首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The glial cell line-derived neurotrophic factor (GDNF) family ligands (GFLs) (GDNF, neurturin, artemin, and persephin) are critical regulators of neurodevelopment and support the survival of midbrain dopaminergic and spinal motor neurons in vitro and in animal disease models making them attractive therapeutic candidates for treatment of neurodegenerative diseases. The GFLs signal through a multicomponent receptor complex comprised of a high affinity binding component (GDNF-family receptor alpha-component (GFRalpha1-GFRalpha4)) and the receptor tyrosine kinase RET. To begin characterization of GFL receptor specificity at the molecular level, we performed comprehensive homologue-scanning mutagenesis of GDNF, the prototypical member of the GFLs. Replacing short segments of GDNF with the homologous segments from persephin (PSPN) (which cannot bind or activate GFRalpha1.RET or GFRalpha2.RET) identified sites along the second finger of GDNF critical for activating the GFRalpha1.RET and GFRalpha2.RET receptor complexes. Furthermore, introduction of these regions from GDNF, neurturin, or artemin into PSPN demonstrated that they are sufficient for activating GFRalpha1. RET, but additional determinants are required for interaction with the other GFRalphas. This difference in the molecular basis of GFL-GFRalpha specificity allowed the production of GFRalpha1. RET-specific agonists and provides a foundation for understanding of GFL-GFRalpha.RET signaling at the molecular level.  相似文献   

2.
The c-ret gene encodes a receptor tyrosine kinase (RET) essential for the development of the kidney and enteric nervous system. Activation of RET requires the secreted neurotrophin GDNF (glial cell line-derived neurotrophic factor) and its high affinity receptor, a glycosyl phosphatidylinositol-linked cell surface protein GFRalpha1. In the developing kidney, RET, GDNF, and GFRalpha1 are all required for directed outgrowth and branching morphogenesis of the ureteric bud epithelium. Using MDCK renal epithelial cells as a model system, activation of RET induces cell migration, scattering, and formation of filopodia and lamellipodia. RET-expressing MDCK cells are able to migrate toward a localized source of GDNF. In this report, the intracellular signaling mechanisms regulating RET-dependent migration and chemotaxis are examined. Activation of RET resulted in increased levels of phosphatidylinositol 3-kinase (PI3K) activity and Akt/PKB phosphorylation. This increase in PI3K activity is essential for regulating the GDNF response, since the specific inhibitor, LY294002, blocks migration and chemotaxis of MDCK cells. Using an in vitro organ culture assay, inhibition of PI3K completely blocks the GDNF-dependent outgrowth of ectopic ureter buds. PI3K is also essential for branching morphogenesis once the ureteric bud has invaded the kidney mesenchyme. The data suggest that activation of RET in the ureteric bud epithelium signals through PI3K to control outgrowth and branching morphogenesis.  相似文献   

3.
To clarify whether glial cell line-derived neurotrophic factor (GDNF) receptor alpha-1 (GFRalpha1), the glycosylphosphatidylinositol (GPI)-linked coreceptor for GDNF, is also a functional coreceptor for artemin (ART), we have studied receptor binding, signaling, and neuronal survival. In cell-free binding studies, GFRalpha1-Ig displayed strong preferential binding to GDNF, though in the presence of soluble RET, weak binding to ART could also be detected. However, using GFRalpha1-transfected NB41A3 cells, ART showed no detectable competition against the binding of (125)I-labeled GDNF. Moreover, ART failed to induce phosphorylation of extracellular signal-related kinase (ERK) and Akt in these cells and was >10(4)-fold less potent than GDNF in stimulating RET phosphorylation. When rat primary dorsal root ganglion (DRG) neurons were used, only the survival promoting activity of GDNF and not that of ART was blocked by an anti-GFRalpha1 antibody. These results indicate that although ART can interact weakly with soluble GFRalpha1 constructs under certain circumstances in vitro, in cell-based functional assays GFRalpha1 is at least 10 000-fold selective for GDNF over ART. The extremely high selectivity of GFRalpha1 for GDNF over ART and the low reactivity of ART for this receptor suggest that GFRalpha1 is not likely to be a functional coreceptor for ART in vivo.  相似文献   

4.
The RET receptor tyrosine kinase controls kidney organogenesis and development of subpopulations of enteric and sensory neurons in different vertebrate species, including humans, rodents, chicken and zebrafish. RET is activated by binding to a ligand complex formed by a member of the glial cell line-derived neurotrophic factor (GDNF) family of neurotrophic factors bound to its cognate GFRalpha GPI-linked co-receptor. Despite the absence of GDNF or GFRalpha molecules in the Drosophila genome, a RET orthologue (dRET) has recently been described in this organism and shown to be expressed in subpopulations of cells of the excretory, digestive and nervous systems, thus resembling the expression pattern of RET in vertebrates. In this study, we report on the initial biochemical and functional characterization of the dRET protein in cell culture systems. Full-length dRET could be produced in mammalian and insect cells. Similar to its human counterpart (hRET), overexpression of dRET resulted in its ligand-independent tyrosine phosphorylation, indicating that it bears an active tyrosine kinase. Unlike hRET, however, the extracellular domain of dRET was unable to interact with mammalian GDNF and GFRalpha1. Self association between dRET molecules could neither be detected, indicating that dRET is incapable of mediating cell adhesion by homophilic interactions. A chimeric molecule comprising the extracellular domain of hRET and the kinase domain of dRET was constructed and used to probe ligand-mediated downstream activities of the dRET kinase in PC12 cells. GDNF stimulation of cells transfected with the hRET/dRET chimera resulted in neurite outgrowth comparable to that obtained after transfection of wild-type hRET. These results indicate significant conservation between the biological effects elicited by the human and Drosophila RET kinases, and suggest functions for dRET in neuronal differentiation in the fly.  相似文献   

5.
Glial cell line-derived neurotrophic factor (GDNF) is a growth factor promoting the survival of several neuronal populations in the central, peripheral and autonomous nervous system. Outside the nervous system, GDNF functions as a morphogen in kidney development and regulates spermatogonial differentiation. GDNF exerts its roles by binding to glial cell line-derived neurotrophic factor receptor (GFR) a1, which forms a heterotetramic complex with rearranged during transfection (RET) proto-oncogene product, a tyrosine kinase receptor. In this study we report the presence of GDNF-, RET- and GFRa1-like immunoreactivity in the pancreas of juvenile trout. GDNF immunoreactivity was observed in the islet cells, while GFRa1- and RET- immunoreactivity was observed in the exocrine portion. These findings suggest a paracrine role of GDNF towards exocrine cells showing GDNF receptors GFRa1 and RET. The relationship could reflect physiological interactions, as previously indicated in mammalian pancreas, and/or a trophic role by endocrine cells on exocrine parenchyma, which shows a conspicuous increase during animal growth.  相似文献   

6.
Glial cell line-derived neurotrophic factor (GDNF) family ligands signal through receptor complex consisting of a glycosylphosphatidylinositol-linked GDNF family receptor (GFR) alpha subunit and the transmembrane receptor tyrosine kinase RET. The inherited cancer syndrome multiple endocrine neoplasia type 2 (MEN2), associated with different mutations in RET, is characterized by medullary thyroid carcinoma. GDNF signals via GFRalpha1, neurturin via GFRalpha2, artemin via GFRalpha3, whereas the mammalian GFRalpha receptor for persephin (PSPN) is unknown. Here we characterize the human GFRalpha4 as the ligand-binding subunit required together with RET for PSPN signaling. Human and mouse GFRalpha4 lack the first Cys-rich domain characteristic of other GFRalpha receptors. Unlabeled PSPN displaces (125)I-PSPN from GFRA4-transfected cells, which express endogenous Ret. PSPN can be specifically cross-linked to mammalian GFRalpha4 and Ret, and is able to promote autophosphorylation of Ret in GFRA4-transfected cells. PSPN, but not other GDNF family ligands, promotes the survival of cultured sympathetic neurons microinjected with GFRA4. We identified different splice forms of human GFRA4 mRNA encoding for two glycosylphosphatidylinositol-linked and one putative soluble isoform that were predominantly expressed in the thyroid gland. Overlapping expression of RET and GFRA4 but not other GFRA mRNAs in normal and malignant thyroid medullary cells suggests that GFRalpha4 may restrict the MEN2 syndrome to these cells.  相似文献   

7.
Axotomy-induced neuronal death occurs in neonatal motoneurons, but not in adult rat. Here we demonstrated that during the course of postnatal development, nerve injury induced down-regulation of the glial cell line-derived neurotrophic factor (GDNF) receptor GFRalpha1 in axotomized hypoglossal motoneurons of rat are gradually converted to the adult up-regulation pattern of response. The compensatory expression of GFRalpha1 specifically in the injured motoneurons of neonates by adenovirus succeeded in rescuing the injured neurons without an application of growth factors. To the contrary, the nuclear antisense RNA for GFRalpha1 expression accelerates the axotomy-induced neuronal death in pups. These findings suggest that the receptor expression response after nerve injury is critical for the determination of injured motoneuron fate.  相似文献   

8.
Glial cell line-derived neurotrophic factor (GDNF) binds to the GDNF family co-receptor alpha1 (GFRalpha1) and activates RET receptor tyrosine kinase. GFRalpha1 has a putative domain structure of three homologous cysteine-rich domains, where domains 2 and 3 make up a central domain responsible for GDNF binding. We report here the 1.8 A crystal structure of GFRalpha1 domain 3 showing a new protein fold. It is an all-alpha five-helix bundle with five disulfide bridges. The structure was used to model the homologous domain 2, the other half of the GDNF-binding fragment, and to construct the first structural model of the GDNF-GFRalpha1 interaction. Using site-directed mutagenesis, we identified closely spaced residues, Phe213, Arg224, Arg225 and Ile229, comprising a putative GDNF-binding surface. Mutating each one of them had slightly different effects on GDNF binding and RET phosphorylation. In addition, the R217E mutant bound GDNF equally well in the presence and absence of RET. Arg217 may thus be involved in the allosteric properties of GFRalpha1 or in binding RET.  相似文献   

9.
Previously, it was shown that the recruitment of RET into lipid rafts by glial cell line-derived neurotrophic factor (GDNF)/GFRalpha1 is crucial for efficient signal transduction. Here, we show that the mouse GFRalpha4 is a functional, N-glycosylated, glycosylphosphatidylinositol (GPI)-anchored protein, which mediates persephin (PSPN)-induced phosphorylation of RET, but has an almost undetectable capacity to recruit RET into the 0.1% Triton X-100 insoluble membrane fraction. In spite of this, PSPN/mGFRalpha4 promotes neurite outgrowth in PC6-3 cells and survival of cerebellar granule neurons. As we show that also human PSPN/GFRalpha4 is unable to recruit RET into lipid rafts, we propose that the mammalian GFRalpha4 in this respect differs from GFRalpha1.  相似文献   

10.
Artemin (ARTN) is a member of the glial cell line-derived neurotrophic factor (GDNF) family ligands (GFLs) which regulate the development and maintenance of many neuronal populations in the mammalian nervous system. Here we report the 1.92 A crystal structure of the complex formed between ARTN and its receptor GFRalpha3, which is the initiating step in the formation of a ternary signaling complex containing the shared RET receptor. It represents a new receptor-ligand interaction mode for the TGF-beta superfamily that reveals both conserved and specificity-determining anchor points for all GFL-GFRalpha pairs. In tandem with the complex structure, cellular studies using receptor chimeras implicate dyad-symmetric composite interfaces for recruitment and dimerization of RET, leading to intracellular signaling. These studies should facilitate the functional dissection of the specific versus pleiotropic roles of this system in neurobiology, as well as its exploitation for therapeutic applications.  相似文献   

11.
We have identified zebrafish orthologues of glial cell line-derived neurotrophic factor (GDNF) and the ligand-binding component of its receptor GFRalpha1. We examined the mRNA expression pattern of these genes in the developing spinal cord primary motor neurons (PMN), kidney, and enteric nervous systems (ENS) and have identified areas of correlated expression of the ligand and the receptor that suggest functional significance. Many aspects of zebrafish GDNF expression appear conserved with those reported in mouse, rat, and avian systems. In the zebrafish PMN, GFRalpha1 is only expressed in the CaP motor neuron while GDNF is expressed in the ventral somitic muscle that it innervates. To test the functional significance of this correlated expression pattern, we ectopically overexpressed GDNF in somitic muscle during the period of motor axon outgrowth and found specific perturbations in the pattern of CaP axon growth. We also depleted GDNF protein in zebrafish embryos using morpholino antisense oligos and found that GDNF protein is critical for the development of the zebrafish ENS but appears dispensable for the development of the kidney and PMN.  相似文献   

12.
The catalytic and signaling activities of RET, a tyrosine kinase receptor for glial cell line-derived neurotrophic factor (GDNF), are controlled by the autophosphorylation of several tyrosine residues in the RET cytoplasmic domain. To analyze the phosphorylation state of individual tyrosines, we generated antibodies recognizing specific phosphotyrosine sites involved in the catalytic (Tyr(905)) and downstream signaling (Tyr(1015), Tyr(1062), and Tyr(1096)) activities of this receptor. Stimulation with GDNF induced coordinated phosphorylation of the 4 tyrosine residues in neuronal cell lines and in primary cultures of sympathetic neurons isolated from rat superior cervical ganglia. Neurturin and artemin, two other members of the GDNF ligand family, also induced synchronized phosphorylation of RET tyrosines with kinetics comparable to those observed with GDNF. Tyrosine phosphorylation was maximal 15 min after ligand stimulation, decaying thereafter with similar kinetics in all 4 residues. Co-stimulation with a soluble form of the GFRalpha1 co-receptor potentiated ligand-dependent phosphorylation of different intracellular tyrosines to a similar extent and increased the survival of superior cervical ganglion neurons compared with treatment with GDNF alone. In vivo, high levels of phosphorylated Tyr(905), Tyr(1015), and Tyr(1062) were detected in embryonic mouse dorsal root ganglia, with a sharp decline at early postnatal stages. Protein transduction of anti-Tyr(P)(1062) antibodies into cultured cells reduced activation of MAPKs ERK1 and ERK2 and the AKT kinase in response to GDNF and diminished GDNF-dependent neuronal differentiation and survival of embryonic sensory neurons from the nodose ganglion. These results demonstrate synchronized utilization of individual RET tyrosine residues in neurons in vivo and reveal an important role for RET Tyr(1062) in mediating neuronal survival by GDNF.  相似文献   

13.
Glial cell line-derived neurotrophic factor (GDNF) and neurturin (NTN) are structurally related neurotrophic factors that have both been shown to prevent the degeneration of dopaminergic neurons in vitro and in vivo. NTN and GDNF are thought to bind with different affinities to the GDNF family receptor alpha-2 (GFRalpha2), and can activate the same multi-component receptor system consisting of GFRalpha2, receptor tyrosine kinase Ret (RET) and NCAM. MicroRNAs (miRNAs) are a class of short, non-coding RNAs that regulate gene expression through translational repression or RNA degradation. miRNAs have diverse functions, including regulating differentiation, proliferation and apoptosis in several organisms. It is currently unknown whether GDNF and NTN regulate the expression of miRNAs through activation of the same multi-component receptor system. Using quantitative real-time PCR, we measured the expression of some miRNA precursors in human BE(2)-C cells that express GFRalpha2 but not GFRalpha1. GDNF and NTN differentially regulate the expression of distinct miRNA precursors through the activation of mitogen-activated protein kinase (extracellular signal-regulated kinase 1/2). This study showed that the expression of distinct miRNA precursors is differentially regulated by specific ligands through the activation of GFRalpha2.  相似文献   

14.
Glial cell line-derived neurotrophic factor (GDNF) family, consisting of GDNF, neurturin, artemin and persephin are distant members of the transforming growth factor-beta (TGF-beta) superfamily. Unlike other members of the TGF-beta superfamily, which signal through the receptor serine-threonine kinases, GDNF family ligands activate intracellular signalling cascades via the receptor tyrosine kinase Ret. GDNF family ligands first bind to the glycosylphosphatidylinositol (GPI)-anchored GDNF family receptor alpha (GFRalpha) and then the GDNF family ligand-GFRalpha complex binds to and stimulates autophosphorylation of Ret. Alternatively, a preassociated complex between GFRalpha and Ret could form the binding site for the GDNF family ligand. GFRalpha1, GFRalpha2, GFRalpha3 and GFRalpha4 are the physiological coreceptors for GDNF, neurturin, artemin and persephin, respectively. Although all GDNF family ligands signal via activated Ret, GDNF can signal also via GFRalpha1 in the absence of Ret. GPI-anchored GFRalpha receptors are localized in plasma membrane to lipid rafts. GDNF binding to GFRalpha1 also recruits Ret to the lipid rafts and triggers association with Src, which is required for effective downstream signalling, leading to differentiation and neuronal survival. GDNF family ligands are potent survival factors for midbrain dopamine neurons, motoneurons, noradrenergic neurons, as well as for sympathetic, parasympathetic and sensory neurons. However, for most neuronal populations, except for motoneurons, TGF-beta is required as a cofactor for GDNF family ligand signalling. Because GDNF and neurturin can rescue dopamine neurons in the animal models of Parkinson disease, as well as motoneurons in vivo, hopes have been raised that GDNF family ligands may be new drugs for the treatment of neurodegenerative diseases. GDNF also has distinct functions outside the nervous system, promoting ureteric branching in kidney development and regulating spermatogenesis.  相似文献   

15.
Using bioinformatic tools, mutagenesis, and binding studies, we have investigated the structural organization of the extracellular region of the RET receptor tyrosine kinase, a functional receptor for glial cell line-derived neurotrophic factor (GDNF). Multiple sequence alignments of seven vertebrate sequences and one invertebrate RET sequence delineated four distinct N-terminal domains, each of about 110 residues, containing many of the consensus motifs of the cadherin fold. Based on these alignments and the crystal structures of epithelial and neural cadherins, we have generated molecular models of each of the four cadherin-like domains in the extracellular region of human RET. The modeled structures represent realistic models from both energetic and geometrical points of view and are consistent with previous observations gathered from biochemical analyses of the effects of Hirschsprung's disease mutations affecting the folding and stability of the RET molecule, as well as our own site-directed mutagenesis studies of RET cadherin-like domain 1. We have also investigated the role of Ca(2+) in ligand binding by RET and found that Ca(2+) ions are required for RET binding to GDNF but not for GDNF binding to the GFRalpha1 co-receptor. In agreement with these results, RET, but not GFRalpha1, was found to bind Ca(2+) directly. Our results indicate that the overall architecture of the extracellular region of RET is more closely related to cadherins than previously thought. The models of the cadherin-like domains of human RET represent valuable tools with which to guide future site-directed mutagenesis studies aimed at identifying residues involved in ligand binding and receptor activation.  相似文献   

16.
17.
We have previously shown that the neurotrophic effect of glial cell line-derived neurotrophic factor (GDNF) in vitro and in vivo requires the presence of transforming growth factor (TGF)beta. Using primary neurons (chick E8 ciliary) we show that the combination of GDNF plus TGFbeta promotes survival, whereas the single factors do not. This cooperative effect is inhibited by blocking the extracellular signal-regulated kinase (ERK)/MAPK pathway, but not by interfering with the PI3 kinase signaling cascade. Although there is no functional GDNF signaling in the absence of TGFbeta, pretreatment with TGFbeta confers GDNF responsiveness to the cells. This is not due to upregulation of GDNF receptors mRNA and protein, but to TGFbeta-induced recruitment of the glycosyl-phosphatidylinositol-anchored GDNF receptor (GFR)alpha1 to the plasma membrane. This is supported by the fact that GDNF in the presence of a soluble GFRalpha1 can promote survival in the absence of TGFbeta. Our data suggest that TGFbeta is involved in GFRalpha1 membrane translocation, thereby permitting GDNF signaling and neurotrophic effects.  相似文献   

18.
The neural cell adhesion molecule NCAM binds glial cell line-derived neurotrophic factor (GDNF) through specific determinants located in its third immunoglobulin (Ig) domain. However, high affinity GDNF binding and downstream signaling depend upon NCAM co-expression with the GDNF co-receptor GFRalpha1. GFRalpha1 promotes high affinity GDNF binding to NCAM and down-regulates NCAM-mediated homophilic cell adhesion, but the mechanisms underlying these effects are unknown. NCAM and GFRalpha1 interact at the plasma membrane, but the molecular determinants involved have not been characterized nor is it clear whether their interaction is required for GFRalpha1 regulation of NCAM function. We have investigated the structure-function relationships underlying GFRalpha1 binding to NCAM in intact cells. The fourth Ig domain of NCAM was both necessary and sufficient for the interaction of NCAM with GFRalpha1. Moreover, although the N-terminal domain of GFRalpha1 had previously been shown to be dispensable for GDNF binding, we found that it was both necessary and sufficient for the efficient interaction of this receptor with NCAM. GFRalpha1 lacking its N-terminal domain was still able to potentiate GDNF binding to NCAM and assemble into a tripartite receptor complex but showed a reduced capacity to attenuate NCAM-mediated cell adhesion. On its own, the GFRalpha1 N-terminal domain was sufficient to decrease NCAM-mediated cell adhesion. These results indicate that direct receptor-receptor interactions are not required for high affinity GDNF binding to NCAM but play an important role in the regulation of NCAM-mediated cell adhesion by GFRalpha1.  相似文献   

19.
We report ELISA studies of the glycosaminoglycan binding properties of recombinant human glial cell line-derived neurotrophic factor (GDNF). We demonstrate relatively high affinity binding as soluble heparin competes with an IC50 of 0.1 micro g/ml. The binding of GDNF to heparin is particularly dependent on the presence of 2-O-sulfate groups. Highly sulfated heparan sulfate is also an effective competitor for GDNF binding. We also show that heparin at low concentrations protects GDNF from proteolytic modification by an endoprotease and also promotes the binding of GDNF to its receptor polypeptide, GFRalpha1. In both of these actions, 2-O-desulfated heparin is less effective. Considered overall, these findings provide strong support for a hypothesis that the bioactivity of GDNF during prenatal development is essentially dependent on the binding of this growth factor to 2-O-sulfate-rich heparin-related glycosaminoglycan.  相似文献   

20.
The retina is protected from somatic circulation by the blood-retinal barrrier (BRB) composed of tight junctions between retinal vascular endothelial cells (the inner BRB) and those between retinal pigment epithelial cells (the outer BRB). Our recent studies showed that glial cell line-derived neurotrophic factor (GDNF) secreted from astrocytes regulates the permeability of the BBB. In the present study, we immunohistochemically examined the expression of GDNF, neurturin (NTN) and their receptors, GFRalpha1 for GDNF and GFRalpha2 for NTN, because the capillaries of the inner BRB show specialization very similar to the blood-brain barrier (BBB). GDNF and NTN were detected in glial fibrillary acidic protein (GFAP)-positive cells, including Müller cells. GFRalpha1 and GFRalpha2 were localized in von Willebrand factor-positive cells. GDNF and NTN enhanced the barrier function of endothelial cells derived from porcine brain cortex. These results strongly suggest that the barrier function of the BRB is regulated by GDNF and NTN secreted from glial cells, like the BBB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号