首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: Certain halogenated hydrocarbons, e.g., dichlo-roacetylene, are nephrotoxic to experimental animals and neurotoxic to humans; cysteine-S-conjugate β-lyases may play a role in the nephrotoxicity. We now show that with dichlorovinylcysteine as substrate the only detectable cysteine-S-conjugate β-lyase in rat brain homogenates is identical to glutamine transaminase K. The predominant (mitochondrial) form of glutamine transaminase K in rat brain was shown to be immunologically distinct from the predominant (cytosolic) form of the enzyme in rat kidney. Glutamine transaminase K and ω-amidase (constituents of the glutaminase II pathway) activities were shown to be widespread throughout the rat brain. However, the highest specific activities of these enzymes were found in the choroid plexus. The high activity of glutamine transaminase K in choroid plexus was also demonstrated by means of an immunohistochemical staining procedure. Glutamine transaminase K has a broad specificity toward amino acid and α-keto acid substrates. The ω-amidase also has a broad specificity; presumably, however, the natural substrates are α-ketoglutaramate and α-ketosuccinamate, the α-keto acid analogues of glutamine and aspara-gine, respectively. The high activities of both glutamine transaminase K and ω-amidase in the choroid plexus suggest that the two enzymes are linked metabolically and perhaps are coordinately expressed in that organ. The data suggest that the natural substrate of glutamine transaminase K in rat brain is indeed glutamine and that the metabolism of glutamine through the glutaminase II pathway (i.e., l -glutamine and α-keto acid α-ketoglutarate and l -amino acid + ammonia) is an important function of the choroid plexus. Moreover, the present findings also suggest that any explanation of the neurotoxicity of halogenated xenobiotics must take into account the role of glutamine transaminase K and its presence in the choroid plexus.  相似文献   

2.
Abstract— Glutamine transaminase from rat brain was shown to occur in the mitochondrial fraction, whereas the ω-amidase was shown to occur in the soluble fraction. Both enzymes were also found to be widely distributed throughout human brain tissue. Specific activities for the glutamine transaminase and ω-amidase in the parietal cortex of one individual at 5 h post mortem were 8 and 53 μmol per hour per gram of tissue, respectively. Rat brain glutamine transaminase was shown to be identical to that of the liver mitochondrial enzyme. Improved assays for glutamine transaminase and ω-amidase activities in crude tissue homogenates are described. The possible physiological importance of glutamine transaminase and its potential role in the encephalopathy of hepatic disease are discussed.  相似文献   

3.
Glycerol Phosphate Dehydrogenase in Developing Chick Retina and Brain   总被引:1,自引:1,他引:0  
Abstract: The development of cytoplasmic glycerol phosphate dehydrogenase (GPDH) activity in chick neural retina is compared with that in brain. GPDH converts dihydroxyacetone phosphate to glycerol 3-phosphate, an intermediate in phospholipid synthesis. The enzyme is known to be under corticosteroid control in rat brain and spinal cord (but not muscle or liver) and in primary oligodendrocyte cultures. It has not been previously studied in the eye. In chick brain the GDPH specific activity rises fivefold from the early embryo to the adult, with nearly all the increase occurring between embryonic day 14 and hatching. This time course correlates well with the known maturation of chick adrenal cortex (which produces corticosteroids). On the other hand, in chick retina the GPDH specific activity remains at a low basal level throughout development. Furthermore, adult rat and beef retinas show much lower enzyme activity than do the corresponding brain tissues. GPDH can be induced precociously by hydrocortisone in embryonic chick brain from days 12 through 16, both in the intact embryo and in tissue culture; however, GPDH is not at all inducible in chick retina. The developmental increase in chick brain GPDH can be correlated qualitatively with myelin formation, as shown by luxol fast blue staining, whereas no myelin is seen in retina at any age. Our results are consistent with recent immunocytochemical studies demonstrating that GPDH in rat brain is associated with myelin-producing oligodendroglial cells, absent in retina. In comparison, another glial enzyme, glutamine synthetase (GS), known to be inducible in both chick brain and retina, is localized in brain astrocytes and retinal Müller cells.  相似文献   

4.
Co-cultivation of confluent rat astrocyte cultures with embryonic chick neurons resulted in induction of glutamine synthetase activity in the astrocytes. This induction of glutamine synthetase in astrocytes by neurons was independent of induction by hydrocortisone and forskolin, but was dependent on the length of co-cultivation and the number of neurons present in the co-culture. Cycloheximide and actinomycin D inhibited the induction of glutamine synthetase in astrocytes by neurons, whereas cytosine arabinoside had no apparent effect. Results suggest that this induction of glutamine synthetase in astrocytes is mediated by cell contact with neurons and may represent a specific neuronal and glial interaction.  相似文献   

5.
An activity stain to detect glutamine transaminase K subjected to nondenaturing polyacrylamide gel electrophoresis (ND-PAGE) was developed. The gel is incubated with a reaction mixture containing L-phenyl-alanine, alpha-keto-gamma-methiolbutyrate (alpha KMB), glutamate dehydrogenase, phenazine methosulfate (PMS) and nitroblue tetrazolium (NBT). Glutamine transaminase K catalyzes a transamination reaction between phenylalanine and alpha KMB. The resultant methionine is a substrate of glutamate dehydrogenase. The NADH formed in the oxidative deamination of methionine reacts with PMS and NBT to form a blue band on the surface of the gel coincident with glutamine transaminase K activity. Cysteine S-conjugate beta-lyase activity is detected in the gel by incubating the gel with a reaction mixture containing alpha KMB (to ensure maintenance of the enzyme in the pyridoxal 5'-phosphate form), S-(1,2-dichlorovinyl)-L-cysteine (DCVC), PMS, and NBT. The products of the lyase reaction interact with PMS and NBT to form a blue dye coincident with the lyase activity. In addition, a new assay procedure for measuring cysteine S-conjugate beta-lyase activity was devised. This procedure couples pyruvate formation from DCVC to the alanine dehydrogenase reaction. Preparations of purified rat kidney glutamine transaminase K yield a single protein band on ND-PAGE (apparent Mr approximately 95,000). This band coincides with both the cysteine S-conjugate beta-lyase and glutamine transaminase K activities. Activity staining showed that homogenates of rat kidney, liver, skeletal muscle, and heart possess a glutamine transaminase K/cysteine S-conjugate beta-lyase activity with an Rf value on ND-PAGE identical to that of purified rat kidney glutamine transaminase K.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Developmental changes in the concentration of beta-citryl-L-glutamate(beta-CG) have been examined in the cerebrum and optic lobe of the developing chick brain and in primary cultured neuronal cells from the chick embryo optic lobes with gas chromatographic and HPLC methods originated in our studies. A sharp peak was shown by beta-CG, with a maximal concentration at 13 days of incubation in the optic lobe of the developing chick brain but decreasing markedly to adult levels. The developmental change in primary cultured neurons was similar to that in the optic lobe of the developing chick brain. Changes in synthetic and hydrolytic activities of beta-CG were studied during growth of primary cultured neurons. Incorporation of radioactivities from radiolabeled pyruvate and alanine into beta-CG increased significantly on day 3 of culture, reaching a plateau on day 6, whereas that from radioactive glutamine and glutamate increased gradually from day 3 to day 12 of culture. The hydrolyzing enzyme activity of beta-CG during neuron growth was low until day 3 of culture, when it increased significantly until day 12. Similar developmental changes were observed in the developing chick embryo optic lobes.  相似文献   

7.
Glutamine synthetase activity was estimated in the chick cerebral hemispheres, optic lobes and cerebellum between the 1st and the 30th day of postnatal growth. Glutamine synthetase activity is higher in the cerebellum than in the cerebral hemispheres and lowest in the optic lobes at 1 day after hatching; at 30 days after hatching, it is the same in the optic lobes and in the cerebellum and lowest in the cerebral hemispheres. The great increase of glutamine synthetase activity between the 1st and the 4th day after hatching corresponds to the appearance of the heterogeneity of the chick brain glutamate metabolism. The glutamine synthetase activity is inhibited by MSO in vivo at a concentration of 100 mg kg ?1 at values of 87, 90 and 89 % in cerebral hemispheres, optic lobes and cerebellum of 1, 2 and 4-day-old chicks. The enzyme inhibition is less pronounced in vitro and reaches values of about 25 and 75 % for 1 and 10 mM MSO concentrations respectively in the three brain areas of the 1 to 4-day-old chick and values slightly lower in the 30-day-old chick brain.  相似文献   

8.
Abstract: The glutamine cycle has been proposed as a pathway in which glutamine synthesized in glia provides substrate for synthesis of the neurotransmitters glutamate and GABA as they are lost from neurons. To test whether GABA may regulate this pathway, the effect of elevated GABA on the glial enzyme glutamine synthetase was examined in rat brain. Repeated subcutaneous injections of the antiepileptic GABA transaminase inhibitor γ-vinylGABA at a dose of 150 mg/kg per day for 21 days reduced glutamine synthetase activity by 36% in the cortex and 22% in the cerebellum. At 30 mg/kg per day, glutamine synthetase activity was reduced by 9.5% in the cortex but unchanged in the cerebellum. The reductions were brain specific because the skeletal muscle and liver enzymes were unaffected by γ-vinylGABA administration. Amino acid analysis of the cortex from γ-vinylGABA-treated rats demonstrated a 270% increase in GABA levels after 150 mg/kg but no change after 30 mg/kg. GABA levels and glutamine synthetase activity were inversely correlated. The 150 mg/kg dose significantly lowered cortical glutamine and glutamate levels. The decline in brain glutamine synthetase activity with chronic γ-vinylGABA administration developed gradually over time and may be due to the slow turnover of this enzyme in vivo.  相似文献   

9.
Abstract: It has been proposed that hyperammonemia may be associated with valproate therapy. As astrocytes are the primary site of ammonia detoxification in brain, the effects of valproate on glutamate and glutamine metabolism in astrocytes were studied. It is well established that, because of compartmentation of glutamine synthetase, astrocytes are the site of synthesis of glutamine from glutamate and ammonia. The reverse reaction is catalyzed by the ubiquitous enzyme glutaminase, which is present in both neurons and astrocytes. In astrocytes exposed to 1.2 mM valproate, glutaminase activity increased 80% by day 2 and remained elevated at day 4; glutamine synthetase activity was decreased 30%. Direct addition of valproate to assay tubes with enzyme extracts from untreated astrocytes had significant effects only at concentrations of 10 and 20 mM, When astrocytes were exposed for 4 days to 0.3, 0.6, or 1.2 mM valproate and subsequently incubated with l -[U-14C]glutamate, label incorporation into [14C]glutamine was decreased by 11, 25, and 48%, respectively, and is consistent with a reduction in glutamine synthetase activity. Label incorporation from l -[U-14C]glutamate into [14C]aspartate also decreased with increasing concentrations of valproate. Following a 4-day exposure to 0.6 mM valproate, the glutamine levels increased 40% and the glutamate levels 100%. These effects were not directly proportional to valproate concentration, because exposure to 1.2 mM valproate resulted in a 15% decrease in glutamine levels and a 25% increase in glutamate levels compared with control cultures. Intracellular aspartate was inversely proportional to all concentrations of extracellular valproate, decreasing 60% with exposure to 1.2 mM valproate. These results indicate that valproate increases glutaminase activity, decreases glutamine synthetase activity, and alters Krebs-cycle activity in astrocytes, suggesting a possible mechanism for hyperammonemia in brain during valproate therapy.  相似文献   

10.
Transfer of glutamine between astrocytes and neurons is an essential part of the glutamate-glutamine cycle in the brain. Transport of glutamine was investigated in primary cultures of astrocytes and neurons and compared to glutamine transport in cell lines with glial and neuronal properties. Glutamine uptake in astrocytes was mainly mediated by general amino acid transporters with properties similar to ASCT2, LAT1, LAT2, SN1 and y(+)LAT2. In cultured neurons, transport activities were detected consistent with the presence of LAT1, LAT2 and y(+)LAT2, but the most prominent activity was a novel Na(+)-dependent glutamine transporter that could be inhibited by D-aspartate. The mRNA for system A isoforms ATA1 and ATA2 was detected in both neurons and astrocytes, but system A activity was only detected in neurons. ASCT2 on the other hand appeared to be astrocyte-specific. The cell lines F98 and 108CC-15, having astroglial and neuronal properties, respectively, expressed sets of glutamine transporters that were unrelated to those of the corresponding primary culture and are thus of limited use as models to study transfer of glutamine between astrocytes and neurons.  相似文献   

11.
Glutamine release from astrocytes is an essential part of the glutamate-glutamine cycle in the brain. Uptake of glutamine into cultured rat astrocytes occurs by at least four different routes. In agreement with earlier studies, a significant contribution of amino acid transport systems ASC, A, L, and N was detected. It has not been determined whether these systems are also involved in glutamine efflux or whether specific efflux transporters exist. We show here that ASCT2, a variant of transport system ASC, is strongly expressed in rat astroglia-rich primary cultures but not in neuron-rich primary cultures. The amino acid sequence of rat astroglial ASCT2 is 83% identical to that of mouse ASCT2. In Xenopus laevis oocytes expressing rat ASCT2, we observed high-affinity uptake of [U-14C]glutamine (Km = 70 microM) that was Na(+)-dependent, concentrative, and unaffected by membrane depolarization. When oocytes were preloaded with [U-14C]glutamine, no glutamine efflux was detected in the absence of extracellular amino acids. Neither lowering intracellular pH nor raising the temperature elicited efflux. However, addition of 0.1 mM unlabeled alanine, serine, cysteine, threonine, glutamine, or leucine to the extracellular solution resulted in a rapid release of glutamine from the ASCT2-expressing oocytes. Amino acids that are not recognized as substrates by ASCT2 were ineffective in this role. Extracellular glutamate stimulated glutamine release weakly at pH 7.5 but was more effective on lowering pH to 5.5, consistent with the pH dependence of ASCT2 affinity for glutamate. Our findings suggest a significant role of ASCT2 in glutamine efflux from astrocytes by obligatory exchange with extracellular amino acids. However, the relative contribution of this pathway to glutamine release from cells in vivo or in vitro remains to be determined.  相似文献   

12.
The results of recent immunocytochemical experiments suggest that glutamine synthetase (GS) in the rat CNS may not be confined to astrocytes. In the present study, GS activity was assayed in oligodendrocytes isolated from bovine brain and in oligodendrocytes, astrocytes, and neurons isolated from rat forebrain, and the results were compared with new immunochemical data. Among the cells isolated from rat brain, astrocytes had the highest specific activities of GS, followed by oligodendrocytes. Oligodendrocytes isolated from white matter of bovine brain had GS specific activities almost fivefold higher than those in white matter homogenates. Immunocytochemical staining also showed the presence of GS in both oligodendrocytes and astrocytes in bovine forebrain, in three white-matter regions of rat brain, and in Vibratome sections as well as paraffin sections.  相似文献   

13.
The use of glutamine has been shown to increase the frequency of organogenesis and regeneration in the in vitro culture of several plants. The effect of glutamine on hormone-induced multiple shoot formation in desi and kabuli genotypes of chickpea (C-235 and PUSA-1053) were evaluated. Embryo axes with or without attached cotyledons were cultured in thidiazuron (TDZ) or 6-benzylaminopurine (BAP)-containing medium, respectively, with various concentrations of glutamine. Glutamine improved and prolonged the multiple shoot regeneration ability of the embryo axis. Chickpea embryo axis with attached cotyledon and cultured in TDZ-containing medium showed improved and prolonged shoot regeneration with 5 mM glutamine, while embryo axis without cotyledon and cultured in BAP-containing medium showed prolonged regeneration ability in 10 mM glutamine. Glutamine, however, did not serve as a substitute for cotyledon. Desi genotype (C-235) showed better response for multiple shoot formation as compared to the kabuli genotype (PUSA-1053). Glutamine at a concentration of 5 mM also improved root formation in excised in vitro shoots.  相似文献   

14.
The ontogeny of brain creatine kinase (CK) was studied during chick embryo development. The cytosolic activity increased 270% in 10 h from the 2nd to the 3rd days of incubation; this was followed by a plateau phase throughout development and at the end of incubation there appeared to be another increase of cytosolic and mitochondrial CK activities. Therefore, early embryonic chick brain CK is another‘constitutive’enzyme like the early embryonic chick heart CK since creatine has not been enzymatically detected in the embryo until day 4 of incubation. Insulin does not appear to stimulate the early increase of brain CK activity since the hormone is not present in the embryo until day 5 of incubation. It is likely that CK increase is associated with neuronal multiplication at early stages and possibly to neuronal maturation before hatching.  相似文献   

15.
Abstract: GSH, GSSG, vitamin E, and ascorbate were measured in 14-day cultures of chick astrocytes and neurons and compared with levels in the forebrains of chick embryos of comparable age. Activities of enzymes involved in GSH metabolism were also measured. These included -γ-glutamylcysteine synthetase, GSH synthetase, γ-glutamyl cyclotransferase, γ-glutamyltranspeptidase, glutathione transferase (GST), GSH peroxidase, and GSSG reductase. The concentration of lipid-soluble vitamin E in the cultured neurons was found to be comparable with that in the forebrain. On the other hand, the concentration of vitamin E in the astrocytes was significantly greater in the cultured astrocytes than in the neurons, suggesting that the astrocytes are able to accumulate exogenous vitamin E more extensively than neurons. The concentrations of major fatty acids were higher in the cell membranes of cultured neurons than those in the astrocytes. Ascorbate was not detected in cultured cells although the chick forebrains contained appreciable levels of this antioxidant. GSH, total glutathione (i.e., GSH and GSSG), and GST activity were much higher in cultured astrocytes than in neurons. γ-Glutamylcysteine synthetase activity was higher in the cultured astrocytes than in the cultured neurons. GSH reductase and GSH peroxidase activities were roughly comparable in cultured astrocytes and neurons. The high levels of GSH and GST in cultured astrocytes appears to reflect the situation in vivo. The data suggest that astrocytes are resistant to reactive oxygen species (and potentially toxic xenobiotics) and may play a protective role in the brain. Because enzymes of GSH metabolism are generally well represented in cultured astrocytes and neurons these cells may be ideally suited as probes for manipulating GSH levels in neural tissues in vitro. Cultured astrocytes and neurons should be amenable to the study of the effects of various metabolic insults on the GSH system. Such studies may provide insights into the design of therapeutic strategies to combat oxidative and xenobiotic stresses.  相似文献   

16.
Activities of alanine and aspartate transaminases, glutamine synthetase, adenylate deaminase, glutamate and xanthine dehydrogenases and lactate dehydrogenase were measured in leg and breast muscles of developing chicks from day 10 in ovo to day 5 of free life, and compared with measurements for adult hens. Xanthine dehydrogenase activity was low in both muscles with adult levels attained on day 15 in ovo. Glutamine synthetase for chicks was maintained higher during development than for adults in both muscles. Minor differences were observed between both muscles in all enzymes tested up to day 18. With low embryonic values and important rises before hatching, the differences were initiated in the posthatching period. Important differences were observed between adult levels of activity. Leg muscle revealed higher enzyme values except for lactate dehydrogenase and indistinguishable levels for adenylate deaminase and xanthine dehydrogenase in both muscles. Alanine, instead of glutamine, is postulated as the main nitrogen transport between muscle and liver in the domestic fowl.  相似文献   

17.
Our purpose was to identify the sequence of ω-amidase, which hydrolyses the amide group of α-ketoglutaramate, a product formed by glutamine transaminases. In the Bacillus subtilis genome, the gene encoding a glutamine transaminase (mtnV) is flanked by a gene encoding a putative ‘carbon-nitrogen hydrolase’. The closest mammalian homolog of this putative bacterial ω-amidase is ‘nitrilase 2’, whose size and amino acid composition were in good agreement with those reported for purified rat liver ω-amidase. Mouse nitrilase 2 was expressed in Escherichia coli, purified and shown to catalyse the hydrolysis of α-ketoglutaramate and other known substrates of ω-amidase. No such activity was observed with mouse nitrilase 1. We conclude that mammalian nitrilase 2 is ω-amidase.  相似文献   

18.
19.
The activities of two glial cell enzymes, glutamine synthetase (a marker for astrocytes) and 2′,3′-cyclic nucleotide 3′-phosphohydrolase (a marker for oligodendrocytes and myelination) were studied in the developing chick embryo brain in vivo and in cultures derived from chick embryos. The in vivo findings showed that the activities of both enzymes parallel the patterns of gliogenesis and myelination. Glutamine synthetase follows similar patterns in culture and in vivo, whereas the developmental profile of 2′,3′-cyclic nucleotide 3′-phosphohydrolase appears to be affected by the culture conditions.  相似文献   

20.
To contribute to our understanding of nitrogen metabolism in the developing chick we have studied in liver, intestine and yolk sac membrane the ontogeny of both aspartate- and alanine transaminases, glutamate dehydrogenase, adenylate deaminase, glutamine synthetase and xanthine dehydrogenase activities. Liver enzyme activities were much higher than those of the same enzymes in intestine and yolk sac membrane, the latter having the lowest activities. In the liver, both alanine transaminase and glutamate dehydrogenase increased their activity just before hatching, xanthine dehydrogenase and glutamine synthetase develop their highest activity just after hatching, while aspartate transaminase and adenylate deaminase attained the highest levels just with adulthood. From the pattern of enzyme activity in yolk sac membrane and intestine it can be inferred that after hatching, the amino-acid metabolism in these tissues is considerably enhanced, with higher production of ammonia from amino acids, as indicated by the rise in adenylate deaminase, as well as increased potentiality in production of both alanine and glutamine. It can be concluded that hatching coincides with a deep change of pace in amino-acid metabolism in the organs studied fully comparable with that observed in Mammals at the end of lactation, with the difference that the adaptation to the new diet in the case of the chick is much more sudden than weaning is for the rat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号