首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 289 毫秒
1.
We have addressed the hypothesis that pathogen-associated immunomodulatory molecules may influence anti-tumor immunity through their pro- and anti-inflammatory activities and abilities to induce effector and regulatory T (Treg) cells. We found that CpG oligonucleotides (CpG) and cholera toxin (CT), which promote Th1 or Th2/Treg cell biased responses, respectively, had differential effects on tumor growth. Therapeutic peritumoral administration of CpG significantly reduced subcutaneous tumor growth and prolonged survival, whereas CT enhanced tumor growth and reduced survival. Peritumoral administration of CpG enhanced the frequency of IFN-γ-secreting and reduced IL-10-secreting CD4+ and CD8+ T cells, in the tumor and in the draining lymph nodes, whereas, CT significantly enhanced the frequency of CD4+CD25+Foxp3+ Treg cells, but reduced IFN-γ-secreting T cells infiltrating the tumor. In contrast to the beneficial effect of CpG in mice with subcutaneous tumors, CpG or CT had no protective effect against tumor growth in the lungs when given therapeutically by the nasal route. However, prophylactic intranasal administration of CpG significantly reduced the number of lung metastases and this was associated with an enhanced frequency of IFN-γ-secreting CD8+ T cells in the draining lymph node and enhanced tumor-specific CTL responses. Our findings demonstrate that pathogen-associated molecules can either inhibit or enhance anti-tumor immunity by selectively promoting the induction of effector or regulatory T cells, and that the environment of the growing tumor influences the protective effect. Joanne Lysaght and Andrew G. Jarnicki contributed equally.  相似文献   

2.
Systemic IL-2 is currently employed in the therapy of several tumor types, but at the price of often severe toxicities. Local vector mediated delivery of IL-2 at the tumor site may enhance local effector cell activity while reducing toxicity. To examine this, a model using CEA-transgenic mice bearing established CEA expressing tumors was employed. The vaccine regimen was a s.c. prime vaccination with recombinant vaccinia (rV) expressing transgenes for CEA and a triad of costimulatory molecules (TRICOM) followed by i.t. boosting with rF-CEA/TRICOM. The addition of intratumoral (i.t.) delivery of IL-2 via a recombinant fowlpox (rF) IL-2 vector greatly enhanced anti-tumor activity of a recombinant vaccine, resulting in complete tumor regression in 70–80% of mice. The anti-tumor activity was shown to be dependent on CD8+ cells and NK1.1+. Cellular immune assays revealed that the addition of rF-IL-2 to the vaccination therapy enhanced CEA-specific tetramer+ cell numbers, cytokine release and CTL lysis of CEA+ targets. Moreover, tumor-bearing mice vaccinated with the CEA/TRICOM displayed an antigen cascade, i.e., CD8+ T cell responses to two other antigens expressed on the tumor and not the vaccine: wild-type p53 and endogenous retroviral antigen gp70. Mice receiving rF-IL-2 during vaccination demonstrated higher avidity CEA-specific, as well as higher avidity gp70-specific, CD8+ T cells when compared with mice vaccinated without rF-IL-2. These studies demonstrate for the first time that the level and avidity of antigen specific CTL, as well as the therapeutic outcome can be improved with the use of i.t. rF-IL-2 with vaccine regimens.  相似文献   

3.
Active immunotherapy and cancer vaccines that promote host antitumor immune responses promise to be effective and less toxic alternatives to current cytotoxic drugs for the treatment of cancer. However, the success of tumor immunotherapeutics and vaccines is dependent on identifying approaches for circumventing the immunosuppressive effects of regulatory T (Treg) cells induced by the growing tumor and by immunotherapeutic molecules, including Toll-like receptor (TLR) agonists. Here, we show that tumors secrete high concentrations of active TGF-β1, a cytokine that can convert naive T cells into Foxp3+ Treg cells. Silencing TGF-β1 mRNA using small interfering RNA (siRNA) in tumor cells inhibited active TGF-β1 production in vitro and restrained their growth in vivo. Prophylactic but not therapeutic administration of TGF-β1 siRNA reduced the growth of CT26 tumors in vivo. Furthermore, suppressing TGF-β1 expression at the site of a tumor, using siRNA before, during and after therapeutic administration of a TLR-activated antigen-pulsed dendritic cell vaccine significantly reduced the growth of B16 melanoma in mice. The protective effect of co-administering TGF-β1 siRNA with the DC vaccine was associated with suppression of CD25+Foxp3+ and CD25+IL-10+ T cells and enhancement of tumor infiltrating CD4 and CD8 T cells. Our findings suggest that transient suppression of TGF-β1 may be a promising approach for enhancing the efficacy of tumor vaccines in humans.  相似文献   

4.
Although therapeutic HPV vaccines are able to elicit systemic HPV-specific immunity, clinical responses have not always correlated with levels of vaccine-induced CD8+ T cells in human clinical trials. This observed discrepancy may be attributable to an immunosuppressive tumor microenvironment in which the CD8+ T cells are recruited. Regulatory T cells (Tregs) are cells that can dampen cytotoxic CD8+ T-cell function. Cyclophosphamide (CTX) is a systemic chemotherapeutic agent, which can eradicate immune cells, including inhibitory Tregs. The optimal dose and schedule of CTX administration in combination with immunotherapy to eliminate the Treg population without adversely affecting vaccine-induced T-cell responses is unknown. Therefore, we investigated various dosing and administration schedules of CTX in combination with a therapeutic HPV vaccine in a preclinical tumor model. HPV tumor-bearing mice received either a single preconditioning dose or a daily dose of CTX in combination with the pNGVL4a-CRT/E7(detox) DNA vaccine. Both single and daily dosing of CTX in combination with vaccine had a synergistic antitumor effect as compared to monotherapy alone. The potent antitumor responses were attributed to the reduction in Treg frequency and increased infiltration of HPV16 E7-specific CD8+ T cells, which led to higher ratios of CD8+/Treg and CD8+/CD11b+Gr-1+ myeloid-derived suppressor cells (MDSCs). There was an observed trend toward decreased vaccine-induced CD8+ T-cell frequency with daily dosing of CTX. We recommend a single, preconditioning dose of CTX prior to vaccination due to its efficacy, ease of administration, and reduced cumulative adverse effect on vaccine-induced T cells.  相似文献   

5.
IL-22-producing CD4+ T cells (IL-22+CD4+ T cells) and Th22 cells (IL-22+IL-17?IFN-γ?CD4+ T cells) represent newly discovered T-cell subsets, but their nature, regulation, and clinical relevance in gastric cancer (GC) are presently unknown. In our study, the frequency of IL-22+CD4+ T cells in tumor tissues from 76 GC patients was significantly higher than that in tumor-draining lymph nodes, non-tumor, and peritumoral tissues. Most intratumoral IL-22+CD4+ T cells co-expressed IL-17 and IFN-γ and showed a memory phenotype. Locally enriched IL-22+CD4+ T cells positively correlated with increased CD14+ monocytes and IL-6 and IL-23 detection ex vivo, and in vitro IL-6 and IL-23 induced the polarization of IL-22+CD4+ T cells in a dose-dependent manner and the polarized IL-22+CD4+ T cells co-expressed of IL-17 and IFN-γ. Moreover, IL-22+CD4+ T-cell subsets (IL-22+IL-17+CD4+, IL-22+IL-17?CD4+, IL-22+IFN-γ+CD4+, IL-22+IFN-γ?CD4+, and IL-22+IL-17+IFN-γ+CD4+ T cells), and Th22 cells were also increased in tumors. Furthermore, higher intratumoral IL-22+CD4+ T-cell percentage and Th22-cell percentage were found in patients with tumor-node-metastasis stage advanced and predicted reduced overall survival. In conclusion, our data indicate that IL-22+CD4+ T cells and Th22 cells are likely important in establishing the tumor microenvironment for GC; increased intratumoral IL-22+CD4+ T cells and Th22 cells are associated with tumor progression and predict poorer patient survival, suggesting that tumor-infiltrating IL-22+CD4+ T cells and Th22 cells may be suitable therapeutic targets in patients with GC.  相似文献   

6.
Interleukin-36α (IL-36α) has been found to have a prominent role in the pathogenesis of inflammatory disorders; however, little is known about the role of IL-36α in cancer. In this study, we investigated the expression, prognostic value, and the underlying antitumor mechanism of IL-36α in hepatocellular carcinoma (HCC). From immunohistochemistry analysis, IL-36α expression was lower in poorly differentiated HCC cells. In clinicopathological analysis, low IL-36α expression significantly correlated with tumor size, histological differentiation, tumor stage, and vascular invasion, and low intratumoral IL-36α expression had significantly worse overall survival rates and shorter disease-free survival rates. Moreover, intratumoral IL-36α expression was an independent risk factor for overall survival. Consecutive sections were used to detect CD3+, CD8+, and CD4+ tumor-infiltrating lymphocytes (TILs), and we found that high-IL-36α-expressing tumor tissues exhibited a significantly higher proportion of intratumoral CD3+ and CD8+ TILs, but not CD4+ TILs. Our in vitro model confirmed that supernatant from IL-36α-overexpressing human HCC cells had an increased capacity to recruit CD3+ and CD8+ T cells. Consistently, mouse HCC cells engineered to overexpress IL-36α demonstrated markedly delayed growth in vivo, as well as higher levels of intratumoral CD3+ and CD8+ TILs, compared with control mice. In vitro chemotaxis analysis also showed that mouse HCC cells overexpressing IL-36α could recruit more number of CD3+ and CD8+ T cells. These results show that IL-36α expression may play a pivotal role in determining the prognosis of patients with HCC, which we attribute to the activation of adaptive T cell immunity, especially CD8+ T cell immune response.  相似文献   

7.
The recent finding that Th17 infiltration of ovarian tumors positively predicts patient outcomes suggests that Th17 responses play a protective role in ovarian tumor immunity. This observation has led to the question of whether Th17 cells could be induced or expanded to therapeutic advantage by tumor vaccination. In this study, we show that treatment of ovarian tumor antigen-loaded, cytokine-matured human dendritic cells (DC) with a combination of IL-15 and a p38 MAP kinase inhibitor offers potent synergy in antagonism of CD4+ Treg induction and redirection toward CD4+ Th17 responses that correlate with strong CD8+ cytotoxic T lymphocyte (CTL) activation. Ovarian tumor antigen-specific CD4+ T cells secrete high levels of IL-17 and show reduced expression of CTLA-4, PD-1, and Foxp3 following activation with IL-15/p38 inhibitor-treated DC. We further show that modulation of p38 MAPK signaling in DC is associated with reduced expression of B7-H1 (PD-L1), loss of indoleamine 2,3-dioxygenase activity, and increased phosphorylation of ERK 1/2 MAPK. These observations may allow the development of innovative DC vaccination strategies to boost Th17 immunity in ovarian cancer patients.  相似文献   

8.
Although interleukin-10 (IL-10) is commonly regarded as an immunosuppressive cytokine, a wealth of evidence is accumulating that IL-10 also possesses some immunostimulating antitumor properties. Previous studies demonstrated that forced expression of the IL-10 gene in tumor cells could unexpectedly produce antitumor effects. In this study, we explored the tumorigenesis of EG7 cells transduced with IL-10 gene. In vivo, IL-10 gene transfer reduced tumorigenic capacity of EG7 cells and prolonged survival of the EG7 tumor-bearing mice. It was found that the cytotoxicities of cytotoxic T lymphocytes (CTL) and natural killer cells (NK cells) were enhanced. Assessment of the immune status of the animals showed prevalence of a systemic and tumor-specific Th2 response (high levels of IL-4 and IL-10). To improve the therapeutic efficacy, we combined with intratumoral injection of adenovirus-mediated lymphotactin (Ad-Lptn) into the overestablished EG7 tumor model. More significant inhibition of tumor growth were observed in EG7 tumor-bearing mice that received combined treatment with IL-10 and Lptn gene than those of mice treated with IL-10 or Lptn gene alone. The highest NK cells and CTL activity was induced in the combined therapy group, increasing the production of IL-2 and interferon-γ (IFN-γ) significantly but decreasing the expression of immune suppressive cells (CD4+Foxp3+ Treg cells and Gr1+CD11b+ MDSCs). The necrosis of tumor cells was markedly observed in the tumor tissues, accompanying with strongest expression of Mig (monokine induced by interferon-gamma) and IP-10 (interferon-inducible protein 10), weakest expression of vascular endothelial growth factor (VEGF) and matrix metalloproteinases-2 (MMP-2). In vivo, depletion analysis demonstrated that CD8+ T cells and NK cells were the predominant effector cell subset responsible for the antitumor effect of IL-10 or Lptn gene. These findings may provide a potential strategy to improve the antitumor efficacy of IL-10 and Lptn.  相似文献   

9.
Tumors convert conventional CD4+ T cells into induced CD4+CD25+FoxP3+ T regulatory (iTreg) cells that serve as an effective means of immune evasion. Therefore, the blockade of conventional CD4+ T cell conversion into iTreg cells represents an attractive target for improving the efficacy of various immunotherapeutic approaches. Using a novel form of 4-1BBL molecule, SA-4-1BBL, we previously demonstrated that costimulation via 4-1BB receptor renders both CD4+and CD8+ T effector (Teff) cells refractory to inhibition by Treg cells and increased intratumoral Teff/Treg cell ratio that correlated with therapeutic efficacy in various preclinical tumor models. Building on these studies, we herein show for the first time, to our knowledge, that signaling through 4-1BB inhibits antigen- and TGF-β-driven conversion of naïve CD4+FoxP3 T cells into iTreg cells via stimulation of IFN-γ production by CD4+FoxP3 T cells. Importantly, treatment with SA-4-1BBL blocked the conversion of CD4+FoxP3 T cells into Treg cells by EG.7 tumors. Taken together with our previous studies, these results show that 4-1BB signaling negatively modulate Treg cells by two distinct mechanisms: i) inhibiting the conversion of CD4+FoxP3 T cells into iTreg cells and ii) endowing Teff cells refractory to inhibition by Treg cells. Given the dominant role of Treg cells in tumor immune evasion mechanisms, 4-1BB signaling represents an attractive target for favorably tipping the Teff:Treg balance toward Teff cells with important implications for cancer immunotherapy.  相似文献   

10.
Cancer vaccines are designed to expand tumor antigen-specific T cells with effector function. However, they may also inadvertently expand regulatory T cells (Treg), which could seriously hamper clinical efficacy. To address this possibility, we developed a novel assay to detect antigen-specific Treg based on down-regulation of surface CD3 following TCR engagement, and used this approach to screen for Treg specific to the NY-ESO-1 tumor antigen in melanoma patients treated with the NY-ESO-1/ISCOMATRIXTM cancer vaccine. All patients tested had Treg (CD25bright FoxP3+ CD127neg) specific for at least one NY-ESO-1 epitope in the blood. Strikingly, comparison with pre-treatment samples revealed that many of these responses were induced or boosted by vaccination. The most frequently detected response was toward the HLA-DP4-restricted NY-ESO-1157–170 epitope, which is also recognized by effector T cells. Notably, functional Treg specific for an HLA-DR-restricted epitope within the NY-ESO-1115–132 peptide were also identified at high frequency in tumor tissue, suggesting that NY-ESO-1-specific Treg may suppress local anti-tumor immune responses. Together, our data provide compelling evidence for the ability of a cancer vaccine to expand tumor antigen-specific Treg in the setting of advanced cancer, a finding which should be given serious consideration in the design of future cancer vaccine clinical trials.  相似文献   

11.
In this study, we tested the effect of intratumoral administration of dendritic cells (DCs) with inducible expression of different cytokines, using the novel Rheoswitch Therapeutic System on the experimental models of renal cell cancer (RENCA) and MethA sarcoma. Intratumoral injection of DCs, engineered to express IL-12, IL-21, or IFN-α, showed potent therapeutic effect against established tumor. This effect was associated with the induction of potent tumor antigen-specific CD8+ T-cell responses, as well as the infiltration of tumors with CD4+ and CD8+ T cells but not with the cytotoxic activity of DCs. Combination of i.t. administration of DCs, producing different cytokines, did not enhance the antitumor effect of therapy with single cytokine. These results indicate that RTS can be a potent tool for conditional topical cytokine delivery, in combination with DC administration. However, combination of different cytokines may not necessarily improve the outcome of treatment.  相似文献   

12.
The GD2 ganglioside expressed on neuroectodermal tumor cells is weakly immunogenic in tumor-bearing patients and induces predominantly IgM antibody responses in the immunized host. Using a syngeneic mouse challenge model with GD2-expressing NXS2 neuroblastoma, we investigated novel strategies for augmenting the effector function of GD2-specific antibody responses induced by a mimotope vaccine. We demonstrated that immunization of A/J mice with DNA vaccine expressing the 47-LDA mimotope of GD2 in combination with IL-15 and IL-21 genes enhanced the induction of GD2 cross-reactive IgG2 antibody responses that exhibited cytolytic activity against NXS2 cells. The combined immunization regimen delivered 1 day after tumor challenge inhibited subcutaneous (s.c.) growth of NXS2 neuroblastoma in A/J mice. The vaccine efficacy was reduced after depletion of NK cells as well as CD4+ and CD8+ T lymphocytes suggesting involvement of innate and adaptive immune responses in mediating the antitumor activity in vivo. CD8+ T cells isolated from the immunized and cured mice were cytotoxic against syngeneic neuroblastoma cells but not against allogeneic EL4 lymphoma, and exhibited antitumor activity after adoptive transfer in NXS2-challenged mice. We also demonstrated that coimmunization of NXS2-challenged mice with the IL-15 and IL-21 gene combination resulted in enhanced CD8+ T cell function that was partially independent of CD4+ T cell help in inhibiting tumor growth. This study is the first demonstration that the mimotope vaccine of a weakly immunogenic carbohydrate antigen in combination with plasmid-derived IL-15 and IL-21 cytokines induces both innate and adaptive arms of the immune system leading to the generation of effective protection against neuroblastoma challenge. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. This work was supported by the Roswell Park Alliance Foundation, funds to commemorate Dr. Goro Chihara’s research activity, and by a research grant R21 AI060375 from the National Institutes of Health.  相似文献   

13.
The frequency and function of regulatory T cells (Tregs) were studied in stage II–III melanoma patients who were enrolled in a phase II randomized trial of vaccination with HLA-A*0201-modified tumor peptides versus observation. The vaccinated patients received low-dose cyclophosphamide (CTX) and low-dose interleukin-2 (IL-2). Tregs were analyzed in the lymph nodes (LNs) of stage III patients who were undergoing complete lymph node dissection and in peripheral blood mononuclear cells (PBMCs) collected before vaccination and at different time points during the vaccination period. The LNs of the vaccinated patients, which were surgically removed after two rounds of vaccination and one dose of CTX, displayed a low frequency of Tregs and a less immunosuppressive environment compared with those of the untreated patients. The accurate time-course analysis of the PBMCs of patients enrolled in the vaccination arm indicated a limited and transient modulation in the frequencies of Tregs in PBMCs collected after low-dose CTX administration and a strong Treg boost in those PBMCs collected after low-dose IL-2 administration. However, a fraction of the IL-2-boosted Tregs was functionally modulated to a Th-1-like phenotype in the vaccinated patients. Moreover, low-dose IL-2 promoted the concomitant expansion of conventional activated CD4+ T cells. Despite the amplification of Tregs, IL-2 administration maintained or further increased the number of antigen-specific CD8+ T cells that were induced by vaccination as demonstrated by the ex vivo human leukocyte antigen-multimer staining and IFN-γ ELISpot assays. Our study suggests that the use of CTX as a Treg modulator should be revised in terms of the administration schedule and of patients who may benefit from this drug treatment. Despite the Treg expansion that was observed in this study, low-dose IL-2 is not detrimental to the functional activities of vaccine-primed CD8+ T cell effectors when used in the inflammatory environment of vaccination.  相似文献   

14.
There has been a recent interest in using IL-15 to enhance antitumor activity in several models because of its ability to stimulate CD8+ T cell expansion, inhibit apoptosis and promote memory T cell survival and maintenance. Previously, we reported that C6VL tumor lysate-pulsed dendritic cell vaccines significantly enhanced the survival of tumor-bearing mice by stimulating a potent tumor-specific CD8+ T cell response. In this study, we determined whether IL-15 used as immunologic adjuvant would augment vaccine-primed CD8+ T cell immunity against C6VL and further improve the survival of tumor-bearing mice. We report that IL-15 given after C6VL lysate-pulsed dendritic cell vaccines stimulated local and systemic expansion of NK, NKT and CD8+ CD44hi T cells. IL-15 did not, however, augment innate or cellular responses against the tumor. T cells from mice infused with IL-15 following vaccination did not secrete increased levels of tumor-specific TNF-α or IFN-γ or have enhanced C6VL-specific CTL activity compared to T cells from recipients of the vaccine alone. Lastly, IL-15 did not enhance the survival of tumor-bearing vaccinated mice. Thus, while activated- and memory-phenotype CD8+ T cells were dramatically expanded by IL-15 infusion, vaccine-primed CD8+ T cell specific for C6VL were not significantly expanded. This is the first account of using IL-15 as an adjuvant in a therapeutic model of active immunotherapy where there was not a preexisting pool of tumor-specific CD8+ T cells. Our results contrast the recent studies where IL-15 was successfully used to augment tumor-reactivity of adoptively transferred transgenic CD8+ T cells. This suggests that the adjuvant potential of IL-15 may be greatest in settings where it can augment the number and activity of preexisting tumor-specific CD8+ T cells.  相似文献   

15.
Using a mouse neuroblastoma cell line, we have demonstrated that vaccination of tumor-free mice with a cell-based vaccine leads to productive immunity and resistance to tumor challenge, while vaccination of tumor-bearing mice does not. The T cell immunity induced by this vaccine, as measured by in vitro assays, is amplified by the depletion of Treg. Our goal is to understand this barrier to the development of protective cellular immunity. mRNA microarray analyses of CD8+ T cells from naïve or tumor-bearing mice undergoing vaccination were carried out with or without administering anti-CD25 antibody. Gene-expression pathway analysis revealed the presence of CD8+ T cells expressing stem cell-associated genes early after induction of productive anti-tumor immunity in tumor-free mice, prior to any phenotypic changes, but not in tumor-bearing mice. These data demonstrate that early after the induction of productive immune response, cells within the CD8+ T cell compartment adopt a stem cell-related genetic phenotype that correlates with increased anti-tumor function.  相似文献   

16.
In spite of sufficient data on Neem Leaf Glycoprotein (NLGP) as a prophylactic vaccine, little knowledge currently exists to support the use of NLGP as a therapeutic vaccine. Treatment of mice bearing established sarcomas with NLGP (25 µg/mice/week subcutaneously for 4 weeks) resulted in tumor regression or dormancy (Tumor free/Regressor, 13/24 (NLGP), 4/24 (PBS)). Evaluation of CD8+ T cell status in blood, spleen, TDLN, VDLN and tumor revealed increase in cellular number. Elevated expression of CD69, CD44 and Ki67 on CD8+ T cells revealed their state of activation and proliferation by NLGP. Depletion of CD8+ T cells in mice at the time of NLGP treatment resulted in partial termination of tumor regression. An expansion of CXCR3+ and CCR5+ T cells was observed in the TDLN and tumor, along with their corresponding ligands. NLGP treatment enhances type 1 polarized T-bet expressing T cells with downregulation of GATA3. Treg cell population was almost unchanged. However, T∶Treg ratios significantly increased with NLGP. Enhanced secretion/expression of IFNγ was noted after NLGP therapy. In vitro culture of T cells with IL-2 and sarcoma antigen resulted in significant enhancement in cytotoxic efficacy. Consistently higher expression of CD107a was also observed in CD8+ T cells from tumors. Reinoculation of sarcoma cells in tumor regressed NLGP-treated mice maintained tumor free status in majority. This is correlated with the increment of CD44hiCD62Lhi central memory T cells. Collectively, these findings support a paradigm in which NLGP dynamically orchestrates the activation, expansion, and recruitment of CD8+ T cells into established tumors to operate significant tumor cell lysis.  相似文献   

17.
 We previously reported [Chakrabarti et al. (1992) Cell Immunol 142:54; 144:455] that, in a murine B lymphoma model 2C3, idiotype (Id)-specific CD8+ cytotoxic T lymphocytes (CTL) are generated in mice following hyperimmunization with irradiated tumor cells, and that they are effective in tumor rejection. The present study reveals that 2C3-specific CTL are also induced in spleens during tumor progression, but are not sustained. At the early stage of tumor growth, the splenic T cells following a 5-day incubation in vitro with killed 2C3 tumor targets, produce high levels of cytokines, namely interleukin-4 (IL-4), IL-10 and interferon γ (IFNγ). Their cytotoxic T lymphocyte (CTL) activity and cytokine levels, except IL-2, sharply decline at the late stage when the mice are increasingly moribund. Although the decline in cytokine level is also evident with CD4+ T cells, a precipitous and concurrent decrease occurs primarily in the IL-4 level with both CD4+ and CD8+ T cells of late-tumor-bearing animals (TBA). Study with the unseparated splenocytes also reveals that sevenfold less IL-4 is produced at the late stage. Furthermore, the cytotoxicity of CTL from late TBA can be effectively restored by addition of supernatants from the splenocyte culture of early TBA, or by IL-4, but not by IFNγ and IL-10. In addition, only IL-4-activated CD8+ T cells from the late TBA are found, by Winn assay, to be protective in vivo. Thus it appears that IL-4, required to sustain antitumor CTL activity, is consumed by T and possibly other cells at the late stage of tumor growth, thereby compromising host immunity against the tumor. We contend that induction or maintenance of protective immunity depends not only on the tumor antigen but also on the specific cytokine milieu in a tumor-bearing host. Received: 8 February 1997 / Accepted: 24 April 1997  相似文献   

18.
We tested the hypothesis that therapeutic vaccination against HIV-1 can increase the frequency and suppressive function of regulatory, CD4+ T cells (Treg), thereby masking enhancement of HIV-1-specific CD8+ T cell response. HIV-1-infected subjects on antiretroviral therapy (N = 17) enrolled in a phase I therapeutic vaccine trial received 2 doses of autologous dendritic cells (DC) loaded with HIV-1 peptides. The frequency of CD4+CD25hiFOXP3+ Treg in blood was determined prior to and after vaccination in subjects and normal controls. Polyfunctional CD8+ T cell responses were determined pre- and post-vaccine (N = 7) for 5 immune mediators after in vitro stimulation with Gag peptide, staphylococcal enterotoxin B (SEB), or medium alone. Total vaccine response (post-vaccine–pre-vaccine) was compared in the Treg(+) and Treg-depleted (Treg-) sets. After vaccination, 12/17 subjects showed a trend of increased Treg frequency (P = 0.06) from 0.74% to 1.2%. The increased frequency did not correlate with CD8+ T cell vaccine response by enzyme linked immunosorbent assay for interferon γ production. Although there was no significant change in CD8+ T cell polyfunctional response after vaccination, Treg depletion increased the polyfunctionality of the total vaccine response (P = 0.029), with a >2-fold increase in the percentage of CD8+ T cells producing multiple immune mediators. In contrast, depletion of Treg did not enhance polyfunctional T cell response to SEB, implying specificity of suppression to HIV-1 Gag. Therapeutic immunization with a DC-based vaccine against HIV-1 caused a modest increase in Treg frequency and a significant increase in HIV-1-specific, Treg suppressive function. The Treg suppressive effect masked an increase in the vaccine-induced anti-HIV-1-specific polyfunctional response. The role of Treg should be considered in immunotherapeutic trials of HIV-1 infection.  相似文献   

19.
The antigenic similarity between tumors and embryos has been appreciated for many years and reflects the expression of embryonic gene products by cancer cells and/or cancer-initiating stem cells. Taking advantage of this similarity, we have tested a prophylactic lung cancer vaccine composed of allogeneic murine embryonic stem cells (ESC). Naïve C57BL/6 mice were vaccinated with ESC along with a source of granulocyte macrophage-colony stimulating factor (GM-CSF) in order to provide immunostimulatory adjuvant activity. Vaccinated mice were protected against subsequent challenge with implantable Lewis lung carcinoma (LLC). ESC-induced anti-tumor immunity was not due to a non-specific “allo-response” as vaccination with allogeneic murine embryonic fibroblasts did not protect against tumor outgrowth. Vaccine efficacy was associated with robust tumor-reactive primary and memory CD8+ T effector responses, Th1 cytokine response, higher intratumoral CD8+ T effector/CD4+CD25+Foxp3+ T regulatory cell ratio, and reduced myeloid derived suppressor cells in the spleen. Prevention of tumorigenesis was found to require a CD8-mediated cytotoxic T lymphocyte (CTL) response because in vivo depletion of CD8+ T lymphocytes completely abrogated the protective effect of vaccination. Importantly, this vaccination strategy also suppressed the development of lung cancer induced by the combination of carcinogen administration and chronic pulmonary inflammation. Further refinement of this novel vaccine strategy and identification of shared ESC/tumor antigens may lead to immunotherapeutic options for lung cancer patients and, perhaps more importantly, could represent a first step toward the development of prophylactic cancer vaccines.  相似文献   

20.

Objective

Regulatory T cells (Treg) play a critical role in the prevention of autoimmunity, and the suppressive activity of these cells is impaired in rheumatoid arthritis (RA). The aim of the present study was to investigate function and properties of Treg of RA patients in response to purified polysaccharide glucuronoxylomannogalactan (GXMGal).

Methods

Flow cytometry and western blot analysis were used to investigate the frequency, function and properties of Treg cells.

Results

GXMGal was able to: i) induce strong increase of FOXP3 on CD4+ T cells without affecting the number of CD4+CD25+FOXP3+ Treg cells with parallel increase in the percentage of non-conventional CD4+CD25FOXP3+ Treg cells; ii) increase intracellular levels of TGF-β1 in CD4+CD25FOXP3+ Treg cells and of IL-10 in both CD4+CD25+FOXP3+ and CD4+CD25FOXP3+ Treg cells; iii) enhance the suppressive activity of CD4+CD25+FOXP3+ and CD4+CD25FOXP3+ Treg cells in terms of inhibition of effector T cell activity and increased secretion of IL-10; iv) decrease Th1 response as demonstrated by inhibition of T-bet activation and down-regulation of IFN-γ and IL-12p70 production; v) decrease Th17 differentiation by down-regulating pSTAT3 activation and IL-17A, IL-23, IL-21, IL-22 and IL-6 production.

Conclusion

These data show that GXMGal improves Treg functions and increases the number and function of CD4+CD25FOXP3+ Treg cells of RA patients. It is suggested that GXMGal may be potentially useful for restoring impaired Treg functions in autoimmune disorders and for developing Treg cell-based strategies for the treatment of these diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号