首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2000年以来,中国陆地生态系统经历了剧烈变化并显著改变了生态系统服务。深入理解近20年中国陆地生态系统服务的时空演变格局及其权衡与协同关系对生态系统管理和可持续发展具有重要的理论和实践意义。基于最新发展的遥感驱动的生态系统服务评估过程模型(CEVSA-ES),研究定量评估了2000—2018年中国4种生态系统服务(即净初级生产力、固碳、蓄水及土壤保持)的时空格局及其权衡与协同关系。结果发现:(1)净初级生产力、固碳、蓄水及土壤保持等服务在2018的全国总量分别为3.68 Pg C/a、0.43 Pg C/a、1015.71 km3/a 208.18 Gt/a;东部季风区的生态系统服务显著高于西北内陆地区及青藏高原地区,特别是热带-亚热带地区主导了中国生态系统服务供给,其对全国尺度不同生态系统服务总量的贡献率均高于50%;(2)2000—2018年,全国净初级生产力、固碳、蓄水及土壤保持均呈增加趋势,年际变化速率分别为42.80 Tg C/a、13.42 Tg C/a、11.90 km3/a、1.11 Gt/a,其中净初级生产力、固碳、蓄水呈...  相似文献   

2.
3.
The Ecosystem as a Multidimensional Concept: Meaning,Model, and Metaphor   总被引:6,自引:0,他引:6  
The ecosystem is a fundamental ecological concept that is not as simple as it first appears. We explore three key dimensions of the concept that make it both complex and broadly useful—its basic definition, its application via models to concrete or specific situations, and its metaphorical connotations as used in general communication within the domain of science and with the public at large. Clarity in identifying what the dimensions are and how they are related can help to maintain the rigor of the concept for specific scientific uses while also allowing enough flexibility for its use in the integration of scientific principles, as well as in public discourse. This analysis of the ecosystem as a multidimensional concept is likely to be generalizable to other important concepts in ecology. Received 28 February 2001; accepted 5 September 2001.  相似文献   

4.
当代生态系统科学研究更加关注区域生态环境及生态系统状态变化的监测、评估、预测、预警及生态环境可持续管理。在深入理解陆地生态系统的要素、过程、功能、格局及其相互作用机理基础上,发展生态系统定量化描述方法和数值模拟技术,集成构建大陆尺度的“多过程耦合-多技术集成-多目标应用”的陆地生态系统数值模拟器已成为生态系统与全球变化及其资源、环境和灾害效应科学研究的重要科技任务。本研究围绕宏观生态系统模拟分析方法问题,在回顾陆地生态系统模型研究现状和发展趋势的基础上,深入讨论开发大尺度陆地生态系统动态变化和空间变异及其资源环境效应模拟系统的理念,以及模拟系统的功能定位、结构设计等基本问题,为构造中国陆地生态系统数值模拟器提供参考。  相似文献   

5.
SMOES: a simulation model for the Oosterschelde ecosystem   总被引:11,自引:11,他引:0  
The model SMOES integrates the results of the ecological research program conducted in the Oosterschelde estuary before and during the construction of a storm surge barrier. Its aim is to provide a quantitative summary of the research findings and to provide a tool for analysis and prediction of the ecosystem in response to human manipulations. This chapter describes model background and formulations. An uncertainty analysis is used to analyze the effect of uncertainties in model parameters on model outcome. The results of the sensitivity analysis are classified by distinguishing groups of model parameters with a qualitatively different effect on model results. Within these groups, a quantitative ranking of the parameters is possible. It appears that the most sensitive parameters represent processes that are relatively little studied in the Oosterschelde, which may provide guidelines for further research.  相似文献   

6.
We developed an individual-based stochastic-empirical model to simulate the carbon dynamics of live and dead trees in a Central Amazon forest near Manaus, Brazil. The model is based on analyses of extensive field studies carried out on permanent forest inventory plots, and syntheses of published studies. New analyses included: (1) growth suppression of small trees, (2) maximum size (trunk base diameter) for 220 tree species, (3) the relationship between growth rate and wood density, and (4) the growth response of surviving trees to catastrophic mortality (from logging). The model simulates a forest inventory plot, and tracks recruitment, growth, and mortality of live trees, decomposition of dead trees (coarse litter), and how these processes vary with changing environmental conditions. Model predictions were tested against aggregated field data, and also compared with independent measurements including maximum tree age and coarse litter standing stocks. Spatial analyses demonstrated that a plot size of ~10 ha was required to accurately measure wood (live and dead) carbon balance. With the model accurately predicting relevant pools and fluxes, a number of model experiments were performed to predict forest carbon balance response to perturbations including: (1) increased productivity due to CO2 fertilization, (2) a single semi-catastrophic (10%) mortality event, (3) increased recruitment and mortality (turnover) rates, and (4) the combined effects of increased turnover, increased tree growth rates, and decreased mean wood density of new recruits. Results demonstrated that carbon accumulation over the past few decades observed on tropical forest inventory plots (~0.5 Mg C ha–1 year–1) is not likely caused by CO2 fertilization. A maximum 25% increase in woody tissue productivity with a doubling of atmospheric CO2 only resulted in an accumulation rate of 0.05 Mg C ha–1 year–1 for the period 1980–2020 for a Central Amazon forest, or an order of magnitude less than observed on the inventory plots. In contrast, model parameterization based on extensive data from a logging experiment demonstrated a rapid increase in tree growth following disturbance, which could be misinterpreted as carbon sequestration if changes in coarse litter stocks were not considered. Combined results demonstrated that predictions of changes in forest carbon balance during the twenty-first century are highly dependent on assumptions of tree response to various perturbations, and underscores the importance of a close coupling of model and field investigations.  相似文献   

7.
王耕  关晓曦 《生态学报》2020,40(4):1496-1503
以Web of Science数据库中的Web of Science ~(TM)核心合集和中国期刊全文数据库为数据源,对2018年10月前国内外发表的珊瑚礁生态系统模型研究相关文献进行计量分析,评估该领域的研究现状及热点。研究表明:国外珊瑚礁生态系统模型研究起始于1974年,相关文献的发文量整体呈大幅度增长趋势;国内研究于1997年起步,发文量增长较缓慢,近三年显著增加。高频关键词统计分析可以看出,国外对于珊瑚礁中生活的各种生物及其生态分布研究较为广泛,生态系统的生物群落多样性是该领域的研究热点,关于珊瑚礁生态系统风险、威胁、胁迫和修复的模型研究近几年有所起色,在今后一段时间内将是该领域的主要研究趋势。国内相关研究局限于珊瑚礁地质环境与波浪传播等方面,应在扩大研究范围的同时,将重点放在珊瑚礁生态系统退化诊断与修复的探究上。  相似文献   

8.
Seed retention time (SRT), the time interval between seed ingestion and defaecation, is a critical parameter that determines the spatial pattern of seed dispersal created by an animal, and is therefore, an essential component of trait‐based modelling of seed dispersal functions. However, no simple predictive model of SRT for any given animal exists. We explored the linkage between animal traits and SRT. We collected previously published data on mean SRT for 112 species of birds, mammals, reptiles and fishes and investigated the general allometric scaling of mean SRT with body mass for each taxon. Moreover, we analysed the effects of food habit and digestive strategy on mean SRT for birds and mammals. In general, mean SRT increased with body mass in all four taxa, whereas the pattern of allometric scaling varied greatly among the taxa. Birds had a smaller intercept and larger slope than those of mammals, whereas reptiles had a much larger intercept and smaller slope than those of either birds or mammals. For birds, food habit was also detected as an important factor affecting SRT. We applied the allometric scaling that was obtained for birds to estimate mean SRT of extinct Mesozoic dinosaurs (Theropoda) – few of which are assumed to have acted as seed dispersers. SRT for large carnivorous theropods was estimated to be 4–5 days, when considering only body mass. The present study provides allometric scaling parameters of mean SRT for a variety of seed‐dispersing animals, and highlights large variations in scaling among taxa. The allometric scaling obtained could be a critical component of further trait‐based modelling of seed dispersal functions. Further, the potential and limitations of the scaling of animal SRT with body mass and a future pathway to the development of trait‐based modelling are discussed.  相似文献   

9.
应用基于生理生态学过程的EALCO模型,对玉米农田生态系统的蒸散(ET)过程进行了模拟,在模型检验基础上,使用该模型模拟了玉米农田生态系统ET过程对未来气候变化的响应。结果表明,EALCO模型中能量与水过程的动态耦合机制使模型能够较好地模拟农田蒸散过程,基于涡度相关法的观测值与模型模拟值在小时、日尺度上均吻合较好,模型可以解释67%的日蒸散的变化特征。对土壤蒸发与冠层蒸腾的分别模拟显示,生长季土壤蒸发约占ET的36%。温度的升高会引起ET与冠层蒸腾的增加,同时土壤蒸发减少;ET对降水减少的响应较为敏感,主要表现在土壤蒸发的下降。大气CO2浓度升高对冠层蒸腾影响显著,该情景下冠层蒸腾下降幅度最大。研究所假设的2100年气候情景下,该农田生态系统生长季蒸散将减少,然而相对于降水的减少而言,蒸散的减少量较小,即水分支出项相对增加,因此,发生土壤水分匮乏的可能性加大,这可能会加剧该地区的暖干化趋势,给作物产量及生态环境带来威胁。  相似文献   

10.
In the Ems estuary the gradients in the concentration of nutrients and in turbidity (the factors that mainly determine the amount of carbon assimilated by phytoplankton) are steep. The effects of changing the turbidity in the estuary and the amount of phosphate discharged by the rivers Ems and Westerwoldsche Aa were analysed, using the simulation model developed by BOEDE (Biological Research Ems-Dollard estuary). The results of several sensitivity runs were compared with the standard run.A 50% reduction of turbidity led to a strong increase in phytoplanktonbiomass, especially in the inner parts of the estuary where turbidity is high. On average, the effects are two to three times larger for the inner part than for the outer part of the estuary. When the turbidity doubles the opposite occurs resulting in a significant decrease of phytoplankton biomass in the upper reaches. In the lower reaches of the estuary a 50% reduction in the river discharge of phosphate is largely compensated for by changes in phosphate transport from the North Sea. This results in a nearly unchanged primary production in the lower reaches as compared with the standard run.In the upper reaches a 50% reduction of phosphate loads results in a strongly reduced primary production.In general, the zooplankton groups (copepods and microzooplankton) are influenced less than the phytoplankton. Benthic fauna is hardly influenced, except for filter feeders; which are strongly affected by the total density of the particles, a parameter which also is directly related to turbidity.  相似文献   

11.
土地利用/覆被变化对水文过程与水资源利用具有重要影响,是流域生态系统产水功能的驱动力之一.以山东省南四湖流域为研究对象,分析1990—2013年土地利用变化,运用CLUE-S模型预测未来土地利用变化趋势,并基于土地利用变化格局,采用InVEST模型的产水模块和空间制图探讨了近25年、未来城市化增长情景以及流域生态保护管理情景下土地利用变化对产水功能的影响.结果表明: 近25年来,随着南四湖流域城市化进程的加快,城市建设用地增加3.5%,耕地面积减少2.4%,城市用地的增加主要来源于耕地转换;InVEST模型模拟显示,城市建设用地的增加会促进产水,由此引起产水功能在过去25年中先降低后升高,2013年最高达到232.1 mm;CLUE-S模型模拟预测现状增长情景下土地利用变化,按照城市化快速发展的速度,城市建设用地将增加6.7%,由此导致2030年产水量显著增长,流域洪水风险亦会相应升高;湖区周围300 m缓冲区实施退耕还林情景模拟表明,这一生态措施会明显降低流域产水量,较2013年减少1.2%.  相似文献   

12.
基于投影寻踪的城市生态系统健康评价   总被引:7,自引:1,他引:6  
陈广洲  汪家权 《生态学报》2009,29(9):4918-4923
掌握城市生态系统的健康水平,对城市实施可持续发展具有重要意义.采用一种新型的多指标数据处理方法-投影寻踪模型,选取典型指标,利用基于实数编码遗传算法优化求取最佳投影方向,对广州市2000年、2005年的城市生态系统健康状况进行评价.评价结果表明:2000年,广州市对应的等级值为2.95,处于亚健康状态,符合其客观状况,该结果与采用模糊综合评价法所得结论一致;2005年,广州市对应的等级值为3.48,仍处于亚健康状态,但其等级值大于2000年的数值,等级值在增大,表明经过5a的建设,广州市的生态系统健康状况在不断好转.此外,与模糊综合评价法相比,该模型能精确地刻画出生态系统的具体健康水平,具有较高的评价精度和区分度.  相似文献   

13.
生态系统服务功能与人类福利息息相关,土地利用变化是生态系统服务功能退化的主要驱动力之一,以人地关系紧张,生态系统服务功能变化剧烈的密云水库流域为对象,分析流域1990-2009年土地利用的变化,采用空间显式的生态系统服务功能评估软件InVEST中的“产水量”、“土壤保持”、“水质净化”模型,研究流域土地利用变化对生态系统服务功能的影响.结果表明1990-2009年密云水库流域土地利用变化剧烈,农田、草地和水体的面积分别减少了30%、48%、61%,林地、建筑用地和裸地的面积增加,增幅分别为30%、230%、282%.随着土地利用变化,生态系统服务功能相应产生着显著变化,研究期内,土壤保持功能和固碳服务分别增加46%和19%,但水资源供给服务和水质净化功能分别减少了3%和25%.农田面积的减少和森林的扩张改善了土壤保持服务,森林面积的增加同时也改善了固碳服务,但会削弱水资源供给服务,建筑用地的扩张会大幅度削弱水质净化功能,为维持和改善流域整体的生态系统服务功能,应加强对森林和建筑用地的控制.其研究为密云水库流域土地利用科学管理决策提供参考.  相似文献   

14.
This paper provides the first steps toward a regional-scale analysis of carbon (C) budgets. We explore the ability of the ecosystem model BIOME-BGC to estimate the daily and annual C dynamics of four European coniferous forests and shifts in these dynamics in response to changing environmental conditions. We estimate uncertainties in the model results that arise from incomplete knowledge of site management history (for example, successional stage of forest). These uncertainties are especially relevant in regional-scale simulations, because this type of information is difficult to obtain. Although the model predicted daily C and water fluxes reasonably well at all sites, it seemed to have a better predictive capacity for the photosynthesis-related processes than for respiration. Leaf area index (LAI) was modeled accurately at two sites but overestimated at two others (as a result of poor long-term climate drivers and uncertainties in model parameterization). The overestimation of LAI (and consequently gross photosynthetic production (GPP)), in combination with reasonable estimates of the daily net ecosystem productivity (NEP) of those forests, also illustrates the problem with modeled respiration. The model results suggest that all four European forests have been net sinks of C at the rate of 100–300 gC/m2/y and that this C sequestration capacity would be 30%–70% lower without increasing nitrogen (N) deposition and carbon dioxide (CO2) concentrations. The magnitude of the forest responses was dependent not only on the rate of changes in environmental factors, but also on site-specific conditions such as climate and soil depth. We estimated that the modeled C exchange at the study sites was reduced by 50%–100% when model simulations were performed for climax forests rather than regrowing forests. The estimates of water fluxes were less sensitive to different initializations of state variables or environmental change scenarios than C fluxes.  相似文献   

15.
杨阳  蔡怡敏  白艳莹  陈卫平  杨秀超 《生态学报》2016,36(14):4279-4287
区域生态系统健康状况对区域可持续发展具有重要意义。基于"系统和谐"理念,构建区域生态系统健康评价体系,对毛集生态试验区生态系统及其4个子系统健康水平和演进趋势进行量化分析。结果表明:5年尺度上社会系统得分受人口健康水平及民众幸福感知强度制约而增幅不大;经济系统得分提高迅速,增幅达到149.5%,但负外部效应明显;自然系统健康水平先降低再增加,主要受湖泊生物多样性下降影响;风险系统得分先降低再增加,自然-经济-社会耦合系统发展失衡是导致风险水平激增的主要原因。区域生态系统健康各年评价结果均为亚健康隶属,正向隶属先增大后减小,环境负荷增大是造成区域生态系统弹性减弱,敏感性增强,发展活力降低的主要原因。  相似文献   

16.
17.
Pest management is expensive and there is often uncertainty about the benefits for the resources being protected. There can also be unintended consequences for other parts of the ecosystem, especially in complex food webs. In making decisions managers generally have to rely on qualitative information collected in a piecemeal fashion. A method to assist decision making is a qualitative modelling approach using fuzzy cognitive maps, a directed graphical model related to neural networks that can take account of interactions between pests and conservation assets in complex food webs. Using all available information on relationships between native and exotic resources and consumers, we generated hypotheses about potential consequences of single‐species and multi‐species pest control on the long‐term equilibrium abundances of other biotic components of an ecosystem. We applied the model to a dryland ecosystem in New Zealand because we had good information on its trophic structure, but the information on the strength of species interactions was imprecise. Our model suggested that pest control is unlikely to significantly boost native invertebrates and lizards in this ecosystem, suggesting that other forms of management may be required for these groups. Most of the pest control regimes tested resulted in greater abundances of at least one other pest species, which could potentially lead to other management problems. Some of the predictions were unexpected, such as more birds resulting from possum and mouse control. We also modelled the effects of an increase in invasive rabbits, which led to unexpected declines of stoats, weasels, mice and possums. These unexpected outcomes resulted from complex indirect pathways in the food web. Fuzzy cognitive maps allow rapid construction of prototype models of complex food webs using a wide range of data and expert opinion. Their utility lies in providing direction for future monitoring efforts and generating hypotheses that can be tested with field experiments.  相似文献   

18.
19.
2000-2015年中国陆地生态系统蒸散时空变化及其影响因素   总被引:1,自引:0,他引:1  
准确量化区域蒸散时空格局及其影响因素对理解陆地生态系统碳水循环具有十分重要的意义。近年来中国经历了严重的空气污染及气候波动,亟须探讨蒸散的时空变化及其影响因素。基于PT-JPL(Priestly-Taylor Jet Propulsion Laboratory)模型,集成遥感数据和气象数据模拟了中国陆地生态系统2000-2015年蒸散,并分析其时空变化及影响因素。结果表明:1)参数优化后PT-JPL模型可解释蒸散年际变化的68%,优于原始模型及MODIS蒸散产品;2)中国地区多年平均蒸散为440.16 mm/a,呈东南沿海到西北内陆逐渐递减的空间格局;3)2000-2015年蒸散整体呈轻微下降趋势(slope=6.48 Gt/a,P=0.17),但具有年代际差异,2000-2010年中国地区蒸散呈显著下降趋势(slope=21.05,P < 0.01),占全国蒸散总量45.05%的内蒙古地区、甘新地区、黄土高原地区及青藏地区解释了61.88%的年际变化;2010-2015年呈轻微上升趋势(slope=10.48,P=0.71),各地区均无显著变化趋势;4)辐射主导了蒸散的年代际差异,分别解释了2010年前后蒸散下降及上升趋势的51.45%、85.26%。蒸散呈显著变化趋势的内蒙古地区、黄土高原地区及青藏地区主要受辐射控制,甘新地区主要受降水和温度的影响。  相似文献   

20.
《植物生态学报》2017,41(3):378
We developed a method, namely Adaptive Population Monte Carlo Approximate Bayesian Computation (APMC), to estimate the parameters of Farquhar photosynthesis model. Treating the canopy as a big leaf, we applied this method to derive the parameters at canopy scale. Validations against observational data showed that parameters estimated based on the APMC optimization are un-biased for predicting the photosynthesis rate. We conclude that APMC has greater advantages in estimating the model parameters than those of the conventional nonlinear regression models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号