首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shewanella oneidensis MR-1 is a gram-negative facultative anaerobe capable of utilizing a broad range of electron acceptors, including several solid substrates. S. oneidensis MR-1 can reduce Mn(IV) and Fe(III) oxides and can produce current in microbial fuel cells. The mechanisms that are employed by S. oneidensis MR-1 to execute these processes have not yet been fully elucidated. Several different S. oneidensis MR-1 deletion mutants were generated and tested for current production and metal oxide reduction. The results showed that a few key cytochromes play a role in all of the processes but that their degrees of participation in each process are very different. Overall, these data suggest a very complex picture of electron transfer to solid and soluble substrates by S. oneidensis MR-1.  相似文献   

2.
Dissimilatory reduction of metal (e.g. Fe, Mn) (hydr)oxides represents a challenge for microorganisms, as their cell envelopes are impermeable to metal (hydr)oxides that are poorly soluble in water. To overcome this physical barrier, the Gram-negative bacteria Shewanella oneidensis MR-1 and Geobacter sulfurreducens have developed electron transfer (ET) strategies that require multihaem c-type cytochromes (c-Cyts). In S. oneidensis MR-1, multihaem c-Cyts CymA and MtrA are believed to transfer electrons from the inner membrane quinone/quinol pool through the periplasm to the outer membrane. The type II secretion system of S. oneidensis MR-1 has been implicated in the reduction of metal (hydr)oxides, most likely by translocating decahaem c-Cyts MtrC and OmcA across outer membrane to the surface of bacterial cells where they form a protein complex. The extracellular MtrC and OmcA can directly reduce solid metal (hydr)oxides. Likewise, outer membrane multihaem c-Cyts OmcE and OmcS of G. sulfurreducens are suggested to transfer electrons from outer membrane to type IV pili that are hypothesized to relay the electrons to solid metal (hydr)oxides. Thus, multihaem c-Cyts play critical roles in S. oneidensis MR-1- and G. sulfurreducens-mediated dissimilatory reduction of solid metal (hydr)oxides by facilitating ET across the bacterial cell envelope.  相似文献   

3.
【目的】研究Shewanella oneidensis MR-1厌氧生物转化2,4-二硝基甲苯(2,4-DNT)的能力、转化过程和影响因素。【方法】以乳酸钠为电子供体, 2,4-DNT为电子受体, S. oneidensis MR-1为降解菌, 黄素为胞外电子载体, 设立四个不同的对照体系并监测各体系在转化过程中2,4-DNT及其产物的动态变化。同时研究不同2,4-DNT浓度下细胞的生长情况, 以及不同黄素浓度下2,4-DNT的降解情况。【结果】S. oneidensis MR-1菌能够高效还原转化2,4-DNT为4-氨基-2-硝基甲苯(4A2NT)和2-氨基-4-硝基甲苯(2A4NT), 并将其进一步还原为2,4-二氨基甲苯(2,4-DAT), 黄素能加速转化过程。【结论】S. oneidensis MR-1菌具备高效还原转化2,4-DNT的能力, 为实际环境中硝基苯污染的原位修复提供科学依据。  相似文献   

4.
Growth with high planktonic biomass in Shewanella oneidensis fuel cells   总被引:1,自引:0,他引:1  
Shewanella oneidensis MR-1 grew for over 50 days in microbial fuel cells, incompletely oxidizing lactate to acetate with high recovery of the electrons derived from this reaction as electricity. Electricity was produced with lactate or hydrogen and current was comparable to that of electricigens which completely oxidize organic substrates. However, unlike fuel cells with previously described electricigens, in which cells are primarily attached to the anode, at least as many of the S. oneidensis cells were planktonic as were attached to the anode. These results demonstrate that S. oneidensis may conserve energy for growth with an electrode serving as an electron acceptor and suggest that multiple strategies for electron transfer to fuel cell anodes exist.  相似文献   

5.
Microbial fuel cells (MFCs) traditionally operate at pH values between 6 and 8. However, the effect of pH on the growth and electron transfer abilities of Shewanella oneidensis MR-1 (wild-type) and DSP10 (spontaneous mutant), bacteria commonly used in MFCs, to electrodes has not been examined. Miniature MFCs using bare graphite felt electrodes and nanoporous polycarbonate membranes with MR-1 or DSP10 cultures generated >8W/m(3) and approximately 400muA between pH 6-7. The DSP10 strain significantly outperformed MR-1 at neutral pH but underperformed at pH 5. Higher concentrations of DSP10 were sustained at pH 7 relative to that of MR-1, whereas at pH 5 this trend was reversed indicating that cell count was not solely responsible for the observed differences in current. S. oneidensis MR-1 was determined to be more suitable than DSP10 for MFCs with elevated acidity levels. The concentration of riboflavin in the bacterial cultures was reduced significantly at pH 5 for DSP10, as determined by high performance liquid chromatography (HPLC) of the filter sterilized growth media. In addition, these results suggest that mediator biosynthesis and not solely bacterial concentration plays a significant role in current output from S. oneidensis containing MFCs.  相似文献   

6.
We hypothesized that Shewanella oneidensis MR-1, a model dissimilatory metal-reducing bacterium, could utilize environmentally relevant concentrations of tyrosine to produce pyomelanin for enhanced Fe(III) oxide reduction. Because homogentisate is an intermediate of the tyrosine degradation pathway, and a precursor of a redox-cycling metabolite, pyomelanin, we evaluated the process of homogentisate production by S. oneidensis MR-1, in order to identify the key steps involved in pyomelanin production. We determined that two enzymes involved in this pathway, 4-hydroxyphenylpyruvate dioxygenase and homogentisate 1,2-dioxygenase are responsible for homogentisate production and oxidation, respectively. We used genetic analysis and physiological characterization of MR-1 strains either deficient in or displaying substantially increased pyomelanin production. The relative significance imparted by pyomelanin on solid-phase electron transfer was also addressed using electrochemical techniques, which allowed us to extend the genetic and physiological findings to biogeochemical cycling of metals. Based on our findings, environmental production of pyomelanin from available organic precursors could contribute to the survival of S. oneidensis MR-1 when dissolved oxygen concentrations become low, by providing an increased capacity for solid-phase metal reduction. This study demonstrates the role of organic precursors and their concentrations in pyomelanin production, solid phase metal reduction and biogeochemical cycling of iron.  相似文献   

7.
一株海洋产电菌Shewanella sp. S2的筛选和产电分析   总被引:1,自引:1,他引:0  
以厦门白城海域的潮间带表面沉积物为菌种来源筛选得到一株具有电催化活性的菌株S2,该菌株的16S rRNA和gyrB基因发育树与Shewanella oneidensis MR-1同支,相似性分别为98.5%和87%,葡萄糖、木糖、半乳糖等碳源利用及最佳生长的NaCl浓度与S.oneidensis MR-1有显著差别,因此初步鉴定为Shewanella属菌株,命名为Shewanella sp.S2。初步研究了菌株S2产电活性,在以乳酸作为碳源产电时,电压最高为150mV,相应的电流密度为66.1mA/m2。  相似文献   

8.
Metal reduction assays are traditionally used to select and characterize electrochemically active bacteria (EAB) for use in microbial fuel cells (MFCs). However, correlating the ability of a microbe to generate current from an MFC to the reduction of metal oxides has not been definitively established in the literature. As these metal reduction assays may not be generally reliable, here we describe a four- to nine-well prototype high throughput voltage-based screening assay (VBSA) designed using MFC engineering principles and a universal cathode. Bacterial growth curves for Shewanella oneidensis strains DSP10 and MR-1 were generated directly from changes in open circuit voltage and current with five percent deviation calculated between each well. These growth curves exhibited a strong correlation with literature doubling times for Shewanella indicating that the VBSA can be used to monitor distinct fundamental properties of EAB life cycles. In addition, eight different organic electron donors (acetate, lactate, citrate, fructose, glucose, sucrose, soluble starch, and agar) were tested with S. oneidensis MR-1 in anode chambers exposed to air. Under oxygen exposure, we found that current was generated in direct response to additions of acetate, lactate, and glucose.  相似文献   

9.
Shewanella oneidensis MR-1 has conventionally been considered unable to use glucose as a carbon substrate for growth. The genome sequence of S. oneidensis MR-1 however suggests the ability to use glucose. Here, we demonstrate that during initial glucose exposure, S. oneidensis MR-1 quickly and frequently gains the ability to utilize glucose as a sole carbon source, in contrast to wild-type S. oneidensis, which cannot immediately use glucose as a sole carbon substrate. High-performance liquid chromatography and (14)C glucose tracer studies confirm the disappearance in cultures and assimilation and respiration, respectively, of glucose. The relatively short time frame with which S. oneidensis MR-1 gained the ability to use glucose raises interesting ecological implications.  相似文献   

10.
Although a previous study indicated that the dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1 lacks chemotactic responses to metals that can be used as anaerobic electron acceptors, new results show that this bacterium responds to both Mn(III) and Fe(III). Cells were also shown to respond to another unusual electron acceptor, the humic acid analog anthraquinone-2,6-disulfonate. These results indicate that S. oneidensis is capable of moving towards a number of unusual anaerobic electron acceptors, including some that would normally be insoluble in the environment. Additionally, S. oneidensis was shown to migrate in gradients of several divalent cations under anaerobic conditions. Although responses to the reduced forms of redox-active metals, such as Mn(II) and Fe(II), might indicate that S. oneidensis uses gradients of these metals to locate the insoluble electron acceptors Mn(III/IV) and Fe(III) for dissimilatory purposes, responses to non-redox-active metals, such as Zn(II), suggest that movement towards divalent cations might serve other, potentially assimilatory, purposes.  相似文献   

11.
Shewanella oneidensis MR-1 is a facultative anaerobe that derives energy by coupling organic matter oxidation to the reduction of a wide range of electron acceptors. Here, we quantitatively assessed the lactate and pyruvate metabolism of MR-1 under three distinct conditions: electron acceptor-limited growth on lactate with O(2), lactate with fumarate, and pyruvate fermentation. The latter does not support growth but provides energy for cell survival. Using physiological and genetic approaches combined with flux balance analysis, we showed that the proportion of ATP produced by substrate-level phosphorylation varied from 33% to 72.5% of that needed for growth depending on the electron acceptor nature and availability. While being indispensable for growth, the respiration of fumarate does not contribute significantly to ATP generation and likely serves to remove formate, a product of pyruvate formate-lyase-catalyzed pyruvate disproportionation. Under both tested respiratory conditions, S. oneidensis MR-1 carried out incomplete substrate oxidation, whereby the tricarboxylic acid (TCA) cycle did not contribute significantly. Pyruvate dehydrogenase was not involved in lactate metabolism under conditions of O(2) limitation but was required for anaerobic growth, likely by supplying reducing equivalents for biosynthesis. The results suggest that pyruvate fermentation by S. oneidensis MR-1 cells represents a combination of substrate-level phosphorylation and respiration, where pyruvate serves as an electron donor and an electron acceptor. Pyruvate reduction to lactate at the expense of formate oxidation is catalyzed by a recently described new type of oxidative NAD(P)H-independent d-lactate dehydrogenase (Dld-II). The results further indicate that pyruvate reduction coupled to formate oxidation may be accompanied by the generation of proton motive force.  相似文献   

12.
In this work, we investigated the anaerobic decolorization of methyl orange (MO), a typical azo dye, by Shewanella oneidensis MR-1, which can use various organic and inorganic substances as its electron acceptor in natural and engineered environments. S. oneidensis MR-1 was found to be able to obtain energy for growth through anaerobic respiration accompanied with dissimilatory azo-reduction of MO. Chemical analysis shows that MO reduction occurred via the cleavage of azo bond. Block of Mtr respiratory pathway, a transmembrane electron transport chain, resulted in a reduction of decolorization rate by 80%, compared to the wild type. Knockout of cymA resulted in a substantial loss of its azo-reduction ability, indicating that CymA is a key c-type cytochrome in the electron transfer chain to MO. Thus, the MtrA-MtrB-MtrC respiratory pathway is proposed to be mainly responsible for the anaerobic decolorization of azo dyes such as MO by S. oneidensis.  相似文献   

13.
研究产电微生物胞外电子传递过程和机制,发现与产电效率相关的关键基因、通路和代谢物,是微生物燃料电池研究中的关键技术。为了发现在胞外电子传递过程中起到关键作用的基因以及通路,首先利用比较基因组学的方法,以模式微生物大肠杆菌和同属希瓦氏菌的其他菌株为参考,构建了Shewanella.onedensis MR-1的全基因组基因转录调控网络,大大扩展了目前已知的基因调控关系。然后以此网络为基础,结合基于蛋白质相互作用分析得到的胞外电子传递通路,构建了与胞外电子传递直接传递密切相关的细胞色素C编码基因及其相关调控基因构成的子网络,结合全基因组基因表达数据,研究了特异性条件下胞外电子传递的可能通路和基因调控过程。  相似文献   

14.
Shewanella oneidensis MR-1 reduces selenite and tellurite preferentially under anaerobic conditions. The Se(0) and Te(0) deposits are located extracellularly and intracellularly, respectively. This difference in localization and the distinct effect of some inhibitors and electron acceptors on these reduction processes are taken as evidence of two independent pathways.  相似文献   

15.
The dissimilatory iron-reducing bacterium Shewanella oneidensis MR-1 is capable of using extracellular DNA (eDNA) as the sole source of carbon, phosphorus, and nitrogen. In addition, we recently demonstrated that S. oneidensis MR-1 requires eDNA as a structural component during all stages of biofilm formation. In this study, we characterize the roles of two Shewanella extracellular endonucleases, ExeS and ExeM. While ExeS is likely secreted into the medium, ExeM is predicted to remain associated with the cell envelope. Both exeM and exeS are highly expressed under phosphate-limited conditions. Mutants lacking exeS and/or exeM exhibit decreased eDNA degradation; however, the capability of S. oneidensis MR-1 to use DNA as the sole source of phosphorus is only affected in mutants lacking exeM. Neither of the two endonucleases alleviates toxic effects of increased eDNA concentrations. The deletion of exeM and/or exeS significantly affects biofilm formation of S. oneidensis MR-1 under static conditions, and expression of exeM and exeS drastically increases during static biofilm formation. Under hydrodynamic conditions, a deletion of exeM leads to altered biofilms that consist of densely packed structures which are covered by a thick layer of eDNA. Based on these results, we hypothesize that a major role of ExeS and, in particular, ExeM of S. oneidensis MR-1, is to degrade eDNA as a matrix component during biofilm formation to improve nutrient supply and to enable detachment.  相似文献   

16.
Shewanella oneidensis MR-1是一种模式金属还原菌,它能够在厌氧条件下,将多种金属化合物和人工合成染料等作为电子受体还原代谢。因此,该菌常常被用于生态修复等研究。厌氧条件下,S.oneidensis MR-1能够将细胞质内或细胞内膜产生的电子通过定位于细胞内膜、细胞膜周质和细胞外膜上的c-血红色素蛋白或还原酶所组成的具有多样性的电子传递系统,最终传递到存在于细菌细胞外环境中的电子受体。通过对多种电子传递过程的介绍,进一步阐明其对污染物修复和纳米材料合成的机理,从而为未来对该类微生物的利用和开发提供更为充分的理论依据。  相似文献   

17.
The growth and Cr(VI) reduction by Shewanella oneidensis MR-1 was examined using a mini-bioreactor system that independently monitors and controls pH, dissolved oxygen (DO), and temperature for each of its 24, 10-mL reactors. Independent monitoring and control of each reactor in the cassette allows the exploration of a matrix of environmental conditions known to influence S. oneidensis chromium reduction. S. oneidensis MR-1 grew in minimal medium without amino acid or vitamin supplementation under aerobic conditions but required serine and glycine supplementation under anaerobic conditions. Growth was inhibited by DO concentrations >80%. Lactate transformation to acetate was enhanced by low concentration of DO during the logarithmic growth phase. Between 11 and 35 degrees C, the growth rate obeyed the Arrhenius reaction rate-temperature relationship, with a maximum growth rate occurring at 35 degrees C. S. oneidensis MR-1 was able to grow over a wide range of pH (6-9). At neutral pH and temperatures ranging from 30 to 35 degrees C, S. oneidensis MR-1 reduced 100 microM Cr(VI) to Cr(III) within 20 min in the exponential growth phase, and the growth rate was not affected by the addition of chromate; it reduced chromate even faster at temperatures between 35 and 39 degrees C. At low temperatures (<25 degrees C), acidic (pH < 6.5), or alkaline (pH > 8.5) conditions, 100 microM Cr(VI) strongly inhibited growth and chromate reduction. The mini-bioreactor system enabled the rapid determination of these parameters reproducibly and easily by performing very few experiments. Besides its use for examining parameters of interest to environmental remediation, the device will also allow one to quickly assess parameters for optimal production of recombinant proteins or secondary metabolites.  相似文献   

18.
19.
20.
The membrane proteome plays a critical role in electron transport processes in Shewanella oneidensis MR-1, a bacterial organism that has great potential for bioremediation. Biotinylation of intact cells with subsequent affinity-enrichment has become a useful tool for characterization of the membrane proteome. As opposed to these commonly used, water-soluble commercial reagents, we here introduce a family of hydrophobic, cell-permeable affinity probes for extensive labeling and detection of membrane proteins. When applied to S. oneidensis cells, all three new chemical probes allowed identification of a substantial proportion of membrane proteins from total cell lysate without the use of specific membrane isolation method. From a total of 410 unique proteins identified, approximately 42% are cell envelope proteins that include outer membrane, periplasmic, and inner membrane proteins. This report demonstrates the first application of this intact cell biotinylation method to S. oneidensis and presents the results of many identified proteins that are involved in metal reduction processes. As a general labeling method, all chemical probes we introduced in this study can be extended to other organisms or cell types and will help expedite the characterization of membrane proteomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号