首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
2.
Two mitochondrial DNA molecules which represent major Ovis aries mtDNA haplogroups were cloned and comparatively sequenced to assess the degree of intraspecific variation. A total of 9623 bp that correspond to 58% of both mitochondrial genomes were determined. The control region, the Cyt b , ND2, ND3, ND4L, COIII and 12 tRNA genes, including the origin of L-strand replication, were completely characterized. Partial sequence information was obtained from the 12S and 16S rRNA and an additional six protein coding and six tRNA genes. The control regions of the two mtDNAs showed a nucleotide divergence of 4·34% while coding regions differed by 0·44%. The number of sheep coding region substitutions was similar to values observed in intraspecific comparisons of mitochondrial DNAs that represent remote points in genealogical trees of mice and humans. However, replacement substitutions were only observed at ∼30% of the rate in mice and ∼20% of the rate in humans. Nucleotide substitutions with a potential for phenotypic effects were found in the 12S and 16S rRNA and in the ND1 and COIII genes.  相似文献   

3.
Summary We have cloned and sequenced over 9 kb of the mitochondrial genome from the sea starPisaster ochraceus. Within a continuous 8.0-kb fragment are located the genes for NADH dehydrogenase subunits 1, 2, 3, and 4L (ND1, ND2, ND3, and ND4L), cytochrome oxidase subunits I, II, and III (COI, COII, and COIII), and adenosine triphosphatase subunits 6 and 8 (ATPase 6 and ATPase 8). This large fragment also contains a cluster of 13 tRNA genes between ND1 and COI as well as the genes for isoleucine tRNA between ND1 and ND2, arginine tRNA between COI and ND4L, lysine tRNA between COII and ATPase 8, and the serine (UCN) tRNA between COIII and ND3. The genes for the other five tRNAs lie outside this fragment. The gene for phenylalanine tRNA is located between cytochrome b and the 12S ribosomal genes. The genes for tRNAglu and tRNAthr are 3 to the 12S ribosomal gene. The tRNAs for histidine and serine (AGN) are adjacent to each other and lie between ND4 and ND5. These data confirm the novel gene order in mitochondrial DNA (mtDNA) of sea stars and delineate additional distinctions between the sea star and other mtDNA molecules.  相似文献   

4.
The 16,775 base-pair mitochondrial genome of the white Leghorn chicken has been cloned and sequenced. The avian genome encodes the same set of genes (13 proteins, 2 rRNAs and 22 tRNAs) as do other vertebrate mitochondrial DNAs and is organized in a very similar economical fashion. There are very few intergenic nucleotides and several instances of overlaps between protein or tRNA genes. The protein genes are highly similar to their mammalian and amphibian counterparts and are translated according to the same variant genetic code. Despite these highly conserved features, the chicken mitochondrial genome displays two distinctive characteristics. First, it exhibits a novel gene order, the contiguous tRNA(Glu) and ND6 genes are located immediately adjacent to the displacement loop region of the molecule, just ahead of the contiguous tRNA(Pro), tRNA(Thr) and cytochrome b genes, which border the displacement loop region in other vertebrate mitochondrial genomes. This unusual gene order is conserved among the galliform birds. Second, a light-strand replication origin, equivalent to the conserved sequence found between the tRNA(Cys) and tRNA(Asn) genes in all vertebrate mitochondrial genomes sequenced thus far, is absent in the chicken genome. These observations indicate that galliform mitochondrial genomes departed from their mammalian and amphibian counterparts during the course of evolution of vertebrate species. These unexpected characteristics represent useful markers for investigating phylogenetic relationships at a higher taxonomic level.  相似文献   

5.
Genus Lateolabrax consists of three species, Japanese sea bass Lateolabrax japonicus, spotted sea bass Lateolabrax maculatus and blackfin sea bass Lateolabrax latus. The complete mitochondrial DNA (mtDNA) of the three sea basses were amplified and sequenced to characterize and discuss their phylogenetic relationships. The length of mitogenomes was 16,593 bp, 16,479 bp and 16,600 bp, respectively, and all of them consisted of 13 protein-coding genes, 2 ribosomal RNA (rRNA), 22 transfer RNA (tRNA) and a control region, which are typical for mtDNA of vertebrate. Most genes were encoded on the H-strand, except for the ND6 and eight tRNA genes encoding on the L-strand. A significant variation among the three species was detected in length of the control region. Phylogenetic relationship among the three species was constructed based on the datasets, including the 12 protein-coding genes (except ND6 gene), 22 tRNA and 2 rRNA sequences. The results supported the sister taxon between L. japonicus and L. maculatus. The genetic resources reported here are useful for further studies in taxonomy and phylogeny of the three sea basses and related species.  相似文献   

6.
Summary The nucleotide sequence of a segment of the mitochondrial DNA (mtDNA) molecule of the liver flukeFasciola hepatica (phylum Platyhelminthes, class Trematoda) has been determined, within which have been identified the genes for tRNAala, tRNAasp, respiratory chain NADH dehydrogenase subunit I (ND1), tRNAasn, tRNApro, tRNAile, tRNAlys, ND3, tRNAserAGN, tRNAtrp, and cytochromec oxidase subunit I (COI). The 11 genes are arranged in the order given and are all transcribed from the same strand of the molecule. The overall order of theF. hepatica mitochondrial genes differs from what is found in other metazoan mtDNAs. All of the sequenced tRNA genes except the one for tRNAserAGN can be folded into a secondary structure with four arms resembling most other metazoan mitochondrial tRNAs, rather than the tRNAs that contain a TψC arm replacement loop, found in nematode mtDNAs. TheF. hepatica mitochondrial tRNAserAGN gene contains a dihydrouridine arm replacement loop, as is the case in all other metazoan mtDNAs examined to date. AGA and AGG are found in theF. hepatica mitochondrial protein genes and both codons appear to specify serine. These findings concerningF. hepatica mtDNA indicate that both a dihydrouridine arm replacement loop-containing tRNAserAGN gene and the use of AGA and AGG codons to specify serine must first have occurred very early in, or before, the evolution of metazoa.  相似文献   

7.
The complete nucleotide sequence of the mitochondrial genome was determined for a conger eel, Conger myriaster (Elopomorpha: Anguilliformes), using a PCR-based approach that employs a long PCR technique and many fish-versatile primers. Although the genome [18,705 base pairs (bp)] contained the same set of 37 mitochondrial genes [two ribosomal RNA (rRNA), 22 transfer RNA (tRNA), and 13 protein-coding genes] as found in other vertebrates, the gene order differed from that recorded for any other vertebrates. In typical vertebrates, the ND6, tRNAGlu, and tRNAPro genes are located between the ND5 gene and the control region, whereas the former three genes, in C. myriaster, have been translocated to a position between the control region and the tRNAPhe gene that are contiguously located at the 5′ end of the 12S rRNA gene in typical vertebrates. This gene order is similar to the recently reported gene order in four lineages of birds in that the latter lack the ND6, tRNAGlu, and tRNAPro genes between the ND5 gene and the control region; however, the relative position of the tRNAPro to the ND6–tRNAGlu genes in C. myriaster was different from that in the four birds, which presumably resulted from different patterns of tandem duplication of gene regions followed by gene deletions in two distantly related groups of organisms. Sequencing of the ND5–cyt b region in 11 other anguilliform species, representing 11 families, plus one outgroup species, revealed that the same gene order as C. myriaster was shared by another 4 families, belonging to the suborder Congroidei. Although the novel gene orders of four lineages of birds were indicated to have multiple independent origins, phylogenetic analyses using nucleotide sequences from the mitochondrial 12S rRNA and cyt b genes suggested that the novel gene orders of the five anguilliform families had originated in a single ancestral species. Received: 13 July 2000 / Accepted: 30 November 2000  相似文献   

8.
The complete mitochondrial (mt) genome of the plant bug, Apolygus lucorum, an important cotton pest, has been sequenced and annotated in this study. The entire circular genome is 14 768 bp in size and represents the smallest in presently known heteropteran mt genomes. The mt genome is encoding for two ribosomal RNA (rRNA) genes, 22 transfer RNA (tRNA) genes, 13 protein coding genes and a control region, and the order, content, codon usage and base organization show similarity to a great extent to the hypothetical ancestral model. All protein coding genes use standard initiation codons ATN. Conventional stop codons TAA and TAG have been assigned to the most protein coding genes; however, COIII, ND4 and ND5 genes show incomplete terminator signal (T). All tRNA genes possess the typical clover leaf structure, but the dihydrouridine arm of tRNAser(A6N) only forms a simple loop. Secondary structure models of rRNA genes are generally in accordance with the former models, although some differences exist in certain parts. Three intergenic spacers have never been found in sequenced mt genomes of Heteroptera. The phylogenetic study based on protein coding genes is largely congruent with previous phylogenetic work. Both Bayesian inference and maximum likelihood analyses highly support the sister relationship ofA. lucorum and Lygus lineolaris, and Miridae presents a sister position to Anthocoridae.  相似文献   

9.
10.
In this study, we infer the phylogenetic relationships within commercial shrimp using sequence data from a novel mitochondrial marker consisting of an approximately 530-bp region of the 16S ribosomal RNA (rRNA)/transfer RNA (tRNA)Val genes compared with two other mitochondrial genes: 16S rRNA and cytochrome c oxidase I (COI). All three mitochondrial markers were considerably AT rich, exhibiting values up to 78.2% for the species Penaeus monodon in the 16S rRNA/tRNAVal genes, notably higher than the average among other Malacostracan mitochondrial genomes. Unlike the 16S rRNA and COI genes, the 16S rRNA/tRNAVal marker evidenced that Parapenaeus is more closely related to Metapenaeus than to Solenocera, a result that seems to be more in agreement with the taxonomic status of these genera. To our knowledge, our study using the 16S rRNA/tRNAVal gene as a marker for phylogenetic analysis offers the first genetic evidence to confirm that Pleoticus muelleri and Solenocera agassizi constitute a separate group and that they are more related to each other than to genera belonging to the family Penaeidae. The 16S rRNA/tRNAVal region was also found to contain more variable sites (56%) than the other two regions studied (33.4% for the 16S rRNA region and 42.7% for the COI region). The presence of more variable sites in the 16S rRNA/tRNAVal marker allowed the interspecific differentiation of all 19 species examined. This is especially useful at the commercial level for the identification of a large number of shrimp species, particularly when the lack of morphological characteristics prevents their differentiation.  相似文献   

11.
Evolution of the WANCY region in amniote mitochondrial DNA   总被引:7,自引:1,他引:6  
In most vertebrate mitochondrial genomes, the site for initiation of light-strand replication, OL, is found within a cluster of five transfer RNA (tRNA) genes (tRNA(Trp), tRNA(Ala), tRNA(Asn), tRNA(Cys), and tRNA(Tyr)). This region and part of the adjacent cytochrome c oxydase subunit I (COI) gene were sequenced for two crocodilian, two turtle, and one snake species and for Sphenodon punctatus; part of the adjacent nicotinamide adenine dinucleotide dehydrogenase subunit 2 (ND2) gene was also sequenced for the crocodilian and turtle species. All had the typical vertebrate gene order. The turtles and the snake have a lengthy noncoding sequence between the tRNA(Asn) and tRNA(Cys) genes that we assumed to be homologous to the mammalian OL. The crocodilians and Sphenodon lack such a sequence, a condition they share with birds. Most proposed phylogenies for the amniotes require that OL at this position was lost at least twice during their diversification or was evolved independently more than once. Within the five tRNA genes, frequencies of substitutions are much higher in loops than in stems. Many loops vary dramatically in size among the species; in the most extreme case, the D-arm of the Sphenodon tRNA(Cys) is a "D-arm replacement" loop of seven nucleotides. Frequency of transitions in stems is relatively uniform across tRNAs, but frequency of transversions varies greatly. Mismatches in stems are infrequent, and their relative frequency in a specific tRNA is unrelated to the frequency of substitution in the corresponding gene. Several features of mammalian mitochondrial tRNAs are conserved in WANCY tRNAs throughout amniotes. The inferred initiation codon for COI is GTG in crocodilians, turtles, and the snake, a condition they share with fishes, certain amphibians, and birds. TTG appears to be the initiation codon for COI in Sphenodon; if correct, this would be a novel initiation codon for vertebrate mitochondrial DNA. Phylogenetic analyses of the inferred amino acid sequences of ND2 and COI support the sister-group relationship of birds and crocodilians and suggest that mammals are an early derived lineage within the amniotes.   相似文献   

12.
13.
The complete nucleotide sequence of the urochordate Ciona savignyi (Ascidiacea, Enterogona) mitochondrial (mt) genome (14,737 bp) was determined. The Ciona mt genome does not encode a gene for ATP synthetase subunit 8 but encodes an additional tRNAGly gene (anticodon UCU), as is the case in another urochordate, Halocynthia roretzi (Ascidiacea, Pleurogona), mt genome. In addition, the Ciona mt genome encodes two tRNAMet genes; anticodon CAT and anticodon TAT. The tRNACys gene is thought to lack base pairs at the D-stem. Thus, the Ciona mt genome encodes 12 protein, 2 rRNA, and 24 tRNA genes. The gene arrangement of the Ciona mt genome differs greatly from those of any other metazoan mt genomes reported to date. Only three gene boundaries are shared between the Halocynthia and the Ciona mt genomes. Molecular phylogenetic analyses based on amino acid sequences of mt protein genes failed to demonstrate the monophyly of the chordates.  相似文献   

14.

Background

Vertebrate mitochondrial genomes (mitogenomes) are 16–18 kbp double-stranded circular DNAs that encode a set of 37 genes. The arrangement of these genes and the major noncoding region is relatively conserved through evolution although gene rearrangements have been described for diverse lineages. The tandem duplication-random loss model has been invoked to explain the mechanisms of most mitochondrial gene rearrangements. Previously reported mitogenomic sequences for geckos rarely included gene rearrangements, which we explore in the present study.

Results

We determined seven new mitogenomic sequences from Gekkonidae using a high-throughput sequencing method. The Tropiocolotes tripolitanus mitogenome involves a tandem duplication of the gene block: tRNAArg, NADH dehydrogenase subunit 4L, and NADH dehydrogenase subunit 4. One of the duplicate copies for each protein-coding gene may be pseudogenized. A duplicate copy of the tRNAArg gene appears to have been converted to a tRNAGln gene by a C to T base substitution at the second anticodon position, although this gene may not be fully functional in protein synthesis. The Stenodactylus petrii mitogenome includes several tandem duplications of tRNALeu genes, as well as a translocation of the tRNAAla gene and a putative origin of light-strand replication within a tRNA gene cluster. Finally, the Uroplatus fimbriatus and U. ebenaui mitogenomes feature the apparent loss of the tRNAGlu gene from its original position. Uroplatus fimbriatus appears to retain a translocated tRNAGlu gene adjacent to the 5’ end of the major noncoding region.

Conclusions

The present study describes several new mitochondrial gene rearrangements from Gekkonidae. The loss and reassignment of tRNA genes is not very common in vertebrate mitogenomes and our findings raise new questions as to how missing tRNAs are supplied and if the reassigned tRNA gene is fully functional. These new examples of mitochondrial gene rearrangements in geckos should broaden our understanding of the evolution of mitochondrial gene arrangements.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-930) contains supplementary material, which is available to authorized users.  相似文献   

15.
Summary The sequence of a segment of theDrosophila virilis mitochondrial DNA (mtDNA) molecule that contains the A+T-rich region, the small rRNA gene, the tRNAf-met, tRNAgln, and tRNAile genes, and portions of the ND2 and tRNAval genes is presented and compared with the corresponding segment of theD. yakuba mtDNA molecule. The A+T-rich regions ofD. virilis andD. yakuba contain two correspondingly located sequences of 49 and 276/274 nucleotides that appear to have been conserved during evolution. In each species the replication origin of the mtDNA molecule is calculated to lie within a region that overlaps the larger conserved sequence, and within this overlap is found a potential hairpin structure. Substitutions between the larger conserved sequences of the A+T-rich regions, the small mt-rRNA genes, and the ND2 genes are biased in favor of transversions, 71–97% of which are AT changes. There is a 13.8 times higher frequency of nucleotide differences between the 5 halves than between the 3 halves of theD. virilis andD. yakuba small mt-rRNA genes. Considerations of the effects of observed substitutions and deletion/insertions on possible nucleotide pairing within the small mt-rRNA genes ofD. virilis andD. yakuba strongly support the secondary structure model for theDrosophila small mt-rRNA that we previously proposed.  相似文献   

16.
Summary The nucleotide sequences of the mitochondrial origin of light-strand replication and the five tRNA genes surrounding it were determined for three marsupials. The region was found to be rearranged, leaving only the tRNATyr gene at the same position as in placental mammals andXenopus. Distribution of the same rearranged genotype among two marsupial families indicates that the events causing the rearrangements took place in an early marsupial ancestor. The putative mitochondrial light-strand origin of replication in marsupials contains a hairpin structure similar to other vertebrate origins and, in addition, extensive flanking sequences that are not found in other vertebrates. Sequence comparisons among the marsupials as well as placentals indicate that the tRNATyr gene has been evolving under more constraints than the other tRNA genes.Deceased July 21, 1991  相似文献   

17.
18.
Sequence evolution in and around the mitochondrial control region in birds   总被引:16,自引:0,他引:16  
By cloning and sequencing 3.4 kilobases of snow goose mtDNA we found that the ND5 gene is followed by the genes for cytochrome b, tRNAThr, tRNAPro, ND6, tRNAGlu, the control region, tRNAPhe, and srRNA. This order is identical to that of chicken, quail, and duck mtDNA but differs from that of mammals and a frog (Xenopus). The mean extent of difference due to base substitution between goose and chicken is generally closer to the same comparison between rat and mouse but less than that between human and cow. For one of the nine regions compared (tRNAGlu), the bird differences appear to be anomalous, possibly implicating altered functional constraints. Within the control region, several short sequences common to mammals are also conserved in the birds. Comparison of the goose control region with that of quail and chicken suggests that a sequence element with similarity to CSB-1 duplicated once prior to the divergence of goose and chicken and again on the lineage leading to chicken. Between goose (or duck) and chicken there are four times more transversions at the third positions of fourfold-degenerate codons in mitochondrial than in nuclear genes.Abbreviations CSB conserved sequence block - cytb cytochrome b - ND NADH dehydrogenase - srRNA small-subunit ribosomal RNA Deceased July 21, 1991 Correspondence to: T.W. Quinn at the University of Denver  相似文献   

19.
20.
The complete mitochondrial genomes of two basal anurans, Bombina bombina and B. variegata (Anura; Bombinatoridae), were sequenced. The gene order of their mitochondrial DNA (mtDNA) is identical to that of canonical vertebrate mtDNA. In contrast, we show that there are structural differences in regulatory regions and protein coding genes between the mtDNA of these two closely related species. Corrected sequence divergence between the mtDNA of B. bombina and B. variegata amounts to 8.7% (2.3% divergence in amino acids). Comparisons with two East Asian congeners show that the control region contains two repeat regions, LV1 and LV2, present in all species except for B. bombina, in which LV2 has been secondarily lost. The rRNAs and tRNAs are characterized by low nucleotide divergence. The protein coding genes are considerably more disparate, although functional constraint is high but variable among genes, as evidenced by dN/dS ratios. A mtDNA phylogeny established the distribution of autapomorphic nonsynonomous substitutions in the mitogenomes of B. bombina and B. variegata. Nine of 98 nonsynonomous substitutions led to radical amino acid replacements that may alter mitochondrial protein function. Most radical substitutions were found in ND2, ND4, or ND5, encoding mitochondrial subunits of complex I of the electron transport system. The extensive divergence between the mitogenomes of B. bombina and B. variegata is discussed in terms of its possible role in impeding gene flow in natural hybrid zones between these two species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号