首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In Dahl salt-sensitive (S) and salt-resistant (R) rats, and spontaneously hypertensive rats (SHR) and Wistar-Kyoto (WKY) rats, at 5-6 wk of age, a cannula was placed in the cisterna magna, and cerebrospinal fluid (CSF) was withdrawn continuously at 75 microl/12 h. CSF was collected as day- and nighttime samples from rats on a regular salt intake (0.6% Na+; R-Na) and then on a high salt intake (8% Na+; H-Na). In separate groups of rats, the abdominal aorta was cannulated and blood pressure (BP) and heart rate (HR) measured at 10 AM and 10 PM, with rats first on R-Na and then on H-Na. On H-Na, CSF [Na+] started to increase in the daytime of day 2 in Dahl S rats and of day 3 in SHR. BP and HR did not rise until day 3 in Dahl S rats and day 4 in SHR. In Dahl R and WKY rats, high salt did not change CSF [Na+], BP, or HR. In a third set of Dahl S rats, sampling of both CSF and BP was performed in each individual rat. Again, significant increases in CSF [Na+] were observed 1-2 days earlier than the increases in BP and HR. In a fourth set of Dahl S rats, BP and HR were recorded continuously by means of radiotelemetry for 5 days on R-Na and 8 days on H-Na. On H-Na, BP (but not HR) increased first in the nighttime of day 2. In another set of Dahl S rats, intracerebroventricular infusion of antibody Fab fragments binding ouabain-like compounds (OLC) with high affinity prevented the increase in BP and HR by H-Na but further increased CSF [Na+]. Finally, in Wistar rats on H-Na, intracerebroventricular infusion of ouabain increased BP and HR but decreased CSF [Na+]. Thus, in both Dahl S and SHR on H-Na, increases in CSF [Na+] preceded the increases in BP and HR, consistent with a primary role of increased CSF [Na+] in the salt-induced hypertension. An increase in brain OLC in response to the initial increase in CSF [Na+] appears to attenuate further increases in CSF [Na+] but at the "expense" of sympathoexcitation and hypertension.  相似文献   

2.
Systolic blood pressure responses to enalapril maleate (MK 421, a new angiotensin converting enzyme inhibitor (CEI] and hydrochlorothiazide (HTZ) were studied in conscious Dahl salt-sensitive (DS) and salt-resistant (DR) rats maintained on a high salt (8.0% NaCl) and a normal salt (0.4% NaCl) diet. The DS rats were severely hypertensive after 3 weeks on the high salt diet whereas the systolic blood pressure (SBP) of the DR rats were normotensive. Oral treatment with enalapril (15-100 mg X kg-1 X day-1) and HTZ (60-400 mg X kg-1 X day-1) caused a significant reduction of SBP in the DS rats with the high salt diet (P less than 0.001); however, this was not observed until after 4 weeks of treatment when the dosage was 30 and 150 mg X kg-1 X day-1, respectively. Furthermore, enalapril therapy alone significantly reduced the SBP of all groups of rats regardless of diet or Dahl strain (P less than 0.001), but this was not observed until the end of the 7th week of therapy in DR rats on 8.0% NaCl and the end of the 3rd week of therapy for DR and DS rats on 0.4% NaCl. These results suggest that enalapril may lower SBP by mechanisms other than those related to an action as a CEI.  相似文献   

3.
This study examined the effects of two new selective metalloprotease (MMP) inhibitors, XL081 and XL784, on the development of renal injury in rat models of hypertension, Dahl salt-sensitive (Dahl S) and type 2 diabetic nephropathy (T2DN). Protein excretion rose from 20 to 120 mg/day in Dahl S rats fed a high-salt diet (8.0% NaCl) for 4 wk to induce hypertension. Chronic treatment with XL081 markedly reduced proteinuria and glomerulosclerosis, but it also attenuated the development of hypertension. To determine whether an MMP inhibitor could oppose the progression of renal damage in the absence of changes in blood pressure, Dahl S rats were fed a high-salt diet (4.0% NaCl) for 5 wks to induce renal injury and then were treated with the more potent and bioavailable MMP inhibitor XL784 either given alone or in combination with lisinopril and losartan. Treatment with XL784 or the ANG II blockers reduced proteinuria and glomerulosclerosis by ~30% and had no effect on blood pressure. Proteinuria fell from 150 to 30 mg/day in the rats receiving both XL784 and the ANG II blockers, and the degree of renal injury fell to levels seen in normotensive Dahl S rats maintained from birth on a low-salt diet. In other studies, albumin excretion rose from 125 to >200 mg/day over a 4-mo period in 12-mo-old uninephrectomized T2DN rats. In contrast, albumin excretion fell by >50% in T2DN rats treated with XL784, lisinopril, or combined therapy. XL784 reduced the degree of glomerulosclerosis in the T2DN rats to a greater extent than lisinopril, and combined therapy was more effective than either drug alone. These results indicate that chronic administration of a selective MMP inhibitor delays the progression, and may even reverse hypertension and diabetic nephropathy.  相似文献   

4.
Central infusion of an angiotensin type 1 (AT(1)) receptor blocker prevents sympathetic hyperactivity and hypertension in Dahl salt-sensitive (S) rats on high salt. In the present study, we examined whether central infusion of a direct renin inhibitor exerts similar effects. Intracerebroventricular infusion of aliskiren at the rate of 0.05 mg/day markedly inhibited the increase in ANG II levels in the cerebrospinal fluid and in blood pressure (BP) caused by intracerebroventricular infusion of rat renin. In Dahl S rats on high salt, intracerebroventricular infusion of aliskiren at 0.05 and 0.25 mg/day for 2 wk similarly decreased resting BP in Dahl S rats on high salt. In other groups of Dahl S rats, high salt intake for 2 wk increased resting BP by ~25 mmHg, enhanced pressor and sympathoexcitatory responses to air-stress, and desensitized arterial baroreflex function. All of these effects were largely prevented by intracerebroventricular infusion of aliskiren at 0.05 mg/day. Aliskiren had no effects in rats on regular salt. Neither high salt nor aliskiren affected hypothalamic ANG II content. These results indicate that intracerebroventricular infusions of aliskiren and an AT(1) receptor blocker are similarly effective in preventing salt-induced sympathetic hyperactivity and hypertension in Dahl S rats, suggesting that renin in the brain plays an essential role in the salt-induced hypertension. The absence of an obvious increase in hypothalamic ANG II by high salt, or decrease in ANG II by aliskiren, suggests that tissue levels do not reflect renin-dependent ANG II production in sympathoexcitatory angiotensinergic neurons.  相似文献   

5.
Feeding flavonoid-rich blueberries to spontaneously hypertensive stroke-prone rats (SHRSP) lowers blood pressure. To determine whether this is due to inhibition of angiotensin-converting enzyme (ACE) activity, as seen with other flavanoid-rich foods, we fed blueberries to SHRSP and normotensive rats and analyzed ACE activity in blood and tissues. After 2 weeks on a control diet, the hypertensive rats showed 56% higher levels of ACE activity in blood as compared with the normotensive rats (p < 0.05). Feeding a 3% blueberry diet for 2 weeks lowered ACE activity in the SHRSP (p < 0.05) but not the normotensive rats. ACE activity in plasma of SHRSP was no longer elevated at weeks 4 and 6, but blueberry feeding inhibited ACE in SHRSP after 6 weeks. Blueberry diets had no effect on ACE activity in lung, testis, kidney, or aorta. Our results suggest that dietary blueberries may be effective in managing early stages of hypertension, partially due to an inhibition of soluble ACE activity.  相似文献   

6.
To assess the implications of vascular eicosanoids system in the hypertension of Dahl salt-sensitive (Dahl S) strain, we investigated the production of vascular vasodepressor and vasoconstrictor eicosanoids in Dahl S rats. 14-week-old Dahl S rats on a 0.11% NaCl diet (normotension) or a 0.3% NaCl diet (borderline hypertension) had a significantly lowered generation of vascular prostacyclin (PGI2), compared with Dahl salt-resistant (Dahl R) rats. The impairment of vascular PGI2 in Dahl S rats was restored to the normal level of Dahl R rats with the elevation of blood pressure induced by a high salt diet (4% NaCl). The production of vascular PGI2 was closely related to the height of blood pressure. The deterioration of vascular PGI2 was also found in 4-week-old Dahl S rats with normotension. Conversely, vascular thromboxane A2 (TXA2) was significantly enhanced in 14-week-old Dahl S rats in all of the feeding groups. Thus, it seems possible that the proved alterations of the vasodepressor and vasoconstrictor eicosanoids partially contribute to the genesis of salt hypertension. Although the exact mechanisms remain obscure, the adaptation of vascular PGI2 on a high salt diet may be suitable to compete with the high blood pressure and to protect against the vascular damage.  相似文献   

7.
Proteinuria is a hallmark of chronic kidney disease (CKD) and cardiovascular disease (CVD), and a good predictor of clinical outcome. Selective endothelin A (ETA) receptor antagonist used with renin-angiotensin system (RAS) inhibitors prevents development of proteinuria in CKD. However, whether the improvement in proteinuria would have beneficial effects on CVD, independent of RAS inhibition, is not well understood. In this study, we investigated whether atrasentan, an ETA receptor antagonist, has renal and cardiovascular effects independent of RAS inhibition. Male Dahl salt sensitive (DSS) rats, at six weeks of age, received water with or without different doses of atrasentan and/or enalapril under high salt (HS) diet or normal diet (ND) for 6 weeks. At the end of 12th week, atrasentan at a moderate dose significantly attenuated proteinuria and serum creatinine without reducing mean arterial pressure (MAP), thereby preventing cardiac hypertrophy and improving cardiac function. ACE inhibitor enalapril at a dose that did not significantly lowered BP, attenuated cardiac hypertrophy while moderately improving cardiac function without reducing proteinuria and serum creatinine level. Nonetheless, combined therapy of atrasentan and enalapril that does not altering BP exerted additional cardioprotective effect. Based on these findings, we conclude that BP independent monotherapy of ETA receptor antagonist attenuates the progression of CKD and significantly mitigates CVD independent of RAS inhibition.  相似文献   

8.
Adrenomedullin reduces systemic blood pressure and increases urinary sodium excretion partly through the release of nitric oxide. We hypothesized that chronic adrenomedullin infusion ameliorates salt-sensitive hypertension and increases the expression of renal nitric oxide synthase (NOS) in Dahl salt-sensitive (DS) rats, because the reduced renal NOS expression promotes salt sensitivity. DS rats and Dahl salt-resistant (DR) rats were fed a high sodium diet (8.0% NaCl) for 3 weeks. The high sodium diet resulted in an increase in blood pressure and a reduction of urinary sodium excretion in association with increased renal adrenomedullin concentrations and decreased expression of renal neuronal NOS (nNOS) and renal medullary endothelial NOS (eNOS) in DS rats compared with DR rats. Chronic adrenomedullin infusion partly inhibited the increase of blood pressure and proteinuria in association with a restoration of renal nNOS and medullary eNOS expression in DS rats under the high sodium diet. The immunohistochemical analysis revealed that the restored renal nNOS expression induced by chronic adrenomedullin infusion may reflect the restoration of nNOS expression in the macula densa and inner medullary collecting duct. These results suggest that adrenomedullin infusion has beneficial effects on this hypertension probably in part through restored renal NOS expression in DS rats.  相似文献   

9.
To assess effects of dietary salt on brain AT1 receptor densities, 4-wk-old Dahl salt-sensitive (Dahl S) and salt-resistant (Dahl R) rats were fed a regular (101 mumol Na/g) or high (1,370 mumol Na/g)-salt diet for 1, 2, or 4 wk. AT1 receptors were assessed by quantitative in vitro autoradiography. AT1 receptor densities did not differ significantly between strains on the regular salt diet. The high-salt diet for 1 or 2 wk increased AT1 receptor binding by 21-64% in the Dahl S rats in the subfornical organ, median preoptic nucleus, paraventricular nucleus, and suprachiasmatic nucleus. No changes were noted in the Dahl R rats. After 4 wk on a high-salt diet, increases in AT1 receptor binding persisted in Dahl S rats but were now also noted in the paraventricular nucleus, median preoptic nucleus, and suprachiasmatic nucleus of Dahl R rats. At 4 wk on the diet, intracerebroventricular captopril caused clear decreases in blood pressure only in the Dahl S on the high-salt diet but caused largely similar relative increases in brain AT1 receptor densities in Dahl S and R on the high-salt diet versus regular salt diet. These data demonstrate that high salt intake rapidly (within 1 wk) increases AT1 receptor densities in specific brain nuclei in Dahl S and later (by 4 wk) also in Dahl R rats. Because the brain renin-angiotensin system only contributes to salt-induced hypertension in Dahl S rats, further studies are needed to determine which of the salt-induced increases in brain AT1 receptor densities contribute to the hypertension and which to other aspects of body homeostasis.  相似文献   

10.
An enhanced responsiveness to increases in cerebrospinal fluid (CSF) Na+ by high salt intake may contribute to salt-sensitive hypertension in Dahl salt-sensitive (S) rats. To test this hypothesis, sympathetic and pressor responses to acute and chronic increases in CSF Na+ were evaluated. In conscious young (5-6 wk old) and adult (10-11 wk old) Dahl S and salt-resistant (R) rats as well as weight-matched Wistar rats, hemodynamic [blood pressure (BP) and heart rate (HR)] and sympathetic [renal sympathetic nerve activity (RSNA)] responses to 10-min intracerebroventricular infusions of artificial CSF (aCSF) and Na+-rich aCSF (containing 0.2-0.45 M Na+) were evaluated. Intracerebroventricular Na+-rich aCSF increased BP, RSNA, and HR in a dose-related manner. The extent of these increases was significantly larger in Dahl S versus Dahl R or Wistar rats and young versus adult Dahl S rats. In a second set of experiments, young Dahl S and R rats received a chronic intracerebroventricular infusion of aCSF or Na+-rich (0.8 M) aCSF (5 microl/h) for 14 days, with the use of osmotic minipumps. On day 14 in conscious rats, CSF was sampled and BP, HR, and RSNA were recorded at rest and in response to air stress, intracerebroventricular alpha2-adrenoceptor agonist guanabenz, intracerebroventricular ouabain, and intravenous phenylephrine and nitroprusside to estimate baroreflex function. The infusion of Na+-rich aCSF versus aCSF increased CSF Na+ concentration to the same extent but caused severe versus mild hypertension in Dahl S and Dahl R rats, respectively. After central Na+ loading, hypothalamus "ouabain" significantly increased in Dahl S and only tended to increase in Dahl R rats. Moreover, sympathoexcitatory and pressor responses to intracerebroventricular exogenous ouabain were attenuated by Na+-rich aCSF to a greater extent in Dahl S versus Dahl R rats. Responses to air-jet stress or intracerebroventricular guanabenz were enhanced by Na+-rich aCSF in both strains, but the extent of enhancement was significantly larger in Dahl S versus Dahl R. Na+-rich aCSF impaired arterial baroreflex control of RSNA more markedly in Dahl S versus R rats. These findings indicate that genetic control of mechanisms linking CSF Na+ with brain "ouabain" is altered in Dahl S rats toward sympathetic hyperactivity and hypertension.  相似文献   

11.
To assess the implications of vascular eicosanoids system in the hypertension of Dahl salt-sensitive (Dahl S) strain, we investigated the production of vascular vasodepressor and vasoconstrictor eicosanoids in Dahl S rats. 14-week-old Dahl S rats on a 0.11% NaCl diet (normotension) or a 0.3% NaCl diet (borderline hypertension) had a significantly lowered generation of vascular prostacyclin (PGI2), compared with Dahl salt-resistant (Dahl R) rats. The impairment of vascular PGI2 in Dahl S rats was restored to the normal level of Dahl R rats with the elevation of blood pressure induced by a high salt diet (4% NaCl). The production of vascular PGI2 was closely related to the height of blood pressure. The deterioration of vascular PGI2 was also found in 4-week-old Dahl S rats with normotension. Conversely, vascular thromboxane A2 (TXA2) was significantly enhanced in 14-week-old Dahl S rats in all of the feeding groups. Thus, it seems possible that the proved alterations of the vasodepressor and vasoconstrictor eicosanoids partially contribute to the genesis of salt hypertension. Although the exact mechanisms remain obscure, the adaptation of vascular PGI2 on a high salt diet may be suitable to compete with the high blood pressure and to protect against the vascular damage.  相似文献   

12.
Stimulation of brain Na+ channels by Phe-Met-Arg-Phe-NH2 (FMRFamide) increases sympathetic nerve activity and blood pressure (BP) in Wistar rats. Blockade of brain ouabain-like compounds (OLC) by specific antibody Fab fragments prevents these responses to intracerebroventricular FMRFamide. In the present study, we evaluated the effects of high-salt intake on brain FMRFamide levels and the responses of BP and brain OLC to intracerebroventricular infusion of FMRFamide in Dahl salt-sensitive (SS) and salt-resistant (SR) rats. FMRFamide and OLC content was measured with the use of RIA and ELISA, respectively. A high-salt diet (1,370 micromol Na+/g) for 2 wk significantly increased BP in Dahl SS but not in SR rats. On a regular salt diet, Dahl SS and SR rats showed similar FMRFamide levels in the whole hypothalamus, pons and medulla, and spinal cord. A high-salt diet for 2 wk did not affect FMRFamide levels in these tissues in both Dahl SS and SR rats. In Dahl SS but not in SR rats, chronic intracerebroventricular infusion of FMRFamide (200 nmol. kg(-1).day(-1)) for 2 wk significantly increased BP (mean arterial pressure: 116 +/- 5 vs. 100 +/- 2 mmHg; P < 0.01). Chronic intracerebroventricular infusion of FMRFamide significantly increased hypothalamic and pituitary OLC in Dahl SS but not SR rats. These results indicate that Dahl SS rats exhibit enhanced central responses to FMRFamide. In Dahl SS but not in SR rats on a high-salt diet, enhanced Na+ entry through FMRFamide-activated brain Na+ channels may increase brain OLC release, thereby leading to hypertension.  相似文献   

13.
This in vitro study evaluated the basal 42K turnover and response to norepinephrine (NE) in the thoracic aorta removed from Dahl salt-sensitive (S) and salt-resistant (R) rats. Five-week-old S and R rats were placed on either a high-salt (HS) or low-salt (LS) diet. After 5 weeks of the diet, systolic blood pressure, aortic weight/length ratio, and the cellular pool of K+ were elevated in the S-HS group only. In contrast, the steady state turnover of 42K, the NE ED50, and the response to a supramaximal dose of NE were the same in both groups of salt-sensitive and salt-resistant rats. These results suggest that, despite the presence of a greatly elevated systolic blood pressure and evidence of aortic hypertrophy, the intrinsic electrolyte metabolism of the vascular smooth muscle in the Dahl hypertensive rat is the same as that of the Dahl normotensive rat.  相似文献   

14.
To determine the effects of moderate versus severe dietary sodium restriction on the development of 2-kidney, 1-clip (2K,1C) hypertension, young male Wistar rats were placed on diets containing 9, 26, or 101 (control) mumol sodium/g food. Three days later, a solid silver clip (i.d. 0.20 mm) was placed on the left renal artery and diets were continued up to 6 weeks. Adult rats received a 0.25-mm clip. In young clipped rats receiving the 101 mumol/g diet, blood pressure (BP), plasma renin activity (PRA), and BP response to captopril were increased as early as 1 week after clipping and increased further over time. Moderate sodium restriction (26 mumol sodium/g) led to only a slight delay in the development of hypertension; the levels of BP and PRA, the BP response to captopril, and the extent of cardiac hypertrophy achieved by 6 weeks were not different between the 2K, 1C rats receiving 26 or 101 mumol sodium/g. Sodium restriction to 9 mumol/g decreased rate of growth and completely prevented the rise in BP and in left ventricular weight. At 3 and 6 weeks the severely sodium-restricted rats had significantly higher PRA levels than the 2K, 1C control group. However, the BP response to captopril was attenuated relative to the other hypertensive groups. In adult rats, this level of sodium restriction had a small, but significant effect on body weight, but still prevented the increase in BP and in left ventricular weight. In conclusion, dietary sodium restriction can prevent the development of 2K,1C hypertension in both young and adult rats, but only if the restriction is severe. This effect may relate to a marked reduction in the pressor effectiveness of the renin-angiotensin system by low sodium intake per se or by associated metabolic or other changes.  相似文献   

15.
We have observed that, in renal proximal tubular cells, cardiotonic steroids such as ouabain in vitro signal through Na/K-ATPase, which results in inhibition of transepithelial (22)Na(+) transport by redistributing Na/K-ATPase and NHE3. In the present study, we investigate the role of Na/K-ATPase signaling in renal sodium excretion and blood pressure regulation in vivo. In Sprague-Dawley rats, high salt diet activated c-Src and induced redistribution of Na/K-ATPase and NHE3 in renal proximal tubules. In Dahl salt sensitive (S) and resistant (R) rats given high dietary salt, we found different effects on blood pressure but, more interestingly, different effects on renal salt handling. These differences could be explained by different signaling through the proximal tubular Na/K-ATPase. Specifically, in Dahl R rats, high salt diet significantly stimulated phosphorylation of c-Src and ERK1/2, reduced Na/K-ATPase activity and NHE3 activity, and caused redistribution of Na/K-ATPase and NHE3. In contrast, these adaptations were either much less effective or not seen in the Dahl S rats. We also studied the primary culture of renal proximal tubule isolated from Dahl S and R rats fed a low salt diet. In this system, ouabain induced Na/K-ATPase/c-Src signaling and redistribution of Na/K-ATPase and NHE3 in the Dahl R rats, but not in the Dahl S rats. Our data suggested that impairment of Na/K-ATPase signaling and consequent regulation of Na/K-ATPase and NHE3 in renal proximal tubule may contribute to salt-induced hypertension in the Dahl S rat.  相似文献   

16.
Excessive salt intake is known to preferentially increase blood pressure (BP) and promote kidney damage in young, salt-sensitive hypertensive human and animal models. We have suggested that mineralocorticoid receptor (MR) activation plays a major role in kidney injury in young rats. BP and urinary protein were compared in young (3-wk-old) and adult (10-wk-old) uninephrectomized (UNx) Sprague-Dawley rats fed a high (8.0%)-salt diet for 4 wk. The effects of the MR blocker eplerenone on BP and renal injury were examined in the high-salt diet-fed young UNx rats. Renal expression of renin-angiotensin-aldosterone (RAA) system components and of inflammatory and oxidative stress markers was also measured. The effects of the angiotensin receptor blocker olmesartan with or without low-dose aldosterone infusion, the aldosterone synthase inhibitor FAD286, and the antioxidant tempol were also studied. Excessive salt intake induced greater hypertension and proteinuria in young rats than in adult rats. The kidneys of young salt-loaded rats showed marked histological injury, overexpression of RAA system components, and an increase in inflammatory and oxidative stress markers. These changes were markedly ameliorated by eplerenone treatment. Olmesartan also ameliorated salt-induced renal injury but failed to do so when combined with low-dose aldosterone infusion. FAD286 and tempol also markedly reduced urinary protein. UNx rats exposed to excessive salt at a young age showed severe hypertension and renal injury, likely primarily due to MR activation and secondarily due to angiotensin receptor activation, which may be mediated by inflammation and oxidative stress.  相似文献   

17.
Baroreflex control of heart rate was studied in inbred salt-sensitive (SS/Jr) and salt-resistant (SR/Jr) Dahl rats that were subjected to chronic dietary sodium chloride loading (for 4 weeks) either in youth or only in adulthood, i.e. from the age of 4 or 12 weeks. Using phenylephrine administration to pentobarbital-anesthetized male rats we have demonstrated the decreased baroreflex sensitivity (lower slope for reflex bradycardia) in young prehypertensive SS/Jr rats fed a low-salt diet as compared to age-matched SR/Jr animals. High salt intake further suppressed baroreflex sensitivity in young SS/Jr but not in SR/Jr rats. Baroreflex sensitivity decreased with age in SR/Jr rats, whereas it increased in SS/Jr rats fed a low-salt diet. Thus at the age of 16 weeks baroreflex sensitivity was much higher in SS/Jr than in SR/Jr animals. High salt intake lowered baroreflex sensitivity even in adult SS/Jr rats without affecting it in adult SR/Jr rats. Nevertheless, baroreflex sensitivity was significantly lower in young SS/Jr rats with a severe salt hypertension than in adult ones with a moderate blood pressure elevation. It is concluded that the alterations of baroreflex sensitivity in young inbred SS/Jr rats (including the response to high salt intake) are similar to those described earlier for outbred salt-sensitive Dahl rats. We have, however, disclosed contrasting age-dependent changes of baroreflex sensitivity in both inbred substrains of Dahl rats.  相似文献   

18.
19.
This study examined the effects of anti-TGF-β antibody (1D11) therapy in Dahl S (S) rats fed a 4% NaCl diet. Baseline renal expression of TGF-β1 and the degree of injury were lower in female than male S rats maintained on a 0.4% NaCl diet. 4% NaCl diet increased mean arterial pressure (MAP), proteinuria, and renal injury to the same extent in both male and female S rats. Chronic treatment with 1D11 had renoprotective effects in both sexes. The ability of 1D11 to oppose the development of proteinuria when given alone or in combination with antihypertensive agents was further studied in 6-wk-old female S rats, since baseline renal injury was less than that seen in male rats. 1D11, diltiazem, and hydrochlorothiazide (HCT) attenuated the development of hypertension, proteinuria, and glomerular injury. 1D11 had no additional effect when given in combination with these antihypertensive agents. We also explored whether 1D11 could reverse renal injury in 9-wk-old male S rats with preexisting renal injury. MAP increased to 197 ± 4 mmHg and proteinuria rose to >300 mg/day after 3 wk on a 4% NaCl diet. Proteinuria was reduced by 30-40% in rats treated with 1D11, HCT, or captopril + 1D11, but the protective effect was lost in rats fed the 4% NaCl diet for 6 wk. Nevertheless, 1D11, HCT, and captopril + 1D11 still reduced renomedullary and cardiac fibrosis. These results indicate that anti-TGF-β antibody therapy reduces renal and cardiac fibrosis and affords additional renoprotection when given in combination with various antihypertensive agents in Dahl S rats.  相似文献   

20.
A growing body of evidence indicates that renal tissue injuries are reversible. We investigated whether dietary salt reduction with the combination therapy of angiotensin II type 1 receptor blocker (ARB) plus calcium channel blocker (CCB) reverses renal tissue injury in Dahl salt-sensitive (DSS) hypertensive rats. DSS rats were fed a high-salt diet (HS; 4% NaCl) for 4 weeks. Then, DSS rats were given one of the following for 10 weeks: HS diet; normal-salt diet (NS; 0.5% NaCl), NS + an ARB (olmesartan, 10 mg/kg/day), NS + a CCB (azelnidipine, 3 mg/kg/day), NS + olmesartan + azelnidipine or NS + hydralazine (50 mg/kg/day). Four weeks of treatment with HS diet induced hypertension, proteinuria, glomerular sclerosis and hypertrophy, glomerular podocyte injury, and tubulointerstitial fibrosis in DSS rats. A continued HS diet progressed hypertension, proteinuria and renal tissue injury, which was associated with inflammatory cell infiltration and increased proinflammatory cytokine mRNA levels, NADPH oxidase activity and NADPH oxidase-dependent superoxide production in the kidney. In contrast, switching to NS halted the progression of hypertension, renal glomerular and tubular injuries. Dietary salt reduction with ARB or with CCB treatment further reduced blood pressure and partially reversed renal tissues injury. Furthermore, dietary salt reduction with the combination of ARB plus CCB elicited a strong recovery from HS-induced renal tissue injury including the attenuation of inflammation and oxidative stress. These data support the hypothesis that dietary salt reduction with combination therapy of an ARB plus CCB restores glomerular and tubulointerstitial injury in DSS rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号