Such a pathway may reflect a general lesion contributing to human cancers.  相似文献   

6.
The chicken anemia virus protein Apoptin has been shown to induce apoptosis in a large number of transformed and tumor cell lines, but not in primary cells. Whereas many other apoptotic stimuli (e.g., many chemotherapeutic agents and radiation) require functional p53 and are inhibited by Bcl-2, Apoptin acts independently of p53, and its activity is enhanced by Bcl-2. Here we study the involvement of caspases, an important component of the apoptotic machinery present in mammalian cells. Using a specific antibody, active caspase-3 was detected in cells expressing Apoptin and undergoing apoptosis. Although Apoptin activity was not affected by CrmA, p35 did inhibit Apoptin-induced apoptosis, as determined by nuclear morphology. Cells expressing both Apoptin and p35 showed only a slight change in nuclear morphology. However, in most of these cells, cytochrome c is still released and the mitochondria are not stained by CMX-Ros, indicating a drop in mitochondrial membrane potential. These results imply that although the final apoptotic events are blocked by p35, parts of the upstream apoptotic pathway that affect mitochondria are already activated by Apoptin. Taken together, these data show that the viral protein Apoptin employs cellular apoptotic factors for induction of apoptosis. Although activation of upstream caspases is not required, activation of caspase-3 and possibly also other downstream caspases is essential for rapid Apoptin-induced apoptosis.  相似文献   

7.
8.
The chicken anemia virus protein Apoptin selectively induces apoptosis in transformed cells while leaving normal cells intact. This selectivity is thought to be largely due to cell type-specific localization: Apoptin is cytoplasmic in primary cells and nuclear in transformed cells. The basis of Apoptin cell type-specific localization and activity remains to be determined. Here we show that Apoptin is a nucleocytoplasmic shuttling protein whose localization is mediated by an N-terminal nuclear export signal (NES) and a C-terminal nuclear localization signal (NLS). Both signals are required for cell type-specific localization, since Apoptin fragments containing either the NES or the NLS fail to differentially localize in transformed and primary cells. Significantly, cell type-specific localization can be conferred in trans by coexpression of the two separate fragments, which interact through an Apoptin multimerization domain. We have previously shown that Apoptin interacts with the APC1 subunit of the anaphase-promoting complex/cyclosome (APC/C), resulting in G(2)/M cell cycle arrest and apoptosis in transformed cells. We found that the nucleocytoplasmic shuttling activity is critical for efficient APC1 association and induction of apoptosis in transformed cells. Interestingly, both Apoptin multimerization and APC1 interaction are mediated by domains that overlap with the NES and NLS sequences, respectively. Apoptin expression in transformed cells induces the formation of PML nuclear bodies and recruits APC/C to these subnuclear structures. Our results reveal a mechanism for the selective killing of transformed cells by Apoptin.  相似文献   

9.
Apoptin, a protein derived from chicken anemia virus, induces apoptosis in human transformed or tumor cells but not in normal cells. When produced in bacteria as a recombinant fusion with maltose-binding protein (MBP-Apoptin), Apoptin forms a distinct, stable multimeric complex that is remarkably homogeneous and uniform. Here, using cytoplasmic microinjection, we showed that recombinant MBP-Apoptin multimers retained the characteristics of the ectopically expressed wild-type Apoptin; namely, the complexes translocated to the nucleus of tumor cells and induced apoptosis, whereas they remained in the cytoplasm of normal, primary cells and exerted no apparent toxic effect. In normal cells, MBP-Apoptin formed increasingly large, organelle-sized globular bodies with time postinjection and eventually lost the ability to be detected by immunofluorescence analysis. Costaining with an acidotrophic marker indicated that these globular structures did not correspond to lysosomes. Immunoprecipitation studies showed that MBP-Apoptin remained fully antibody-accessible regardless of buffer stringency when microinjected into tumor cells. In contrast, MBP-Apoptin in normal cells was only recoverable under stringent lysis conditions, whereas under milder conditions they became fully shielded with time on two epitopes spanning the entire protein. Further biochemical analysis showed that the long-term fate of Apoptin protein aggregates in normal cells was their eventual elimination. Our results provide the first example of a tumor-specific apoptosis-inducing aggregate that is essentially sequestered by factors or conditions present in the cytoplasm of healthy, nontransformed cells. This characteristic should reveal more about the cellular interactions of this viral protein as well as further enhance its safety as a potential tumor-specific therapeutic agent.  相似文献   

10.
Apoptin's functional N- and C-termini independently bind DNA   总被引:8,自引:0,他引:8  
Apoptin induces apoptosis specifically in tumour cells, where Apoptin is enriched in the DNA-dense heterochromatin and nucleoli. In vitro, Apoptin interacts with dsDNA, forming large nucleoprotein superstructures likely to be relevant for apoptosis induction. Its N- and C-terminal domains also have cell-killing activity, although they are less potent than the full-length protein. Here, we report that both Apoptin's N- and C-terminal halves separately bound DNA, indicating multiple independent binding sites. The reduced cell killing activity of both truncation mutants was mirrored in vitro by a reduced affinity compared to full-length Apoptin. However, none of the truncation mutants cooperatively bound DNA or formed superstructures, which suggests that cooperative DNA binding by Apoptin is required for the formation of nucleoprotein superstructures. As Apoptin's N- and C-terminal fragments not only share apoptotic activity, but also affinity for DNA, we propose that both properties are functionally linked.  相似文献   

11.
The chicken anemia virus (CAV) protein Apoptin is a small, 13.6-kDa protein that has the intriguing activity of inducing G(2)/M arrest and apoptosis specifically in cancer cells by a mechanism that is independent of p53. The activity of Apoptin is regulated at the level of localization. Whereas Apoptin is cytoplasmic in primary cells and does not affect cell growth, in transformed cells it localizes to the nucleus, where it induces apoptosis. The properties of cancer cells that are responsible for activating the proapoptotic activities of Apoptin remain unclear. In the current study, we show that DNA damage response (DDR) signaling is required to induce Apoptin nuclear localization in primary cells. Induction of DNA damage in combination with Apoptin expression was able to induce apoptosis in primary cells. Conversely, chemical or RNA interference (RNAi) inhibition of DDR signaling by ATM and DNA-dependent protein kinase (DNA-PK) was sufficient to cause Apoptin to localize in the cytoplasm of transformed cells. Furthermore, the nucleocytoplasmic shuttling activity of Apoptin is required for DDR-induced changes in localization. Interestingly, nuclear localization of Apoptin in primary cells was able to inhibit the formation of DNA damage foci containing 53BP1. Apoptin has been shown to bind and inhibit the anaphase-promoting complex/cyclosome (APC/C). We observe that Apoptin is able to inhibit formation of DNA damage foci by targeting the APC/C-associated factor MDC1 for degradation. We suggest that these results may point to a novel mechanism of DDR inhibition during viral infection.  相似文献   

12.
双组分核定位信号介导Apoptin定位于肿瘤细胞核   总被引:2,自引:0,他引:2  
Apoptin是一种来源于鸡贫血病毒的小蛋白,在肿瘤细胞中定位于细胞核,而在正常细胞中主要分布于细胞质。根据预测,Apoptin分子中有2段序列(NLS1和NLS2)可能是单组分核定位信号。通过基因突变和缺失构建了Apoptin各种不同的核定位信号突变体和磷酸化突变体,利用增强型绿色荧光蛋白(EGFP)作标签,观察了其在肿瘤细胞中亚细胞定位的变化。结果表明,NLS1和NLS2单独均不是有效的单组分核定位信号。Apoptin的核定位信号是由NLS1和NLS2这2段序列共同组成的双组分核定位信号,缺少任何一段序列都会严重影响Apoptin在肿瘤细胞中的核定位。其中,NLS2对于Apoptin的核定位起主要作用。Apoptin的获得型磷酸化突变体并不能转位到正常细胞的细胞核中,而其磷酸化负突变体仍定位于肿瘤细胞的细胞核。另外,丝氨酸/苏氨酸蛋白激酶抑制剂H7也不影响Apoptin在肿瘤细胞中的核定位。很可能,Apoptin的磷酸化并不参与调控其核定位信号的功能。  相似文献   

13.
Apoptin induces tumor-specific apoptosis as a globular multimer   总被引:16,自引:0,他引:16  
The chicken anemia virus-derived Apoptin protein induces tumor-specific apoptosis. Here, we show that recombinant Apoptin protein spontaneously forms non-covalent globular aggregates comprising 30 to 40 subunits in vitro. This multimerization is robust and virtually irreversible, and the globular aggregates are also stable in cell extracts, suggesting that they remain intact within the cell. Furthermore, studies of Apoptin expressed in living cells confirm that Apoptin indeed exists in large complexes in vivo. We map the structural motifs responsible for multimerization in vitro and aggregation in vivo to the N-terminal half of the protein. Moreover, we show that covalently fixing the Apoptin monomers within the recombinant protein multimer by internal cross-linking does not affect the biological activity of Apoptin, as these fixed aggregates exhibit similar tumor-specific localization and apoptosis-inducing properties as non-cross-linked Apoptin. Taken together, our results imply that recombinant Apoptin protein is a multimer when inducing apoptosis, and we propose that this multimeric state is an essential feature of its ability to do so. Finally, we determine that Apoptin adopts little, if any, regular secondary structure within the aggregates. This surprising result would classify Apoptin as the first protein for which, rather than the formation of a well defined tertiary and quaternary structure, semi-random aggregation is sufficient for activity.  相似文献   

14.
Apoptin: Specific killer of tumor cells?   总被引:3,自引:0,他引:3  
In the early 1990s it was discovered that the VP3/Apoptin protein encoded by the Chicken Anemia virus (CAV) possesses an inherent ability to specifically kill cancer cells. Apoptin was found to be located in the cytoplasm of normal cells while in tumor cells it was localized mainly in the nucleus.1 These differences in the localization pattern were suggested to be the main mechanism by which normal cells show resistance to Apoptin-mediated cell killing. Although the mechanism of action of Apoptin is presently unknown, it seems to function by the induction of programmed cell death (PCD) after translocation from the cytoplasm to the nucleus and arresting the cell cycle at G2/M, possibly by interfering with the cyclosome.2 In addition, cancer specific phosphorylation of Threonine residue 108 has been suggested to be important for Apoptin’s function to kill tumor cells.3 In contrast to the large number of publications reporting that nuclear localization, induction of PCD and phosphorylation of Apoptin is restricted to cancer cells, several recent studies have shown that Apoptin has the ability to migrate to the nucleus and induce PCD in some of the normal cell lines tested. There is evidence that high protein expression levels as well as the cellular growth rate may influence Apoptin’s ability to specifically kill tumor cells. Thus far both in vitro and in vivo studies indicate that Apoptin is a powerful apoptosis inducing protein with a promising prospective utility in cancer therapy. However, here we show that several recent findings contradict some of the earlier results on the tumor specificity of Apoptin, thus creating some controversy in the field. The aim of this article is to review the available data, some published and some unpublished, which either agree or contradict the reported “black and white” tumor cell specificity of Apoptin. Understanding what factors appear to influence its function should help to develop Apoptin into a potent anti-cancer agent.  相似文献   

15.
Phospholipase D plays an anti-apoptotic role but little is known about dynamics of phospholipase D turnover during apoptosis. We have recently identified phospholipase D1 as a new substrate of caspases which generates the N-terminal and C-terminal fragment of phospholipase D1. In the present study, we tried to investigate whether association of the caspase cleavage fragments may be involved in regulation of apoptosis. Ectopically expressed C-terminal fragment, but not N-terminal fragment of phospholipase D1, is exclusively imported into the nucleus via a nuclear localization sequence; however, endogenous C-terminal fragment of phospholipase D1 from etoposide-induced apoptotic cells and Alzheimer's disease brain tissues with active caspase-3, was localized in the cytosolic fraction as well as the nuclear fraction. Intermolecular association between the two fragments of phospholipase D1 through hydrophobic residues within the catalytic motif inhibited nuclear localization of C-terminal fragment of phospholipase D1, and two catalytic motif and nuclear localization sequence regulated nuclocytoplasmic shuttling of phospholipase D1. Moreover, hydrophobic residues involved in the intermolecular association are also required for both its enzymatic activity and anti-apoptotic function. Taken together, we demonstrate that interdomain association and dissociation of phospholipase D1 might provide new insights into modulation of apoptosis.  相似文献   

16.
Oxidative stress can induce apoptosis through activation of MstI, subsequent phosphorylation of FOXO and nuclear translocation. MstI is a common component of apoptosis initiated by various stresses. MstI kinase activation requires autophosphorylation and proteolytic degradation by caspases. The role of Akt in regulating MstI activity has not been previously examined. Here, we show that MstI is a physiological substrate of Akt. Akt phosphorylation of MstI diminishes its apoptotic cleavage by caspases and prevents its kinase activity on FOXO3. MstI directly binds to Akt, which is regulated Akt kinase activity. Akt phosphorylates MstI on the Thr(387) residue and protects MstI from apoptotic cleavage in vitro and in apoptotic cells. Interestingly, Akt phosphorylation of MstI strongly inhibits its kinase activity on FOXO3. The phosphorylation mimetic mutant MST1 T387E blocks H2O2-triggered FOXO3 nuclear translocation and apoptosis. Thus, our findings support that Akt blocks MstI-triggered FOXO3 nuclear translocation by phosphorylating MstI, promoting cell survival.  相似文献   

17.
A putative NES mediates cytoplasmic localization of Apoptin in normal cells   总被引:3,自引:0,他引:3  
Chicken anemia virus (CAV) is a small non-envelopedvirus containing a single-stranded circular DNA genome.The virus causes a disease in the newborn chickens, whichis characterized by generalized lymphoid atrophy, increasedmortality and severe anemia. CAV …  相似文献   

18.
Apoptin (apoptosis-inducing protein) harbors tumor-selective characteristics making it a potential safe and effective anticancer agent. Apoptin becomes phosphorylated and induces apoptosis in a large panel of human tumor but not normal cells. Here, we used an in vitro oncogenic transformation assay to explore minimal cellular factors required for the activation of apoptin. Flag-apoptin was introduced into normal fibroblasts together with the transforming SV40 large T antigen (SV40 LT) and SV40 small t antigen (SV40 ST) antigens. We found that nuclear expression of SV40 ST in normal cells was sufficient to induce phosphorylation of apoptin. Mutational analysis showed that mutations disrupting the binding of ST to protein phosphatase 2A (PP2A) counteracted this effect. Knockdown of the ST-interacting PP2A–B56γ subunit in normal fibroblasts mimicked the effect of nuclear ST expression, resulting in induction of apoptin phosphorylation. The same effect was observed upon downregulation of the PP2A–B56δ subunit, which is targeted by protein kinase A (PKA). Apoptin interacts with the PKA-associating protein BCA3/AKIP1, and inhibition of PKA in tumor cells by treatment with H89 increased the phosphorylation of apoptin, whereas the PKA activator cAMP partially reduced it. We infer that inactivation of PP2A, in particular, of the B56γ and B56δ subunits is a crucial step in triggering apoptin-induced tumor-selective cell death.  相似文献   

19.
Immunization strategies using plasmid DNA can potentially improve humoral and cellular immune responses that protect against cancer and infectious diseases. The chicken anemia virus-derived Apoptin protein exhibits remarkable specificity in its ability to induce apoptosis in tumor cells, but not in normal diploid cells. Interleukin-18 (IL-18) is a Th1-type cytokine that has demonstrated potential as a biological adjuvant in murine tumor models. In this study, we analyzed the anti-tumor potential and mechanism of action of simultaneous Apoptin and IL-18 gene transfer in C57BL/6 mice bearing Lewis lung carcinoma (LLC). Here we report that the growth of established tumors in mice immunized with pAPOPTIN in conjunction with pIL-18 was significantly inhibited compared with the growth of tumors in mice immunized with the empty vector (EV) or pAPOPTIN alone. Furthermore, the immunization of mice with pAPOPTIN in conjunction with pIL-18 elicited strong natural killer activity and LLC tumor-specific cytotoxic T lymphocyte (CTL) responses in vitro. In addition, T cells from lymph nodes of mice vaccinated with pIL-18 or pAPOPTIN + pIL-18 secreted high levels of the Th1 cytokine IL-2 and IFN-γ, indicating that the regression of tumor cells is related to a Th1-type dominant immune response. These results demonstrate that vaccination with Apoptin together with IL-18 may be a novel and powerful strategy for cancer immunotherapy.  相似文献   

20.
The nonreceptor tyrosine kinase c-Abl may contribute to the regulation of apoptosis. c-Abl activity is induced in the nucleus upon DNA damage, and its activation is required for execution of the apoptotic program. Recently, activation of nuclear c-Abl during death receptor-induced apoptosis has been reported; however, the mechanism remains largely obscure. Here we show that c-Abl is cleaved by caspases during tumor necrosis factor- and Fas receptor-induced apoptosis. Cleavage at the very C-terminal region of c-Abl occurs mainly in the cytoplasmic compartment and generates a 120-kDa fragment that lacks the nuclear export signal and the actin-binding region but retains the intact kinase domain, the three nuclear localization signals, and the DNA-binding domain. Upon caspase cleavage, the 120-kDa fragment accumulates in the nucleus. Transient-transfection experiments show that cleavage of c-Abl may affect the efficiency of Fas-induced cell death. These data reveal a novel mechanism by which caspases can recruit c-Abl to the nuclear compartment and to the mammalian apoptotic program.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号