首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Comparative study on vertebrate liver AMP deaminases   总被引:1,自引:0,他引:1  
Similar activity of AMP deaminase was found in rat, hen, turtle and flounder liver when estimated at high AMP concentration. The enzyme activity was of an order of magnitude higher in frog liver. Simple step by step phosphocellulose column chromatography revealed two forms of AMP deaminase in chicken and flounder liver and one form in the liver of rat and turtle. All enzymes (except for frog liver AMP deaminase) were activated by ATP. The enzymes from rat, frog and both forms from flounder were also activated by ADP. GTP exhibited a variety of effects. The enzyme from rat and turtle was inhibited, both forms from hen and flounder were activated and frog liver enzyme was not influenced.  相似文献   

2.
Developmental changes of chicken liver AMP deaminase.   总被引:1,自引:0,他引:1       下载免费PDF全文
The AMP deaminase activity measured in crude chicken liver extract did not change significantly during development. The livers of 10- and 14-day chick embryos, 1-day, 5-, 10- and 16-week-old chickens and adult hens were examined for the existence of multiple forms of AMP deaminase. Phosphocellulose column chromatography revealed the existence of two peaks of enzyme activity in the liver of 10- and 16-week-old chickens and adult hens. Kinetic studies with the preparations of AMP deaminase revealed sigmoid-shaped substrate-saturation curves at all developmental stages and hyperbolic-shaped saturation curves for the enzyme form appearing in 10-week-old chickens. All AMP deaminases investigated were susceptible to activation by ATP and inhibition by Pi. Kinetic and regulatory properties as well as pH optima of all the enzyme preparations tested indicate that AMP deaminase isolated from the embryos and from 1-day-old chicks was similar to the form I isolated from adult hens and differed significantly from the form II of this enzyme.  相似文献   

3.
Chromatography of chicken liver AMP deaminase on phosphocellulose and DEAE-Sephacel revealed the existence of two separate peaks of enzyme activity. Significant differences have been observed between form I and II of the enzyme in respect to substrate specificity and their kinetic and regulatory properties.  相似文献   

4.
The interaction of polyphosphoinositols with AMP deaminase   总被引:1,自引:0,他引:1  
Polyphosphoinositols coupled to epoxy-activated Sepharose retained chicken liver AMP deaminase in a similar manner as phosphocellulose. After elution from polyphosphoinositol-Sepharose, in contrast to inositol-Sepharose and phosphocellulose, low Km AMP deaminase from the chicken liver exhibited markedly elevated S0.5 value. Several commercially available polyphosphoinositols were tested with rat liver AMP deaminase and only 1,3,4,5 IP4 was found to stimulate the enzyme. This is the first report on the effect of naturally occurring polyphosphoinositol derivative on the soluble enzyme.  相似文献   

5.
1. Phosphocellulose column chromatography under double gradient conditions (phosphate and KCl) revealed two forms of AMP deaminase in rat heart and brain and a single form in the liver and skeletal muscle. 2. Kinetically all purified AMP deaminases were classified into two categories: those, which elute from the column at lower KCl and Pi concentrations, display low S0.5 value are only moderately affected by MgATP, MgGTP and Pi; and those which elute at higher KCl and Pi concentrations, display high S0.5 values and are strongly regulated by allosteric effectors. 3. Physiological significance of the occurrence of two kinetic forms of AMP deaminase in some tissues is discussed.  相似文献   

6.
Chromatography on phosphocellulose column revealed changes in the elution profile of 14 day-old chicken embryo and adult hen skeletal muscle AMP deaminase. In the presence of 5 mM potassium the enzyme from embryo muscle exhibited a sigmoid-shaped plot of the reaction rate versus substrate concentration. The increase of KCl concentration up to 100 mM diminished distinctly sigmoidicity of the plot. Micromolar concentrations of ADP or ATP activated, whereas GTP at the same concentrations inhibited the embryo and hen skeletal muscle AMP deaminase while 5 mM KCl was present in the incubation medium. 100 mM potassium concentration diminished the effect of ADP and ATP but not of GTP. Palmitoyl-CoA inhibited strongly the embryo skeletal muscle adenylate deaminase but had no effect on the activity of the hen enzyme. Alanine inhibited only the adult hen enzyme. The embryo and hen AMP deaminase differed also in the specificity to adenylate analogues and exhibited a different dAMP/AMP ratio. The data presented indicate that kinetic and regulatory properties of the two developmental forms of AMP deaminase are different.  相似文献   

7.
Two molecular forms of AMP deaminase have been revealed by phosphocellulose column chromatography in the liver of uricotelic lizard. The calculated S0.5 value of the purified lizard liver AMP deaminase was 2.5 +/- 0.1 for the form I and 3.6 +/- 0.4 for the form II. Both forms of the enzyme were activated by ATP and ADP but the form II to a much higher extent. GTP activated only the form II and inorganic phosphate inhibited both forms. The occurrence of multiple forms of liver AMP deaminase in uricotelic species, as well as its difference from the mammalian enzyme regulation by GTP is suggested to be connected with the uricotelism in these animals.  相似文献   

8.
Phosphocellulose chromatography of pigeon leg muscle extract revealed the existence of two well-separated forms of AMP deaminase. This was in contrast to the pigeon breast muscle extract, which yielded only one form. The two leg muscle enzyme isoforms manifested similar kinetic and regulatory properties. They were activated by very low concentration of potassium ions and demonstrated similar patterns of pH and effector dependence. At pH 6.5, as well as at other pH values tested. ADP and ATP slightly stimulated, whereas GTP and orthophosphate inhibited the two molecular forms of pigeons leg muscle enzyme. Surprisingly, the molecular form of AMP deaminase present in pigeon breast muscle was inhibited by ATP at all pH values tested. The kinetic and regulatory properties of the three molecular forms of pigeon skeletal muscle AMP deaminase examined do not resemble those which have been described for pigeon heart muscle enzyme.  相似文献   

9.
1. The high S0.5 form of AMP deaminase from avian liver was shown to display a two times lower S0.5 value than the single mammalian enzyme form. 2. Avian enzymes showed several fold higher affinity to the activator (ATP) but lower affinity to inhibitors (GTP and Pi) than the mammalian AMP deaminases. 3. GTP was shown to exert a biphasic: activating and inhibitory effect on all the enzymes tested, the chicken and pigeon enzymes being activated within a much broader range of effector concentration. 4. In the presence of 3 mM ATP the activity of avian enzymes was not affected by high GTP and Pi concentrations, in contrast to AMP diaminase from rat liver which was strongly inhibited by GTP under the same experimental conditions. 5. The differences of the regulatory properties described are discussed in terms of adjustment of avian liver AMP deaminase to a faster adenylates' catabolism and thus urate synthesis.  相似文献   

10.
AMP deaminase was completely solubilized from rat skeletal muscle with 50 mM Tris-HCl buffer (pH 7.0) containing KCl at a concentration of 0.3 M or more. The purified enzyme was found to be bound to rat muscle myosin or actomyosin, but not to F-actin at KCl concentrations of less than 0.3 M. Kinetic analysis indicated that 1 mol of AMP deaminase was bound to 3 mol of myosin and that the dissociation constant (Kd) of this binding was 0.06 micrometer. It was also shown that AMP deaminase from muscle interacted mainly with the light meromyosin portion of the myosin molecule. This finding differs from that of Ashby and coworkers on rabbit muscle AMP deaminase, probably due to a difference in the properties of rat and rabbit muscle AMP deaminase. AMP deaminase isozymes from rat liver, kidney and cardiac muscle did not interact with rat muscle myosin. The physiological significance of this binding of AMP deaminase to myosin is discussed.  相似文献   

11.
AMP deaminases of rat small intestine   总被引:1,自引:0,他引:1  
Phosphocellulose column chromatography revealed the existence of two forms of AMP deaminase both in whole tissue and in the intestinal epithelium. AMP deaminase I, which eluted from the column as a first activity peak, exhibited hyperbolic, nonregulatory kinetics. The substrate half-saturation constants were determined to be 0.3 and 0.7 mM at pH 6.5 and 7.2, respectively, and did not change in the presence of ATP, GTP and Pi. AMP deaminase II, which eluted from the column as a second activity peak, was strongly activated by ATP and inhibited by GTP and Pi. The S0.5 constants were 3.5 and 7.1 at pH 6.5 and 7.2, respectively. At pH 7.2 ATP (1 mM) S0.5 decreased to 2.5 mM and caused the sigmoidicity to shift to hyperbolic. The ATP half-activation constant was increased 9-fold in the presence of GTP and was not affected by Pi. Mg2+ significantly altered the effects exerted by nucleotides. The S0.5 value was lowered 10-fold in the presence of MgATP and 5-fold in the presence of MgATP, MgGTP and Pi. When MgATP was present, AMP deaminase II from rat small intestine was less susceptible to inhibition by GTP and Pi. A comparison of the kinetic properties of the enzyme, in particular the greater than 100% increase in Vmax observed in the presence of MgCl2 at low (1 mM) substrate concentration, indicates that MgATP is the true physiological activator. GuoPP[NH]P at low concentrations, in contrast to GTP, did not affect the enzyme and even activated it at concentrations above 0.2 mM. We postulate that AMP deaminase II may have a function similar to that of the rat liver enzyme. The significance of the existence of an additional, non-regulatory form of AMP deaminase in rat small intestine is discussed.  相似文献   

12.
13.
Feeding high protein diet for 5 days caused a 3,5-fold and 2-fold increase of the activity of xanthine dehydrogenase (EC 1.2.1.37) and 5-nucleotidase (EC 3.1.3.31) respectively, in chicken liver. Six hours after feeding the high protein diet there was no change in either enzyme activity although a 3-fold increase in the level of serum uric acid was observed. High protein diet considerably decreased the activity of AMP deaminase at low, but not at high substrate concentration. The activity ratio, measured at 10.0 and 0.16 mM AMP increased from 14:1 (low protein diet) to 23:1 and 24:1 after 6 h and 5 days of high protein diet, respectively. It has been suggested that feeding birds a high protein diet may cause transformation of liver AMP deaminase (EC 3.5.4.6) from a low Km form toward a high Km form.  相似文献   

14.
Distribution of AMP-deaminase isozymes in rat tissues   总被引:8,自引:0,他引:8  
1. The distribution of AMP deaminase isozymes in rat tissues was analyzed by electrophoresis on cellulose acetate membrane, by chromatography on phosphocellulose column, and by the application of immunological technique employing specific antisera against three parental AMP deaminases (isozymes A, B and C). Skeletal muscle extracts and diaphragm extracts contain a single identical isozyme, isozyme A. The major isozyme species of liver, kidney and testes are also identical and they are isozyme B. Heart extracts contains isozyme C exclusively. Extracts of brain, lung and spleen contain five isozymes, presumably a complete set of five B-C hybrids. 2. Developmental patterns of AMP deaminase isozyme were studied. In early postnatal life, extracts of heart, liver, kidney and lung contain five isozymes similar to those observed in adult brain. During postnatal development, a shift to isozyme C occurs in heart, whereas a shift to isozyme B occurs in liver and kidney. Five isozymes in lung remain throughout development. In brain a shift of B to five isozymes is observed during development. Isozyme A is the predominant form in muscle throughout postnatal development. 3. AMP deaminase in the regenerating liver was analyzed, but the data indicated that there was no change of isozyme distribution during hepatic regeneration.  相似文献   

15.
Eukaryotes have been proposed to depend on AMP deaminase as a primary step in the regulation of intracellular adenine nucleotide pools. This report describes 1) the role of AMP deaminase in adenylate metabolism in yeast cell extracts, 2) a method for large scale purification of the enzyme, 3) the kinetic properties of native and proteolyzed enzymes, 4) the kinetic reaction mechanism, and 5) regulatory interactions with ATP, GTP, MgATP, ADP, and PO4. Allosteric regulation of yeast AMP deaminase is of physiological significance, since expression of the gene is constitutive (Meyer, S. L., Kvalnes-Krick, K. L., and Schramm, V. L. (1989) Biochemistry 28, 8734-8743). The metabolism of ATP in cell-free extracts of yeast demonstrates that AMP deaminase is the sole pathway of AMP catabolism in these extracts. Purification of the enzyme from bakers' yeast yields a proteolytically cleaved enzyme, Mr 86,000, which is missing 192 amino acids from the N-terminal region. Extracts of Escherichia coli containing a plasmid with the gene for yeast AMP deaminase contained only the unproteolyzed enzyme, Mr 100,000. The unproteolyzed enzyme is highly unstable during purification. Substrate saturation plots for proteolyzed AMP deaminase are sigmoidal. In the presence of ATP, the allosteric activator, the enzyme exhibits normal saturation kinetics. ATP activates the proteolyzed AMP deaminase by increasing the affinity for AMP from 1.3 to 0.2 mM without affecting VM. Activation by ATP is more efficient than MgATP, with half-maximum activation constants of 6 and 80 microM, respectively. The kinetic properties of the proteolyzed and unproteolyzed AMP deaminase are similar. Thus, the N-terminal region is not required for catalysis or allosteric activation. AMP deaminase is competitively inhibited by GTP and PO4 with respect to AMP. The inhibition constants for these inhibitors decrease in the presence of ATP. ATP, therefore, tightens the binding of GTP, PO4, and AMP. The products of the reaction, NH3 and IMP, are competitive inhibitors against substrate, consistent with a rapid equilibrium random kinetic mechanism. Kinetic dissociation constants are reported for the binary and ternary substrate and product complexes and the allosteric modulators.  相似文献   

16.
AMP deaminase [EC 3.5.6.4] purified from chicken erythrocytes was inhibited by phytic acid (inositol hexaphosphate), which is the principal organic phosphate in chicken red cells. Kinetic analysis has indicated that this inhibition is of an allosteric type. The estimated Ki value was within the normal range of phytic acid concentration, suggesting that this compound acts as a physiological effector. Divalent cations such as Ca2+ and Mg2+ were shown to affect AMP deaminase by potentiating inhibition by lower concentrations of phytic acid, and by relieving the inhibition at higher concentrations of phytic acid. These results suggests that Ca2+ and Mg2+ can modify the inhibition of AMP deaminase by phytic acid in chicken red cells.  相似文献   

17.
The molecular and kinetic properties of cytidine deaminase from E. coli and chicken liver show several interesting differences and similarities: 1. Both enzymes possess an oligomeric structure, and linear kinetics. 2. The chicken liver enzyme is strictly dependent on the presence of reducing agents and presents a microheterogeneity in the pure preparation. 3. Both enzymes display identical specificity and share a rapid-equilibrium random Uni-Bi mechanism of catalysis. 4. The chicken liver enzyme is inhibited competitively by dTTP, CMP and dCMP.  相似文献   

18.
Studies on rat and rabbit liver fructose 1.6-bisphosphatase inhibition by AMP showed that with an increase in EDTA concentration the hyperbolic AMP inhibition curve is transformed into a sigmoidal one. At intermediate EDTA concentrations, the kinetic curves have a plateau. The appearance of the intermediate plateau may be due to the superposition of kinetic curves corresponding to two enzyme forms simultaneously present in the assay mixture. One of these forms deprived of endogenous Me2+ (presumably Zn2+) is inhibited by AMP in a cooperative manner, while the other one retains Me2+ which prevents the cooperative response of the enzyme to AMP.  相似文献   

19.
AMP deaminase isoforms from human skeletal muscle can be separated chromatographically [Kaletha, Spychała & Nowak (1987) Experientia 43, 440-443]. In adult tissue nearly all the AMP deaminase activity was eluted from phosphocellulose with 0.75 M-KCl (''adult'' isoform), and the remaining activity could be eluted with 2.0 M-KCl. Conversely, most of the AMP deaminase activity from 11-week-old fetal tissue was eluted from phosphocellulose with 2.0 M-KCl (''fetal'' isoform). In the present paper the kinetic and regulatory properties of AMP deaminase extracted from 11- and 16-week-old fetal skeletal muscle are reported. The two isoforms from 11-week-old human fetus differed distinctly in these properties. The ''fetal'' isoform had about 5-fold higher half-saturation constant (S0.5) value than the ''adult'' form. It was also more sensitive to the influence of some important regulatory ligands (ADP, ATP and Pi), and exhibited a different pH/activity profile. The ''adult'' isoform of AMP deaminase from fetal muscle and the enzyme from mature muscle possessed similar kinetic and regulatory properties. This isoform seems not to be subject to any major modifications during further ontogenesis. This is not true, however, for the ''fetal'' isoform. In the muscle of 16-week-old human fetus, the ''fetal'' isoform showed a peculiar, biphasic, type of substrate-saturation kinetics. This phenomenon may reflect appearance of the next, developmentally programmed, isoform of human skeletal-muscle AMP deaminase.  相似文献   

20.
The problems of whether the kinetic and regulatory properties of AMP deaminase were modified by formation of a deaminase-myosin complex were investigated with an enzyme preparation from rat skeletal muscle. Results showed that AMP deaminase was activated by binding to myosin. Myosin-bound AMP deaminase showed a sigmoidal activity curve with respect to AMP concentration in the absence of ATP and ADP, but a hyperbolic curve in their presence. Addition of ATP and ADP doubled the V value, but did not affect the Km value. Myosin-bound AMP deaminase also gave a sigmoidal curve in the presence of alkali metal ions, whereas free AMP deaminase gave a hyperbolic curve. GTP abolished the activating effects of both myosin and ATP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号