首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Changes in the energy metabolism of washed human platelets were compared with the kinetics of secretion induced by thrombin (5 units/ml). A 50% decrease in the level of metabolic ATP (3H-labelled), which was essentially complete in 30s, was matched in rate by adenine nucleotide secretion from storage in dense granules. Incubation of platelets with antimycin before thrombin addition increased the rate of fall in metabolic ATP, but did not affect the rate of adenine nucleotide secretion. beta-N-Acetylglucosaminidase secretion, which was slower than adenine nucleotide secretion in control platelets, was noticeably inhibited by antimycin, confirming previous reports that different regulatory mechanisms exist for dense and alpha-granule secretion. The rates of rephosphorylation of metabolic ADP to ATP via glycolysis and oxidative phosphorylation were estimated by measuring lactate production and O2 consumption in resting and thrombin-stimulated platelets and compared to the level of metabolic ATP (9-10 nmol/mg of platelet protein in the resting state). The rate of ATP production was stimulated at least two fold from 12 nmol to 24 nmol/min/mg within seconds of thrombin addition. This increased rate was maintained over the observed period of 5 min although the level of metabolic ATP had decreased to 4-5 nmol/mg within 30 s; the turnover of the remaining metabolic ATP thus increased four fold over the resting state although the actual stimulation of energy production was only two fold.  相似文献   

2.
Adenine uptake into human blood platelets is a carrier-mediated process with a Km of 159±21 nM and a V of 100±10 pmoles/min per 109 platelets (in citrated platelet-rich plasma). The Q10 was 2.53±0.22. A pH optimum was found at 7.5. Washing of the platelets increased the Km to 453±33 nM and V to 397±38 pmoles/min per 109 platelets. The change in shape induced in platelets by ADP was accompanied by an increase in V (2 times) and Km (1.5 times).Guanine (Ki 50 μM), hypoxanthine (Ki 390 μM), adenine-N′-oxide (Ki 40 μM), adenosine (Ki 100 μM), RA 233 (Ki 75 μM) and papaverine (Ki 15 μM) acted as competitive inhibitors. Adenosine at low concentrations, and prostaglandin E1 gave inhibition at only high adenine levels. A similar inhibition was obtained with 2-deoxy-d-glucose. Sulfhydryl-group inhibitors, pyrimidines and ouabain had no effect.  相似文献   

3.
4.
5.
6.
A23187 induced shape change, aggregation and secretion of platelets in plasma. When rapid cooling was used to stop secretion and centrifugation to separate the cells from the medium, maximal amounts of storage ATP plus ADP and preadsorbed [14C]serotonin were found in the supernatant immediately (less than 5 s) after A23187 addition. These results suggested that A23187 could cause shape change and aggregation through secreted ADP and not directly. When secretion was stopped with chilling and formaldehyde treatment before centrifugation, the secreted substances appeared after a lag of 60-120 s, i.e. after shape change was terminated and aggregation was well on its way. These two platelet responses thus seemed to be independent of secretion and induced directly by A23187. The absence of a lag period when secretion was stopped by chilling alone was thought to be due to centrifugation-induced secretion of platelets conditioned by A23187. Formaldehyde completely inhibited centrifugation-induced secretion. At 37 degrees C, formaldehyde caused rapid breakdown of metabolic ATP in platelets with a pattern dependent on the formaldehyde concentration: Below 50 mM, ATP was converted to inosine plus hypoxanthine via ADP, AMP and IMP and the adenylate energy charge was preserved. Above 100 mM, AMP was the end product with a drastic reduction in the adenylate energy charge. These changes were not due to lysis of the platelets, but were apparently caused by an formaldehyde-induced increase in cellular ATP consumption. Platelet secretion is usually associated with a conversion of metabolic ATP to hypoxanthine. Formaldehyde had to be used to stop secretion and since it caused breakdown of ATP, additional smaples were taken out for nucleotide determination during stirring of platelet-rich plasma with A23187. It was found that metabolic ATP was converted to inosine plus hypoxanthine only during the secretion step.  相似文献   

7.
8.
The relation between ATP production and adenine nucleotide metabolism was investigated in human platelets which were starved by incubation in glucose-free, CN?-containing medium and subsequently incubated with different amounts of glucose. In the absence of mitochondrial energy production (blocked by CN?) and glycogen catabolism (glycogen almost completely consumed during starvation), lactate production increased proportionally with increasing amounts of glucose. The generated ATP was almost completely consumed in the various ATP-consuming processes in the cell except for a fixed portion (about 7%) that was reserved for restoration of the adenylate energy charge. During the first 10 min after glucose addition, the adenine nucleotide pool remained constant. Thereafter, when the glycolytic flux, measured as lactate formation, was more than 3.5 μmol · min?1 · 10?11 cells, the pool increased slightly by resynthesis from hypoxanthine-inosine and then stabilized; at a lower flux the pool decreased and metabolic ATP and energy charge declined to values found during starvation. Between moments of rising and falling adenylate energy charges, periods of about 10 min remained in which the charge was constant and ATP supply and demand had reached equilibrium. This enabled comparison between the adenylate energy charge and ATP regeneration velocity. A linear relation was obtained for charge values between 0.4 and 0.85 and ATP regeneration rates between 0.6 and 3.5 ATP equiv. · min?1 · 10?11 cells. These data indicate that in starved platelets ATP regeneration velocity and energy charge are independent and that each appears to be subject to the availability of extracellular substrate.  相似文献   

9.
10.
The turnover of the adenine nucleotide pool, the pathway of the degradation of AMP and the occurrence of recycling of adenosine were investigated in isolated chicken hepatocytes, in which the adenylates had been labelled by prior incubation with [14C]adenine. Under physiological conditions, 85% of the IMP synthesized by the 'de novo' pathway (approx. 37 nmol/min per g of cells) was catabolized directly via inosine into uric acid, and 14% was converted into adenine nucleotides. The latter were found to turn over at the rate of approx. 5 nmol/min per g of tissue. Inhibition of adenosine deaminase by 1 microM-coformycin had no effect on the formation of labelled uric acid, indicating that the initial degradation of AMP proceeds by way of deamination rather than dephosphorylation. Inhibition of adenosine kinase by 100 microM-5-iodotubercidin resulted in a loss of labelled ATP, demonstrating that adenosine is normally formed from AMP but is recycled. Unexpectedly, 5-iodotubercidin did not decrease the total concentration of ATP, indicating that the loss of adenylates caused by inhibition of adenosine kinase was nearly completely compensated by formation of AMP de novo. Anoxia induced a greatly increased catabolism of the adenine nucleotide pool, which proceeded in part by dephosphorylation of AMP. On reoxygenation, the formation of AMP de novo was increased 8-fold as compared with normoxic conditions. The latter results indicate the existence of adaptive mechanisms in chick liver allowing, when required, channelling of the metabolic flux through the 'de novo' pathway, away from the uricotelic catabolic route, into the synthesis of adenine nucleotides.  相似文献   

11.
12.
13.
The adenine nucleotide and Pi content of pigeon liver and heart were determined, and the energy charge, phosphoryl potential and mass action ratio of adenylate kinase were calculated over the 24 hr period. All the indices of adenine nucleotide metabolism were shown to vary a 2- to 4-fold extent, both in liver and heart. The correlation coefficients for each of the adenine nucleotides and each of the calculated indices were computed and shown to be different for liver and heart. The difference between pigeon liver, pigeon heart and rat liver in the diurnal variation of adenine nucleotide metabolism, in the regulatory mechanism, and in metabolism on the whole is discussed.  相似文献   

14.
Testicular and cauda epididymal sperm were obtained via catheters previously implanted in the rete testis and proximal vas deferens of bulls and were used to examine the relationships among sperm motility, cyclic adenosine 3':5'-monophosphate (cAMP) level, adenine nucleotide levels, and rates of glucose and oxygen consumption. Testicular, cauda epididymal, and ejaculated sperm contain cAMP-stimulated protein kinase, adenylate cyclase, and nucleotide phosphodiesterase. Treatment of the nonmotile testicular sperm with phosphodiesterase inhibitors resulted in a doubling of cellular cAMP concentration and a 25% increase in their glucose consumption. No change in motility, ATP level, or rate of oxygen consumption was observed. Sperm in neat cauda epididymal semen had flagellating tails but no progressive motility. Dilution of these sperm into glucose-containing buffer resulted in an increase in intracellular cAMP concentration and a decrease in ATP level with concomitant increases in ADP and AMP levels. These biochemical changes occurred within 30 s after dilution and apparently preceded the initiation of progressive motility by most cells. Since sperm in neat cauda epididymal semen became progressively motile when diluted with neat cauda epididymal plasma as well as accessory sex gland fluid or buffer, composition of the fluid surrounding the sperm is not responsible for the initiation of progressive motility upon dilution nor does cauda epididymal plasma contain an inhibitory factor. Perhaps release from contact immobilization provides the stimulation for the initial acquisition of progressive motility by cauda epididymal sperm. We conclude that during epididymal passage sperm develop from a cell physically unresponsive to changes in cAMP concentration to a form which initiates progressive motility upon changes in cAMP concentration.  相似文献   

15.
Transport and storage of serotonin by thrombin-treated platelets   总被引:1,自引:1,他引:0       下载免费PDF全文
Repeated thrombin treatment of washed platelets prepared from rabbits can decrease the serotonin content of the platelets by about 80%. When these platelets are deaggregated they reaccumulate serotonin but their storage capacity for serotonin is reduced by about 60%. If thrombin-pretreated platelets are allowed to equilibrate with a high concentration of serotonin (123 mu M), they release a smaller percentage of their total serotonin upon further thrombin treatment, in comparison with the percentage of serotonin released from control platelets equilibrated with the same concentration of serotonin calculations indicate that in thrombin-treated platelets reequilibrated with serotonin, two-thirds of the serotonin is in the granule compartment and one-third is in the extragranular compartment, presumably the cytoplasm. Analysis of the exchange of serotonin between the suspending fluid and the platelets showed that thrombin treatment does not alter the transport rate of serotonin across the platelet membrane and does not cause increased diffusion of serotonin from the platelets into the suspending fluid. The primary reason for the reduced serotonin accumulation by the thrombin-treated platelets appears to be loss of amine storage granules or of the storage capacity within the granules.  相似文献   

16.
AMP-degrading pathways in Azotobacter vinelandii cells were investigated. AMP nucleosidase (EC 3.2.2.4) was rapidly synthesized and reached a maximum at 24 h, while the activity of 5-nucleotidase (EC 3.1.3.5) specific for AMP, which was negligible during the logarithmic phase of the growth, first appeared in 24 h-cultures, and reached a maximum after complete exhaustion of sucrose from the growth medium (70 h).Cell-free extracts of A. vinelandii of 48 h-cultures hydrolyzed AMP to ribose 5-phosphate and adenine in the presence of ATP, and adenine was deaminated to hypoxanthine. When ATP was excluded, AMP was dephosphorylated to adenosine, which was further metabolized to inosine, and finally to hypoxanthine. Hypoxanthine thus formed was reutilized for the salvage synthesis of IMP under the conditions where 5-phosphoribosyl 1-pyrophosphate was able to be supplied. These results suggest that the levels of ATP can determine the rate of AMP degradation by the AMP nucleosidase- and 5-nucleotidase-pathways. The role of ATP in the AMP degradation was discussed in relation to the regulatory properties of AMP nucleosidase, inosine nucleosidase (EC 3.2.2.2) and adenosine deaminase (EC 3.5.4.4).  相似文献   

17.
Adenine nucleotide breakdown to nucleosides and purine bases was measured in cultures of human lymphoblastoid cells following: 1) the inhibition of oxidative phosphorylation in the absence of glucose or 2) the addition of 2-deoxyglucose. A mutant cell line, deficient in adenosine kinase, in the presence of an adenosine deaminase inhibitor was used to measure utilization of the two pathways of AMP catabolism involving initial action of either purine 5'-nucleotidase or AMP deaminase. In such a system the appearance of adenosine induced by the oxidative phosphorylation inhibitor, rotenone, implies that approximately 70% of AMP breakdown occurs via dephosphorylation. By the same method, deamination accounts for 82% of AMP breakdown when 2-deoxyglucose is added. The occurrence of AMP dephosphorylation is not correlated with elevated concentrations of substrate or with decreased concentrations of the inhibitors of 5'-nucleotidase, ATP and ADP. Dephosphorylation occurs if, and only if, the adenylate energy charge decreases to about 0.6 in these experiments. In cultures deprived of glucose and oxygen, adenine nucleotide degradation via dephosphorylation results in recovery of normal energy charge values.  相似文献   

18.
19.
20.
Gross LJ  Chabot BF 《Plant physiology》1979,63(6):1033-1038
The response of whole leaf photosynthetic rate in Fragaria virginiana to sudden changes in photosynthetically active radiation (PAR) is described. Two components of the response, consisting of a time lag and time constant, are estimated under varying PAR changes for plants grown under two different light regimes. Both the time lag and time constant are found to vary with PAR but not with growth light regime. A model of Thornley for leaf photosynthetic response is refuted and an alternative form is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号