首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Recent concern that the increased use of triclosan (TCS) in consumer products may contribute to the emergence of antibiotic resistance has led us to examine the effects of TCS dosing on domestic-drain biofilm microcosms. TCS-containing domestic detergent (TCSD) markedly lowered biofouling at 50% (wt/vol) but was poorly effective at use levels. Long-term microcosms were established and stabilized for 6 months before one was subjected to successive 3-month exposures to TCSD at sublethal concentrations (0.2 and 0.4% [wt/vol]). Culturable bacteria were identified by 16S rDNA sequence analysis, and their susceptibilities to four biocides and six antibiotics were determined. Microcosms harbored ca. 10 log10 CFU/g of biofilm, representing at least 27 species, mainly gamma proteobacteria, and maintained dynamic stability. Viable cell counts were largely unaffected by TCSD exposure, but species diversity was decreased, as corroborated by denaturing gradient gel electrophoresis analysis. TCS susceptibilities ranged widely within bacterial groups, and TCS-tolerant strains (including aeromonads, pseudomonads, stenotrophomonads, and Alcaligenes spp.) were isolated before and after TCSD exposure. Several TCS-tolerant bacteria related to Achromobacter xylosoxidans became clonally expanded during dosing. TCSD addition did not significantly affect the community profiles of susceptibility to the test biocides or antibiotics. Several microcosm isolates, as well as reference bacteria, caused clearing of particulate TCS in solid media. Incubations of consortia and isolates with particulate TCS in liquid led to putative TCS degradation by the consortia and TCS solubilization by the reference strains. Our results support the view that low-level exposure of environmental microcosms to TCS does not affect antimicrobial susceptibility and that TCS is degradable by common domestic biofilms.  相似文献   

2.
Quaternary ammonium compounds (QACs) are widely used as adjuncts to hygiene in domestic cleaning products. Current concern that the increased use of such biocides in consumer products might contribute to the emergence of antibiotic resistance has led us to examine the effects of a QAC-containing domestic cleaning fluid on the population dynamics and antimicrobial susceptibility of domestic sink drain biofilm communities. QAC susceptibilities of numerically dominant, culturable drain bacteria (15 genera, 17 species) were determined in vitro before and after repeated QAC exposure (14 passages). A fully characterized drain microcosm was then exposed to short-term (12 days) and long-term (3 months) dosing with a QAC-containing domestic detergent (QD). QAC exposure of isolated cultures caused both increases (three species) and circa twofold decreases (six species) in QAC susceptibility. The susceptibility of Ralstonia sp. was considerably decreased following 14 consecutive QAC passages. Control drain microcosm biofilms maintained dynamic stability, as evidenced by culture and denaturing gradient gel electrophoresis (DGGE) analysis. Bacterial population densities were largely unaffected during short-term exposure to use levels of QD, although 50% QD caused circa 10-fold viability reductions. DGGE analysis supported these observations; identified the major microcosm genera as Pseudomonas, Pseudoalteromonas, Erwinia, and Enterobacter, and showed that aeromonads increased in abundance under 10 to 50% QD. Long-term exposure of the microcosms to QD did not significantly alter the pattern of antimicrobial susceptibility. These data demonstrate the recalcitrance of domestic drain biofilms toward QAC and that although repeated QAC exposure of drain isolates in pure culture results in susceptibility change in some test bacteria, such changes do not necessarily occur within complex communities.  相似文献   

3.
Quaternary ammonium compounds (QACs) are widely used as adjuncts to hygiene in domestic cleaning products. Current concern that the increased use of such biocides in consumer products might contribute to the emergence of antibiotic resistance has led us to examine the effects of a QAC-containing domestic cleaning fluid on the population dynamics and antimicrobial susceptibility of domestic sink drain biofilm communities. QAC susceptibilities of numerically dominant, culturable drain bacteria (15 genera, 17 species) were determined in vitro before and after repeated QAC exposure (14 passages). A fully characterized drain microcosm was then exposed to short-term (12 days) and long-term (3 months) dosing with a QAC-containing domestic detergent (QD). QAC exposure of isolated cultures caused both increases (three species) and circa twofold decreases (six species) in QAC susceptibility. The susceptibility of Ralstonia sp. was considerably decreased following 14 consecutive QAC passages. Control drain microcosm biofilms maintained dynamic stability, as evidenced by culture and denaturing gradient gel electrophoresis (DGGE) analysis. Bacterial population densities were largely unaffected during short-term exposure to use levels of QD, although 50% QD caused circa 10-fold viability reductions. DGGE analysis supported these observations; identified the major microcosm genera as Pseudomonas, Pseudoalteromonas, Erwinia, and Enterobacter, and showed that aeromonads increased in abundance under 10 to 50% QD. Long-term exposure of the microcosms to QD did not significantly alter the pattern of antimicrobial susceptibility. These data demonstrate the recalcitrance of domestic drain biofilms toward QAC and that although repeated QAC exposure of drain isolates in pure culture results in susceptibility change in some test bacteria, such changes do not necessarily occur within complex communities.  相似文献   

4.
AIMS: To determine the susceptibility of planktonic and biofilm-grown strains of resident and transient skin bacteria to the liquid hand soap biocides para-chloro-meta-xylenol (PCMX) and triclosan. METHODS AND RESULTS: Freshly isolated hand bacteria were identified by partial 16S rRNA gene sequencing. Two resident and three transient strains, as well as four exogenous potential transient strains, were selected for biocide susceptibility testing. The minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC) of planktonic cells were determined. Resident and transient strains showed a range of susceptibilities to both biocides (PCMX, MIC 12.5-200 mg x l(-1), MBC 100-400 mg x l(-1); triclosan, MIC 0.6- > 40 mg x l(-1), MBC 1.3- > 40 mg x l(-1)). Strains were attached to polystyrene plates for 65 h in 96-well microtitre plates and challenged with biocide to determine the biofilm inhibitory concentration and biofilm eradicating concentration. For all strains tested, biofilms were two- to eightfold less susceptible than planktonic cells to PCMX. CONCLUSIONS: Very few transients were detected on the hand. Transients were not more sensitive than residents to the biocides and susceptibility to PCMX and triclosan was strain dependent. Biofilm-grown strains were less susceptible to PCMX than planktonic cells. SIGNIFICANCE AND IMPACT OF THE STUDY: The study provides increased knowledge about the susceptibility of skin bacteria to biocides present in typical liquid antibacterial hand soaps and suggests that the concentration of biocide employed in such products is in excess of that required to kill the low numbers of transient bacteria typically found on skin.  相似文献   

5.
Considerable controversy surrounds the use of biocides in an ever increasing range of consumer products and the possibility that their indiscriminate use might reduce biocide effectiveness and alter susceptibilities towards antibiotics. These concerns have been based largely on the isolation of resistant mutants from in vitro monoculture experiments. To date, however the emergence of biocide-resistant strains in-vivo has not been reported and a number of environmental survey studies have failed to associate biocide use with antibiotic resistance. This article gives an overview of the issues as they currently stand and reviews data generated in our laboratory over the last five years where we have used laboratory microcosms of the environment and oral cavity to better understand the possible effects of real-life biocide exposure of these high risk ecosystems. In general, whilst biocide susceptibility changes can be demonstrated in pure culture, especially for E. coli towards triclosan, it has not been possible to reproduce these effects during chronic, sublethal dosing of complex communities. We conclude from this review that whilst the incorporation of antibacterial agents into a widening sphere of personal products may not overtly impact on the patterns of microbial susceptibility observed in the environment, the precautionary principle suggests that the use of biocides should be limited to applications where clear hygienic benefits can be demonstrated.  相似文献   

6.
AIMS: To develop a protocol for harvesting ex vivo samples of gingival-biofilm consortia and to investigate their basic characteristics. METHODS AND RESULTS: Gingival epithelial cells with attached biofilm were collected from healthy subjects by taking a smear. The bacterial viability was estimated via the alteration of the membrane permeability and metabolic activity via the double/single-stranded nucleic acid ratio using a confocal laser-scanning microscope. Morphological analysis was performed by scanning and transmission electron microscopy. Additionally, microbiological estimations were made. The electron microscopy revealed fimbriae-mediated adhesion and the formation of a biofilm matrix. Most bacteria were viable and had a high metabolic activity. CONCLUSIONS: The presented study offers an easy to follow approach for harvesting samples of gingival-biofilm consortia. The latter differs considerably from the supragingival plaque in viability and zonal distribution. Related to free-living and in vitro-grown biofilms, the gingiva-associated biofilm revealed an atypically high metabolic activity. SIGNIFICANCE AND IMPACT OF THE STUDY: Biofilm fragments should possess the basic features of the entire gingiva-associated biofilm; which as yet cannot be simulated in vitro. Thus, samples of ex vivo gingival-biofilm consortia can be used to investigate the resistance of oral biofilms against antibiotics and biocides.  相似文献   

7.
Biocides play an essential role in limiting the spread of infectious disease. The food industry is dependent on these agents, and their increasing use is a matter for concern. Specifically, the emergence of bacteria demonstrating increased tolerance to biocides, coupled with the potential for the development of a phenotype of cross-resistance to clinically important antimicrobial compounds, needs to be assessed. In this study, we investigated the tolerance of a collection of susceptible and multidrug-resistant (MDR) Salmonella enterica strains to a panel of seven commercially available food-grade biocide formulations. We explored their abilities to adapt to these formulations and their active biocidal agents, i.e., triclosan, chlorhexidine, hydrogen peroxide, and benzalkonium chloride, after sequential rounds of in vitro selection. Finally, cross-tolerance of different categories of biocidal formulations, their active agents, and the potential for coselection of resistance to clinically important antibiotics were investigated. Six of seven food-grade biocide formulations were bactericidal at their recommended working concentrations. All showed a reduced activity against both surface-dried and biofilm cultures. A stable phenotype of tolerance to biocide formulations could not be selected. Upon exposure of Salmonella strains to an active biocidal compound, a high-level of tolerance was selected for a number of Salmonella serotypes. No cross-tolerance to the different biocidal agents or food-grade biocide formulations was observed. Most tolerant isolates displayed changes in their patterns of susceptibility to antimicrobial compounds. Food industry biocides are effective against planktonic Salmonella. When exposed to sublethal concentrations of individual active biocidal agents, tolerant isolates may emerge. This emergence was associated with changes in antimicrobial susceptibilities.  相似文献   

8.
Oral bacterial microcosms, established using saliva inocula from three individuals, were maintained under a feast-famine regime within constant-depth film fermenters. Steady-state communities were exposed four times daily, postfeeding, to a chlorhexidine (CHX) gluconate-containing mouthwash (CHXM) diluted to 0.06% (wt/vol) antimicrobial content. The microcosms were characterized by heterotrophic plate counts and PCR-denaturing gradient gel electrophoresis (DGGE). CHXM caused significant decreases in both total anaerobe and total aerobe/facultative anaerobe counts (P < 0.05), together with lesser decreases in gram-negative anaerobes. The degree of streptococcal and actinomycete inhibition varied considerably among individuals. DGGE showed that CHXM exposure caused considerable decreases in microbial diversity, including marked reductions in Prevotella sp. and Selenomonas infelix. Pure-culture studies of 10 oral bacteria (eight genera) showed that Actinomyces naeslundii, Veillonella dispar, Prevotella nigrescens, and the streptococci were highly susceptible to CHX, while Lactobacillus rhamnosus, Fusobacterium nucleatum, and Neisseria subflava were the least susceptible. Determination of the MICs of triclosan, CHX, erythromycin, penicillin V, vancomycin, and metronidazole for microcosm isolates, before and after 5 days of CHXM exposure, showed that CHXM exposure altered the distribution of isolates toward those that were less susceptible to CHX (P < 0.05). Changes in susceptibility distributions for the other test agents were not statistically significant. In conclusion, population changes in plaque microcosms following repeated exposure to CHXM represented an inhibition of the most susceptible flora with a clonal expansion of less susceptible species.  相似文献   

9.
Oral bacterial microcosms, established using saliva inocula from three individuals, were maintained under a feast-famine regime within constant-depth film fermenters. Steady-state communities were exposed four times daily, postfeeding, to a chlorhexidine (CHX) gluconate-containing mouthwash (CHXM) diluted to 0.06% (wt/vol) antimicrobial content. The microcosms were characterized by heterotrophic plate counts and PCR-denaturing gradient gel electrophoresis (DGGE). CHXM caused significant decreases in both total anaerobe and total aerobe/facultative anaerobe counts (P < 0.05), together with lesser decreases in gram-negative anaerobes. The degree of streptococcal and actinomycete inhibition varied considerably among individuals. DGGE showed that CHXM exposure caused considerable decreases in microbial diversity, including marked reductions in Prevotella sp. and Selenomonas infelix. Pure-culture studies of 10 oral bacteria (eight genera) showed that Actinomyces naeslundii, Veillonella dispar, Prevotella nigrescens, and the streptococci were highly susceptible to CHX, while Lactobacillus rhamnosus, Fusobacterium nucleatum, and Neisseria subflava were the least susceptible. Determination of the MICs of triclosan, CHX, erythromycin, penicillin V, vancomycin, and metronidazole for microcosm isolates, before and after 5 days of CHXM exposure, showed that CHXM exposure altered the distribution of isolates toward those that were less susceptible to CHX (P < 0.05). Changes in susceptibility distributions for the other test agents were not statistically significant. In conclusion, population changes in plaque microcosms following repeated exposure to CHXM represented an inhibition of the most susceptible flora with a clonal expansion of less susceptible species.  相似文献   

10.
This investigation examined the effects of common aqueous biocides and disinfectant foams derived from them on Pseudomonas aeruginosa biofilms. Biofilms were grown on stainless steel coupons under standardised conditions in a reactor supplemented with low concentrations of organic matter to simulate conditions prevalent in industrial systems. Five-day-old biofilms formed under ambient conditions with continuous agitation demonstrated a low coefficient of variation (5.809%) amongst viable biofilm bacteria from independent trials. Scanning electron microscopy revealed biofilms on coupons with viable biofilm bacteria observed by confocal microscopy. An aqueous solution of a common foaming agent amine oxide (AO) produced negligible effects on bacterial viability in biofilms (p>0.05). However, significant biofilm inactivation was noted with aqueous solutions of common biocides (peracetic acid, sodium hypochlorite, sodium ethylenediaminetetraacetic acid) with or without AO (p<0.05). Aereation of a mixture of AO with each of these common biocides resulted in significant reductions in the viability of biofilm bacteria (p<0.05). In contrast, limited effects were noted by foam devoid of biocides. A relationship between microbial inactivation and the concentration of biocide in foam (ranging from 0.1-0.5%) and exposure period were noted (p<0.05). Although, lower numbers of viable biofilm bacteria were recovered after treatment with the disinfectant foam than by the cognate aqueous biocide, significant differences between these treatments were not evident (p>0.05). In summary, the studies revealed significant biofilm inactivation by biocidal foam prepared with common biocides. Validation of foam disinfectants in controlled trials at manufacturing sites may facilitate developments for clean in place applications. Advantages of foam disinfectants include reductions in the volumes of biocides for industrial disinfection and in their disposal after use.  相似文献   

11.

Three different types of biocides, viz. formaldehyde (FM), glutaraldehyde (GA) and isothiozolone (ITZ) were used to control planktonic and sessile populations of two marine isolates of sulphate‐reducing bacteria (SRB). The influence of these biocides on the initial attachment of cells to mild steel surfaces, on subsequent biofilm formation and on the activity of hydrogenase enzymes within developed biofilms was evaluated. In the presence of biocides the rate and degree of colonization of mild steel by SRB depended on incubation time, bacterial isolate and the type of biocide used. Although SRB differed in their susceptibility to biocides, for all isolates the biofilm population was more resistant to the treatment than the planktonic population. GA showed highest efficiency in controlling planktonic and sessile SRB compared with the other two biocides. The activity of the enzyme hydrogenase measured in SRB biofilms varied between isolates and with the biocide treatment. No correlation was found between the number of sessile cells and hydrogenase activity.  相似文献   

12.
BACKGROUND: Triclosan (TCS) exposure of Escherichia coli selects for tolerant clones, mutated in their enoyl-acyl carrier protein reductase (FabI). It has been inferred that this phenomenon is widespread amongst bacterial genera and might be associated with resistance to third party agents. METHODS: Ex-situ, low passage isolates of enteric, human axilla, human oral origin and bacteria isolated from a domestic drain, together with selected type cultures were exposed to escalating concentrations of TCS over 10 passages using a gradient plate technique. One fresh faecal isolate of E. coli was included as a positive control. TCS susceptibility was determined for all strains before and after exposure, whilst enteric isolates were additionally assessed for susceptibility towards chlorhexidine, tetracycline, chloramphenicol, nalidixic acid and ciprofloxacin, and the oral isolates towards chlorhexidine, tetracycline and metronidazole. RESULTS: Triclosan exposure of E. coli markedly decreased TCS susceptibility. TCS susceptibility also decreased for Klebsiella oxytoca, Aranicola proteolyticus and Stenotrophomonas maltophilia. Susceptibility of the remaining 35 strains to TCS and the other test agents remained unchanged. CONCLUSIONS: These data suggest that selection for high level resistance by TCS exposure is not widespread and appears to be confined to certain enteric bacteria, especially E. coli. Change in TCS susceptibility did not affect susceptibility towards chemically unrelated antimicrobials. SIGNIFICANCE AND IMPACT: Acquired high-level TCS resistance is not a widespread phenomenon.  相似文献   

13.
This investigation examined the effects of common aqueous biocides and disinfectant foams derived from them on Pseudomonas aeruginosa biofilms. Biofilms were grown on stainless steel coupons under standardised conditions in a reactor supplemented with low concentrations of organic matter to simulate conditions prevalent in industrial systems. Five-day-old biofilms formed under ambient conditions with continuous agitation demonstrated a low coefficient of variation (5.809%) amongst viable biofilm bacteria from independent trials. Scanning electron microscopy revealed biofilms on coupons with viable biofilm bacteria observed by confocal microscopy. An aqueous solution of a common foaming agent amine oxide (AO) produced negligible effects on bacterial viability in biofilms (p?>?0.05). However, significant biofilm inactivation was noted with aqueous solutions of common biocides (peracetic acid, sodium hypochlorite, sodium ethylenediaminetetraacetic acid) with or without AO (p?<?0.05). Aereation of a mixture of AO with each of these common biocides resulted in significant reductions in the viability of biofilm bacteria (p?<?0.05). In contrast, limited effects were noted by foam devoid of biocides. A relationship between microbial inactivation and the concentration of biocide in foam (ranging from 0.1?–?0.5%) and exposure period were noted (p?<?0.05). Although, lower numbers of viable biofilm bacteria were recovered after treatment with the disinfectant foam than by the cognate aqueous biocide, significant differences between these treatments were not evident (p?>?0.05). In summary, the studies revealed significant biofilm inactivation by biocidal foam prepared with common biocides. Validation of foam disinfectants in controlled trials at manufacturing sites may facilitate developments for clean in place applications. Advantages of foam disinfectants include reductions in the volumes of biocides for industrial disinfection and in their disposal after use.  相似文献   

14.
A model artificial biofilm was developed and evaluated for ranking the performance of biocides for application in oil production pipelines. The biofilm consisted of an alginate gel matrix into which were incorporated bacteria, scrapings from the inner surfaces of oil production pipelines and some crude oil.
The viability and sulphide-respiration rates of sulphate-reducing bacteria (SRB) within freshly-prepared artificial biofilm remained largely unchanged during a 2-week storage period. Furthermore, storage of the model biofilm did not alter the susceptibility of the incorporated SRB to a biocide. These findings showed that artificial biofilm may be produced in advance of a biocide assessment study and stored for at least 2 weeks over the course of the study without the model system undergoing changes which affected the relative performance of the biocides assessed. Artificial biofilms were found to be more resistant to biocides than planktonic bacteria and the addition of oil pipeline scrapings and crude oil to the artificial biofilm was found to increase further the resistance of biofilm to biocides.  相似文献   

15.

Background

Coagulase-negative staphylococci are major causes of bloodstream infections in very low birth weight babies cared for in Neonatal Intensive Care Units. The virulence of these bacteria is mainly due to their ability to form biofilms on indwelling medical devices. Biofilm-related infections often fail to respond to antibiotic chemotherapy guided by conventional antibiotic susceptibility tests.

Methods

Coagulase-negative staphylococcal blood culture isolates were grown in different phases relevant to biofilm formation: planktonic cells at mid-log phase, planktonic cells at stationary phase, adherent monolayers and mature biofilms and their susceptibilities to conventional antibiotics were assessed. The effects of oxacillin, gentamicin, and vancomycin on preformed biofilms, at the highest achievable serum concentrations were examined. Epifluorescence microscopy and confocal laser scanning microscopy in combination with bacterial viability staining and polysaccharide staining were used to confirm the stimulatory effects of antibiotics on biofilms.

Results

Most coagulase-negative staphylococcal clinical isolates were resistant to penicillin G (100%), gentamicin (83.3%) and oxacillin (91.7%) and susceptible to vancomycin (100%), ciprofloxacin (100%), and rifampicin (79.2%). Bacteria grown as adherent monolayers showed similar susceptibilities to their planktonic counterparts at mid-log phase. Isolates in a biofilm growth mode were more resistant to antibiotics than both planktonic cultures at mid-log phase and adherent monolayers; however they were equally resistant or less resistant than planktonic cells at stationary phase. Moreover, for some cell-wall active antibiotics, concentrations higher than conventional MICs were required to prevent the establishment of planktonic cultures from biofilms. Finally, the biofilm-growth of two S. capitis isolates could be enhanced by oxacillin at the highest achievable serum concentration.

Conclusion

We conclude that the resistance of coagulase-negative staphylococci to multiple antibiotics initially remain similar when the bacteria shift from a planktonic growth mode into an early attached mode, then increase significantly as the adherent mode further develops. Furthermore, preformed biofilms of some CoNS are enhanced by oxacillin in a dose-dependent manner.  相似文献   

16.

Background

The rise of antibiotic resistance in pathogenic bacteria is a significant problem for the treatment of infectious diseases. Resistance is usually selected by the antibiotic itself; however, biocides might also co-select for resistance to antibiotics. Although resistance to biocides is poorly defined, different in vitro studies have shown that mutants presenting low susceptibility to biocides also have reduced susceptibility to antibiotics. However, studies with natural bacterial isolates are more limited and there are no clear conclusions as to whether the use of biocides results in the development of multidrug resistant bacteria.

Methods

The main goal is to perform an unbiased blind-based evaluation of the relationship between antibiotic and biocide reduced susceptibility in natural isolates of Staphylococcus aureus. One of the largest data sets ever studied comprising 1632 human clinical isolates of S. aureus originated worldwide was analysed. The phenotypic characterization of 13 antibiotics and 4 biocides was performed for all the strains. Complex links between reduced susceptibility to biocides and antibiotics are difficult to elucidate using the standard statistical approaches in phenotypic data. Therefore, machine learning techniques were applied to explore the data.

Results

In this pioneer study, we demonstrated that reduced susceptibility to two common biocides, chlorhexidine and benzalkonium chloride, which belong to different structural families, is associated to multidrug resistance. We have consistently found that a minimum inhibitory concentration greater than 2 mg/L for both biocides is related to antibiotic non-susceptibility in S. aureus.

Conclusions

Two important results emerged from our work, one methodological and one other with relevance in the field of antibiotic resistance. We could not conclude on whether the use of antibiotics selects for biocide resistance or vice versa. However, the observation of association between multiple resistance and two biocides commonly used may be of concern for the treatment of infectious diseases in the future.  相似文献   

17.
Biofilm formation on surfaces has serious economic and environmental implications. Growth of biofilm within a water distribution system can lead to problems such as biocorrosion and biofouling accumulation. To prevent and control these occurrences, it is necessary to use suitable biocides to remove the biofilm and kill biofilm cells. In this study, the genera Actinobacillus, Branhamella, Bacillus, Micrococcus and Acinetobacter were isolated from biofilms formed on brass coupons exposed to a cooling water system. It was shown by the microtiter plate test that a mixed culture of the isolates and a single culture of Acinetobacter sp(2) produced high levels of biofilm formation. A microwell plate technique was applied for assessment of the ability of various biocides to remove and kill mixed-culture biofilm cells and Acinetobacter sp(2), the latter as a single-species biofilm with a high rate of biofilm production. The results showed that the mixed-culture biofilm cells had more resistance to removal and killing by some biocides, such as hydrogen peroxide and sulfathiazole, than the single-species biofilm cells (Acinetobacter sp(2)). Oxidising biocides, such as sodium hypochlorite and hydrogen peroxide, demonstrated a higher potential for biofilm removal and killing compared with non-oxidising biocides (sulfathiazole and glutaraldehyde).  相似文献   

18.
Pseudomonas aeruginosa attached to alginate gel beads in sparse, thin biofilms exhibited reduced susceptibility to monochloramine and hydrogen peroxide compared with planktonic cells of the same micro-organism. Disinfection rate coefficients for planktonic bacteria averaged 0.551 mg(-1)min(-1) for monochloramine and 3.1 x 10(-4)l mg(-1) min(-1) for hydrogen peroxide. The corresponding values for 24-h-old biofilm cells were 0.291 mg min(-1) and 9.2 x 10(-5) 1 mg(-1) min(-1) for monochloramine and hydrogen peroxide, respectively. Several pieces of evidence support the interpretation that the reduced susceptibility of biofilm was not due simply to inadequate delivery of the antimicrobial agent to the local environment of the attached cells. No correlation between biofilm susceptibility and biofilm initial areal cell density was observed. Rapid delivery of hydrogen peroxide to the attachment surface, and subsequently to the interior, of the alginate gel beads was visualized by a direct experimental technique. Theoretical analysis of unsteady diffusion and diffusion reaction interactions also argued against any significant delay or barrier to antimicrobial or oxygen delivery. It was hypothesized that new genes are expressed when bacteria attach to a surface and begin to form a biofilm and that some of the resulting gene products reduce the susceptibility of the cell to antimicrobial agents including oxidative biocides such as monochloramine and hydrogen peroxide.  相似文献   

19.
Abstract

In this study, 20 heterotrophic bacteria from a minimally processed vegetables (MPV) plant were tested for their susceptibilities to five antibiotics (tetracycline, erythromycin, ampicillin, levofloxacin and ciprofloxacin), their (co)aggregation abilities and their survival under gastric simulated conditions. Peracetic acid (PA) and sodium hypochlorite (SH), both at 50?ppm, were evaluated for their abilities to control biofilms of these bacteria. In general, the Gram-negative bacteria were found to be more resistant to the selected antibiotics. Two isolates, Rhanella aquatilis and Stenotrophomonas maltophilia, demonstrated multidrug resistance. Only Rhodococcus erythropolis presented aggregation potential, while no bacterium survived under the gastric conditions. The biofilm experiments showed PA as less efficient than SH in killing biofilms and neither of the disinfectants was able to fully eliminate the biofilms. Significant regrowth was observed for most of the biofilms. The results indicate that alternative and/or complementary disinfection strategies are required to guarantee food safety.  相似文献   

20.
In Gram-negative bacteria, the envelope is a sophisticated barrier protecting the cell against external toxic compounds. Membrane transporters, e.g., porins or efflux pumps, are main filters regulating the internal accumulation of various hydrophilic molecules. Regarding bacterial susceptibility towards antibacterial agents, membrane permeability is part of the early bacterial defense. The bacterium manages the translocation process, influx and efflux, to control the intracellular concentration of various molecules. Antibiotics and biocides are substrates of these mechanisms and the continuing emergence of multidrug resistant isolates is a growing worldwide health concern. Different strategies could be proposed to bypass the bacterial membrane barrier, comprising influx and efflux mechanisms, in order to restore the activity of antibiotics against resistant bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号