首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetic resolution of racemates constitutes one major route to manufacture optically pure compounds. The enzymatic kinetic resolution of (R,S)-1-phenylethanol over Candida antarctica lipase B (CALB) by using vinyl acetate as the acyl donor in the acylation reaction was chosen as model reaction. A systematic screening and optimization of the reaction parameters, such as enzyme, ionic liquid and substrates concentrations with respect to the final product concentration, were performed. The enantioselectivity of immobilized CALB commercial preparation, Novozym 435, was assayed in several ionic liquids as reaction media. In particular, three different ionic liquids: (i) 1-butyl-3-methylimidazolium hexafluorophosphate [bmim][PF6], (ii) 1-butyl-3-methylimidazolium tetrafluoroborate [bmim][BF4] and (iii) 1-ethyl-3-methylimidazolium triflimide [emim][NTf2] were tested. At 6.6% (w/w) of Novozym 435, dispersed in 9.520 M of [bmim][PF6] at 313.15 K, using an equimolar ratio of vinyl acetate/(R,S)-1-phenylethanol after 3 h of bioconversion, the highest possible conversion (50%) was reached with enantiomeric excess for substrate higher than 99%.  相似文献   

2.
Continuous dynamic kinetic resolution processes in different ionic liquid/supercritical carbon dioxide biphasic systems were carried out by simultaneously using both immobilized Candida antarctica lipase B (Novozym 435) and silica modified with benzenosulfonic acid (SCX) catalysts at 40°C and 10 MPa. SCX was seen to act as an efficient heterogeneous chemical catalyst for the racemization of (S)-1-phenylethanol in different ionic liquid media ([emim][NTf2], [btma][NTf2] and [bmim][PF6]). Coating both chemical and enzymatic catalysts with ILs greatly improved the efficiency of the process, providing a good yield (76%) of (R)-1-phenylethyl propionate product with excellent enantioselectivity (ee = 91–98%) in continuous operation.  相似文献   

3.
The catalytic activity of α-chymotrypsin in the enzymatic peptide synthesis of N-acetyl-l-tryptophan ethyl ester with glycyl glycinamide was examined in ionic liquids and organic solvents. The water content in 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide ([emim][FSI]) affected the initial rates of peptide synthesis and hydrolysis. The activity of α-chymotrypsin was influenced by a kind of anions consisting of the same cation, [emim], when an ionic liquid was used as a solvent. The initial rate of peptide synthesis was improved 16-fold by changing from an organic solvent, acetonitrile, to an ionic liquid, [emim][FSI], at 25 °C. The activity of α-chymotrypsin in the peptide synthesis in [emim][FSI] was 17 times greater than that in acetonitrile at 60 °C, although the activity of α-chymotrypsin in the peptide synthesis gradually decreased with an increase in reaction temperature in [emim][FSI], similar to organic solvents. Moreover, α-chymotrypsin exhibited activity in [emim][FSI] and [emim][PF6] at 80 °C.  相似文献   

4.
Ionic liquids have been used as exceptional nonaqueous reaction media for enzymatic transformation. The ring‐opening polymerization of ε‐caprolactone catalyzed by Novozyme‐435 lipase was successfully conducted in 1‐butyl‐3‐methylimidazolium hexafluorophosphate ([Bmim]PF6) ionic liquid. 1H‐NMR and MALDI‐TOF analyses of poly(ε‐caprolactone) (PCL) formed by Novozyme‐435 lipase‐catalyzed reaction revealed an asymmetric telechelic α‐hydroxy‐ω‐carboxylic acid end group. The effects of enzyme concentration, temperature, reaction time, and water activities on monomer conversion and Mn were systematically evaluated. Through the optimization of reaction conditions, PCL was produced in 85% monomer conversion, with an Mn of 5942, in [Bmim]PF6 at 60°C for 48 h. DSC results demonstrated that high‐molecular‐weight PCL exhibited an excellent thermal property. SEM results showed that PCL had a clear spherulites structure, which could provide a large surface area for cell adhesion. These results showed that [Bmim]PF6 ionic liquid was suitable for the biocatalytic synthesis of PCL using Novozyme‐435 lipase, and could be used as alternative environmentally friendly media to replace the traditional organic solvents.  相似文献   

5.
Sporomusa termitida reduced caffeate (1mM) in anaerobic, two-liquid phase, reaction systems containing either tetradecane or 1-butyl-3-methylimidazolium hexafluorophosphate {[bmim][PF6]} (20% v/v). The initial rate and final product yield were 20 and 7% lower, respectively, in [bmim][PF6]. Since caffeate partitioned only into the aqueous phase, the lower rate cannot be attributed to mass transfer barriers. Therefore, [bmim][PF6] inhibited the biocatalyst, perhaps unsurprisingly since it is very polar and hydrolyses to produce HF.Revisions requested 30 September 2004; Revisions received 2 December 2004  相似文献   

6.
Ionic liquids, 1-butyl-3-methyl imidazolium hexafluorophosphate ([BMIm][PF6]) and 1-ethyl-3-methyl imidazolium hexafluorophosphate ([EMIm][PF6]), were used for the methanolysis of sunflower oil using Candida antarctica lipase (Novozyme 435) and gave yields of fatty acid methyl esters at 98–99% within 10 h. The optimum conditions of methanolysis in hydrophobic ionic liquids are 2% (w/w) lipase, 1:1 (w/w) oil/ionic liquid and 1:8 (mol/mol) oil/methanol at 58–60°C. Methanolysis using hydrophilic ionic liquids, 3-methyl imidazolium tetrafluoroborate ([HMIm][BF4]) and 1-butyl-3-methyl imidazolium tetrafluoroborate ([BMIm][BF4]), gave very poor yields. A hydrophobic ionic liquid thus protects the lipase from methanol. Recovered ionic liquids and lipase were used for four successive reaction cycles without any significant loss of activity.  相似文献   

7.
Hyperbranched poly-l-lactides have been synthesized by eROP in [C4MIM][PF6] media. The bis(hydroxymethyl)butyric acid molecule was used as the AB2 core co-monomer and immobilized lipase B from Candida antarctica as biocatalyst. The degree of branching could be controlled by the reaction conditions, with the maximum achieved being 0.21. The successful achievement of the hyperbranched structure is attributed to the high solvent power of substrates and products in the ionic liquid besides sustained lipase activity.  相似文献   

8.
S-(+)-2,2-dimethylcyclopropanecarboxylic acid (S-(+)-DMCPA) is a key chiral intermediate for the synthesis of Cilastatin. The enzymatic preparation of S-(+)-DMCPA has attracted much attention. In order to improve the activity and stability of Novozyme 435 for enzymatic preparation of S-(+)-DMCPA from 2,2-dimethylcyclopropane carboxylate (DMCPE), the glutaraldehyde modification for Novozyme 435 was investigated and the glutaraldehydemodified Novozyme 435 was used as biocatalyst for the synthesis of S-(+)-DMCPA. The results showed that the modified Novozyme 435 had a better reusing merit than unmodified enzyme. The maximum specific activity was obtained by modification Novozyme 435 with 1.5% glutaraldehyde solution under the conditions of shaking at 200 rpm and 30°C for 45 min. The optimal enzymatic hydrolysis conditions for glutaraldehyde-modified Novozyme 435 were also confirmed. The optimized hydrolytic reaction mixture contained 10 mL potassium phosphate buffer (1.0 mol/L, pH 7.6), 90 mg of DMCPE and 160 mg of glutaraldehyde-modified enzyme, and the reaction was performed at 30oC and 200 rpm for 52 h. The reusing efficiency of modified Novozyme 435 was further evaluated. Under the optimal conditions, the modified enzyme remained 76.0% of its original yield after 10 times reuse, but the optical purity of the product kept intact; whereas the yield of unmodified enzyme reduced to 20.8% of its initial value and the ee value of product decreased a lot to 90.7% after 7 times recycle. These results showed that the modified Novozyme 435 was more cost-effective for the preparation of S-(+)-DMCPA in industrial application.  相似文献   

9.
The whole-cell biocatalyst displaying Candida antarctica lipase B (CALB) on the yeast cell surface with α-agglutinin as the anchor protein was easy to handle and possessed high stability. The lyophilized CALB-displaying yeasts showed their original hydrolytic activity and were applied to an ester synthesis using ethanol and l-lactic acid as substrates. In water-saturated heptane, CALB-displaying yeasts catalyzed ethyl lactate synthesis. The synthesis efficiency increased depending on temperature and reached approximately 74% at 50°C. The amount of l-ethyl lactate increased gradually. l-Ethyl lactate synthesis stopped at 200 h and restarted after adding of l-lactic acid at 253 h. It indicated that CALB-displaying yeasts retained their synthetic activity under such reaction conditions. In addition, CALB-displaying yeasts were able to recognize l-lactic acid and d-lactic acid as substrates. l-Ethyl lactate was prepared from l-lactic acid and d-ethyl lactate was prepared from d-lactic acid using the same CALB-displaying whole-cell biocatalyst. These findings suggest that CALB-displaying yeasts can supply the enantiomeric lactic esters for preparation of useful and improved biopolymers of lactic acid.  相似文献   

10.
Whole-genome sequence analysis of Bacillus halodurans ATCC BAA-125 revealed an isomerase gene (rhaA) encoding an l-rhamnose isomerase (l-RhI). The identified l -RhI gene was cloned from B. halodurans and over-expressed in Escherichia coli. DNA sequence analysis revealed an open reading frame of 1,257 bp capable of encoding a polypeptide of 418 amino acid residues with a molecular mass of 48,178 Da. The molecular mass of the purified enzyme was estimated to be ∼48 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 121 kDa by gel filtration chromatography, suggesting that the enzyme is a homodimer. The enzyme had an optimal pH and temperature of 7 and 70°C, respectively, with a k cat of 8,971 min−1 and a k cat/K m of 17 min−1 mM−1 for l-rhamnose. Although l-RhIs have been characterized from several other sources, B. halodurans l-RhI is distinguished from other l-RhIs by its high temperature optimum (70°C) with high thermal stability of showing 100% activity for 10 h at 60°C. The half-life of the enzyme was more than 900 min and ∼25 min at 60°C and 70°C, respectively, making B. halodurans l-RhI a good choice for industrial applications. This work describes one of the most thermostable l-RhI characterized thus far.  相似文献   

11.
l-threo-3,4-Dihydroxyphenylserine (DOPS) is a chiral unnatural β-hydroxy amino acid used for the treatment of Parkinson disease. We developed a continuous bioconversion system for DOPS production that uses whole-cell biocatalyst of recombinant Escherichia coli expressing l-threonine aldolase (l-TA) genes cloned from Streptomyces avelmitilis MA-4680. Maximum conversion rates were observed at 2 M glycine, 145 mM 3,4-dihydroxybenzaldehyde, 0.75% Triton-X, 5 g E. coli cells/l, pH 6.5 and 10°C. In the optimized condition, overall productivity was 8 g/l, which represents 40 times the synthesis yield possible with no optimization of conditions.  相似文献   

12.

Background  

l-lactide is the monomer for the polymer poly-l-lactic acid (PLLA). PLLA can be made from renewable resources, and is used in an increasing amount of applications. The biopolymer PLLA is one type of polymer of the family of polylactic acids (PLAs). Purac produces l-lactide and d-lactide, and supports partners with know-how to produce their own PLA from lactide. This life cycle assessment (LCA) study supporting market development presents the eco-profile of lactides and PLA biopolymers.  相似文献   

13.
The catalytic activity of α-chymotrypsin in the enzymatic peptide synthesis of N-acetyl-l-tryptophan ethyl ester with glycyl glycinamide was examined in ionic liquids and organic solvents. The water content in 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide ([emim][FSI]) affected the initial rates of peptide synthesis and hydrolysis. The activity of α-chymotrypsin was influenced by a kind of anions consisting of the same cation, [emim], when an ionic liquid was used as a solvent. The initial rate of peptide synthesis was improved 16-fold by changing from an organic solvent, acetonitrile, to an ionic liquid, [emim][FSI], at 25 °C. The activity of α-chymotrypsin in the peptide synthesis in [emim][FSI] was 17 times greater than that in acetonitrile at 60 °C, although the activity of α-chymotrypsin in the peptide synthesis gradually decreased with an increase in reaction temperature in [emim][FSI], similar to organic solvents. Moreover, α-chymotrypsin exhibited activity in [emim][FSI] and [emim][PF6] at 80 °C.  相似文献   

14.
The enzymatic acylation of (RS)-phenylethylamine with different acyl donors catalysed by lipases, was studied in organic solvents with different hydrophobicities and in mixtures with ionic liquids ((ILs); [BMIm][BF4], [BMIm][SCN], [BMIm][Cl] and [BMIm][PF6]). Using lipases from Candida antarctica B (CAL-B) and from Aspergillus niger higher conversion degrees and E-values were obtained with ethyl acetate as the acyl donor. When CAL-B was used as the biocatalyst, in a two-phase system formed by [BMIm][X]/dichloromethane or [BMIm][X]/chloroform, the selectivity was better than that obtained in pure organic solvents. The selectivity was found to be related to individual anions in ILs. In this reaction, the ion effectiveness in enhancing the enzyme selectivity followed the series: Cl > SCN > BF4 > PF6 in mixtures with dichloromethane, and PF6 > BF4 > SCN > Cl in mixtures with chloroform.  相似文献   

15.
Direct transesterification of (R,S)-1-chloro-3-(3,4-difluorophenoxy)-2-propanol (rac-CDPP) (a key intermediate in the synthesis of the chiral drug (S)-lubeluzole) with vinyl butyrate by lipases from Pseudomonas aeruginosa (P. aeruginosa) MTCC 5113 was performed in hexane with ionic liquids (ILs) 1-butyl-3-methyl imidazolium hexafluorophosphate [BMIm][PF6] and 1-butyl-3-methyl imidazolium tetrafluoroborate [BMIm][BF4] as co-solvents. The maximum conversion (>49%) and enantiomeric excess (ee > 99.9%) was achieved in 6 h of incubation at 30 °C with [BMIm][PF6] as co-solvent in a two-phase system. The enzyme was able to perform with the same specificity even at 60 °C in the presence of ILs. It was possible to use lipases repeatedly for more than 10 times while still maintaining absolute enantioselectivity and reactivity. Stability studies on lipases from P. aeruginosa in ILs revealed the fact that the enzyme constancy and the reactivity in catalyzing transesterification of rac-CDPP into (S)-1-chloro-3-(3,4-difluorophenoxy)-2-butanoate was of the order of [BMIm][PF6] > [BMIm][BF4] in two-phase system.  相似文献   

16.
Glycerol carbonate was synthesized from renewable glycerol and dimethyl carbonate using lipase in solvent-free reaction system in which excess dimethyl carbonate played as the reaction medium. A variety of lipases have been tested for their abilities to catalyze transesterification reaction, and Candida antartica lipase B and Novozyme 435 exhibited higher catalytic activities. The silica-coated glycerol with a 1:1 ratio was supplied to prevent two-phase formation between hydrophobic dimethyl carbonate and hydrophilic glycerol. Glycerol carbonate was successfully synthesized with more than 90% conversion from dimethyl carbonate and glycerol with a molar ratio of 10 using Novozyme 435-catalyzed transesterification at 70 °C. The Novozyme 435 [5% (w/w) and 20% (w/w)] and silica gel were more than four times recycled with good stability in a repeated batch operation for the solvent-free synthesis of glycerol carbonate.  相似文献   

17.
Recombinant Escherichia coli harboring the l-arabinose isomerase (BLAI) from Bacillus licheniformis was used as a biocatalyst to produce l-ribulose in the presence of borate. Effects of substrate concentration, the borate to l-arabinose ratio, pH, and temperature on the conversion of l-arabinose to l-ribulose were investigated. l-Ribulose production was efficient when pH was higher than 9 and temperature was higher than 50 °C. Borate addition to the reaction mixture was essential for high conversion of l-arabinose to l-ribulose as it resulted in an equilibrium shift in favor of the product. Under the optimal conditions determined by response surface methodology, the E. coli harboring BLAI produced 375 g l−1 L-ribulose from 500 g l−1 l-arabinose at a reaction time of 60 min, corresponding to a conversion yield of 75% and productivity of 375 g l−1 h−1. When the resting recombinant E. coli cells were recycled, 85% of the yield was obtained even after seven cycles of reuse. The productivity and final concentration of l-ribulose obtained in the present study were the highest yet reported.  相似文献   

18.
Bacillus coagulans has been of great commercial interest over the past decade owing to its strong ability of producing optical pure l-lactic acid from both hexose and pentose sugars including l-arabinose with high yield, titer and productivity under thermophilic conditions. The l-arabinose isomerase (L-AI) from Bacillus coagulans was heterologously over-expressed in Escherichia coli. The open reading frame of the L-AI has 1,422 nucleotides encoding a protein with 474 amino acid residues. The recombinant L-AI was purified to homogeneity by one-step His-tag affinity chromatography. The molecular mass of the enzyme was estimated to be 56 kDa by SDS-PAGE. The enzyme was most active at 70°C and pH 7.0. The metal ion Mn2+ was shown to be the best activator for enzymatic activity and thermostability. The enzyme showed higher activity at acidic pH than at alkaline pH. The kinetic studies showed that the K m, V max and k cat/K m for the conversion of l-arabinose were 106 mM, 84 U/mg and 34.5 mM−1min−1, respectively. The equilibrium ratio of l-arabinose to l-ribulose was 78:22 under optimal conditions. l-ribulose (97 g/L) was obtained from 500 g/l of l-arabinose catalyzed by the enzyme (8.3 U/mL) under the optimal conditions within 1.5 h, giving at a substrate conversion of 19.4% and a production rate of 65 g L−1 h−1.  相似文献   

19.
Thermomyces lanuginosus lipase (Lipozyme TLIM)-catalyzed esterification of l-ascorbic acid was studied. It was suggested that Lipozyme TLIM was a suitable biocatalyst for enzymatic esterification of l-ascorbic acid. Three solvents were investigated for the reaction, and acetone was found to be a suitable reaction medium. Furthermore, it was found that water activity could notably affect the conversion. Moreover, pH memory of Lipozyme TLIM lipase for catalyzing l-ascorbic acid esterification in acetone was observed and the effect of pH on the reaction was estimated. In addition, the influences of other parameters such as substrate mole ratio, enzyme loading, and reaction temperature and reusability of lipase on esterification of l-ascorbic acid were also analyzed systematically and quantitatively. Kinetic characterization of Lipozyme TLIM showed that K m,a and V max were 80.085 mM and 0.747 mM min−1, respectively. As a result, Lipozyme TLIM-catalyzed esterification of l-ascorbic acid gave a maximum conversion of 99%.  相似文献   

20.
The application of ionic liquids as solvents for transesterification of prochiral pirymidine acyclonucleoside using lipase (EC 3.1.1.3) Amano PS from Burkholderia cepacia (BCL) is reported. The effect of using medium reaction, acyl group donor, and temperature on the activity and enantioselectivity of BCL was studied. From the investigated ionic solvents, the hydrophobic ionic liquid [BMIM]PF6] was the preferred medium for enzymatic reactions. However, the best result was obtained in the mixture [BMIM][PF6]:TBME (1:1 v/v) at 50°C. Enzyme activity and selectivity in [BMIM][PF6]:TBME (1:1 v/v) was slightly higher in than in conventional organic solvents (for example, TBME), and in this condition, good activity and enantioselectivity were associated with unique properties of ionic liquid such as hydrophobicity and high polarity. Independently of solvents, monester of (R)‐configuration was obtained in excess. Under optimal conditions, desymmetrization of the prochiral compound using different acyl donors was performed. If vinyl butyrate was used as the acylating agent, BCL completely selectively acylated enantiotopic hydroxyl groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号