首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 475 毫秒
1.
Human stomatin (band 7.2b) is a 31-kDa erythrocyte membrane protein of unknown function but implicated in the control of ion channel permeability, mechanoreception, and lipid domain organization. Although absent in erythrocytes from patients with hereditary stomatocytosis, stomatin is not linked to this disorder. A second stomatin homologue, termed SLP-1, has been identified in nonerythroid tissues, and other stomatin related proteins are found in Drosophila, Caenorhabditis elegans, and plants. We now report the cloning and characterization of a new and unusual stomatin homologue, human SLP-2 (stomatin-like protein 2). SLP-2 is encoded by an approximately 1.5-kilobase mRNA (GenBank(TM) accession no. AF190167). The gene for human SLP-2, HUSLP2, is present on chromosome 9p13. Its derived amino acid sequence predicts a 38,537-kDa protein that is overall approximately 20% similar to human stomatin. Northern and Western blots for SLP-1 and SLP-2 reveal a wide but incompletely overlapping tissue distribution. Unlike SLP-1, SLP-2 is also present in mature human erythrocytes ( approximately 4,000 +/- 5,600 (+/- 2 S.D.) copies/cell). SLP-2 lacks a characteristic NH(2)-terminal hydrophobic domain found in other stomatin homologues and (unlike stomatin) is fully extractable from erythrocyte membranes by NaOH, pH 11. SLP-2 partitions into both Triton X-100-soluble and -insoluble pools in erythrocyte ghost membranes or when expressed in cultured COS cells and migrates anomalously on SDS-polyacrylamide gel electrophoresis analysis with apparent mobilities of approximately 45,500, 44,600, and 34,300 M(r). The smallest of these protein bands is believed to represent the product of alternative translation initiated at AUGs beginning with nt 217 or 391, although this point has not been rigorously proven. Collectively, these findings identify a novel and unusual member of the stomatin gene superfamily that interacts with the peripheral erythrocyte cytoskeleton and presumably other integral membrane proteins but not directly with the membrane bilayer. We hypothesize that SLP-2 may link stomatin or other integral membrane proteins to the peripheral cytoskeleton and thereby play a role in regulating ion channel conductances or the organization of sphingolipid and cholesterol-rich lipid rafts.  相似文献   

2.
Three monoclonal antibodies have been raised against partially purified band 4.5 polypeptides [Steck (1974) J. Cell Biol. 62, 1-19] from pig erythrocyte membranes. The antibodies were capable of binding to both intact pig erythrocytes and protein-depleted membrane preparations and recognized detergent-solubilized polypeptides from adult and neonatal pig erythrocytes that were photolabelled with [G-3H]nitrobenzylthioinosine (NBMPR), a potent specific inhibitor of nucleoside transport. The antibodies did not recognize polypeptides from neonatal pig erythrocytes that were photolabelled with the glucose-transport inhibitor [3H]cytochalasin B. Reactivity with polypeptides of apparent Mr 64,000 [10% (w/v) acrylamide gels] was demonstrated by Western-blot analysis. The antibodies recognized pig band 4.5 polypeptides after prolonged treatment with endoglycosidase F, a finding consistent with reactivity against polypeptide, rather than carbohydrate, determinants. Trypsin digestion of NBMPR-labelled protein-depleted pig erythrocyte membranes generated two labelled polypeptide fragments (Mr 43,000 and 26,000). Two of the antibodies recognized both fragments on Western blots, whereas the third bound to the larger, but not to the smaller, fragment. The antibodies had no significant effect on reversible binding of NBMPR to protein-depleted pig erythrocyte membranes and did not bind to NBMPR-labelled polypeptides in human, rabbit or mouse erythrocytes.  相似文献   

3.
Monoclonal antibodies to the Mr 31,000 major integral membrane protein of the human erythrocyte band 7 region were used to identify the corresponding polypeptide chain and epitope-carrying fragments on immunoblots. Analysis of the erythrocyte membrane, membrane fractions, and cytosol revealed that the Mr 31,000 band 7 integral membrane protein is unique and not related to any of the other water-soluble or membrane-bound band 7 components. Cross-reacting proteins were identified in the membranes of other mammalian erythrocytes and in cell lines of epithelial and lymphoid origin. Proteolytic digestion of intact human erythrocytes or erythrocyte membranes demonstrated that the band 7 integral membrane protein has an intracellular domain larger than Mr 12,000; it does not have an extracellular one. One of the monoclonal antibodies was employed for the isolation of band 7 integral membrane protein by immunoaffinity chromatography; subsequent Edman degradation revealed a blocked N-terminus.  相似文献   

4.
The mouse hybridoma monoclonal antibody BIII.136 of the IgG2a class is specific for human erythrocyte band-3 protein. It was shown by means of immunoblotting and immunoprecipitation assays that the antibody recognized an epitope located in the cytoplasmic pole of the band-3 molecule within approximately 20 kDa from the N-terminal end. The N-terminal fragments of band-3 protein, migrating in SDS/polyacrylamide gel electrophoresis in the 60-kDa, 40-kDa and 20-kDa regions, were detected with the antibody in untreated red-cell membranes as products of autolysis of band-3 protein. A correlation was found between the amount of these fragments and erythrocyte age, which suggests that partial degradation of band 3 proceeds in vivo during senescence of erythrocytes. The further degradation of band-3 protein in vitro was not observed in intact erythrocytes stored at 4 degrees C, but progressed distinctly after hemolysis of red cells, during washing and storing the membranes.  相似文献   

5.
We have raised a rabbit antiserum to a synthetic peptide corresponding to the C terminus (residues 400-416) of the Rh30A polypeptide. The rabbit antiserum reacted with the Rh30B (D30) polypeptide in addition to the Rh30A (C/c and/or E/e) polypeptide(s), indicating that these proteins share homology at their C termini. The antiserum did not react with erythrocyte membranes from an individual with Rh(null) syndrome. The rabbit antiserum immunoprecipitated Rh polypeptides from erythrocyte membranes and alkali-stripped membranes, but not from intact erythrocytes. Treatment of intact red cells with carboxypeptidase Y did not affect the reactivity of the antiserum, whereas treatment of alkali-stripped and unsealed erythrocyte ghost membranes resulted in the loss of antibody binding. Carboxypeptidase A treatment of intact erythrocytes and alkali-stripped membranes had no effect on antibody binding, indicating that the C-terminal domains of the Rh polypeptides contain lysine, arginine, proline, or histidine residues. These results show that the C termini of the Rh polypeptides are located toward the cytoplasmic face of the erythrocyte membrane. Treatment of intact radioiodinated erythrocytes with bromelain followed by immunoprecipitation with monoclonal anti-D gave a band of M(r) 24,000-25,000, indicating that the Rh30B (D30) polypeptide is cleaved at an extracellular domain close to the N or C terminus, with loss of the major radioiodinated domain. Immunoblotting of bromelain treated D-positive erythrocyte membranes with the rabbit antiserum to the C-terminal peptide revealed a new band of M(r) 6000-6500, indicating that the extracellular bromelain cleavage site is located near the C terminus of the molecule. The band of M(r) 6000-6500 was not obtained in erythrocyte membranes derived from bromelain treated D-negative erythrocytes. Erythrocytes of the rare -D- phenotype appear to either totally lack, or have gross alterations in, the Cc/Ee polypeptide(s), since the bromelain treatment of these cells resulted in the total loss of staining in the M(r) 35,000-37,000 region and the concomitant appearance of the new band of M(r) 6000-6500.  相似文献   

6.
1. We investigated the membranes of human erythrocytes which completely lack the blood-group antigens S and s (denoted as S-s-) as part of a study of the structure and function of the surface glycoproteins of the human erythrocyte. 2. The S-s-erythrocyte-membrane glycoprotein PAS-3 band was much less intensely stained in comparison with that of the glycoprotein from normal erythrocyte membranes. The S-s-membrane glycoprotein PAS-4 band also showed decreased staining. 3. Examination with the lectins from Maclura aurantiaca (Osage orange) and Arachis hypogaea (groundnut) showed that the PAS-3 glycoprotein of S-s-erythrocyte membranes lacked the receptors for these lectins that are present on glycoprotein PAS-3 from normal erythrocytes. 4. Radioiodination with lactoperoxidase showed the presence of the polypeptide of glycoprotein PAS-3 in S-s-cells, although it was more weakly labelled than the protein in the normal erythrocyte. 5. Our results show that the PAS-3 glycoprotein of S-s-erythrocytes is deficient in some of the carbohydrates present in the protein from normal erythrocytes. Glycoprotein PAS-4 of normal erythrocytes is shown to be a complex containing both glycoproteins PAS-1 and PAS-3.  相似文献   

7.
A monoclonal antibody against the membrane domain of human erythrocyte band 3 was tested for its ability to bind to rabbit renal brush border membranes. A single brush border protein with a molecular mass of 43 kDa was recognized by the band 3 antibody. Using DNase I coupled to an agarose-bead support this 43-kDa protein was partially purified by removing actin and a number of actin-bound proteins from the brush border membranes. The partially purified 43 kDa-band was eluted from sodium dodecyl sulfate-polyacrylamide gels and used to make a highly sensitive and specific guinea pig antiserum. This antiserum, but not serum from control guinea pigs, cross-reacts with purified band 3 from human, rabbit, and bovine erythrocytes confirming the immunologic similarity among these proteins. The 43-kDa protein can be stained by the periodic acid-Schiff base method and binds wheat germ agglutinin and concanavalin A, demonstrating that it is a glycoprotein. Furthermore, in the absence of dithiothreitol, the immunoreactive brush border protein migrates with a molecular mass of 86 kDa on an sodium dodecyl sulfate-polyacrylamide gel suggesting that under nonreducing conditions it exists as a dimer. The 43-kDa protein could be solubilized in octyl glucoside and was further purified using gel filtration chromatography. The amino acid composition of the 43-kDa brush border protein was obtained, and its similarity with erythrocyte band 3 is discussed.  相似文献   

8.
The erythrocyte Rh antigens contain an Mr = 32,000 integral protein which is thought to contribute in some way to the organization of surrounding phospholipid. To search for possible fatty acid acylation of the Rh polypeptide, intact human erythrocytes were incubated with [3H]palmitic acid prior to preparation of membranes and sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography. Several membrane proteins were labeled, but none corresponded to the glycophorins or membrane proteins 1-8. An Mr = 32,000 band was prominently labeled on Rh (D)-negative and -positive erythrocytes and could be precipitated from the latter with anti-D. No similar protein was labeled on membranes from Rhmod erythrocytes, a rare phenotype lacking Rh antigens. Labeling of the Rh polypeptide most likely represents palmitic acid acylation through thioester linkages. The 3H label was not extracted with chloroform/methanol, but was quantitatively eluted with hydroxylamine and co-chromatographed with palmitohydroxamate and free palmitate by thin layer chromatography. The fatty acid acylations occurred independent of protein synthesis and were completely reversed by chase with unlabeled palmitate. It is concluded that the Rh polypeptide is fatty acid-acylated, being a major substrate of an acylation-deacylation mechanism associated with the erythrocyte membrane.  相似文献   

9.
E Strapazon  T L Steck 《Biochemistry》1977,16(13):2966-2971
Up to 80% of cellular aldolase (EC 4.1.2.13) was retained in the membrane fraction isolated following hemolysis of human erythrocytes under appropriate conditions. Binding was reversed by increasing the pH and ionic strength. Millimolar levels of the substrate, fructose 1,6-bisphosphate, selectively eluted aldolase from the membrane, while related metabolites did not. Using the membrane as a high affinity adsorbant, electrophoretically pure aldolase of high specific activity was prepared in high yield. The reassociation of pure aldolase and membranes was characterized. The sole site of human erythrocyte aldolase binding was shown to be the cytoplasmic surface domain of band 3, the predominant membrane-spanning polypeptide. One aldolase molecule was bound per band 3 polypeptide. Upon binding to either whole membranes, solubilized band 3, or proteolytic fragments from the cytoplasmic surface pole of band 3, aldolase underwent a profound loss of catalytic activity, reversed by raising the substrate concentration.  相似文献   

10.
ABSTRACT. In Plasmodium falciparum. the rhoptries involved in the invasion process are a pair of flask-shaped organelles located at the apical tip of invading stages. They, along with the more numerous micronemes and dense granules, constitute the apical complex in Plasmodium and other members of the phylum Apicomplexa. Several proteins of varying molecular weight have been identified in P. falciparum rhoptries. These include the 225-, 140/130/110-, 80/60/40-, RAP-1 80-, AMA-1 80-, QF3 80-, and 55-kDa proteins. Some of these proteins are lost during schizont rupture and release of merozoites. Others such as the 140/130/110-kDa complex are transferred to the erythrocyte membrane during invasion. The ring-infected surface antigen (RESA). a 155-kDa polypeptide located in dense granules also associates with the erythrocyte membrane during invasion. Erythrocyte-binding studies have demonstrated that both the 140/130/110-kDa rhoptry complex and RESA bind to inside-out-vesicles (IOVs) prepared from human erythrocytes. The 140/130/110-kDa complex also binds to erythrocyte membranes prepared by hypotonic lysis. These proteins, however, do not bind to intact human erythrocytes. In a heterologous erythrocyte model, both the 140/130/110-kDa complex and RESA are shown to bind directly to mouse erythrocytes. Other studies have shown that RESA associates with spectrin in the erythrocyte cytoskeleton. We have recently developed a liposome-binding assay to demonstrate the lipophilic binding properties of the P. falciparum rhoptry complex of 140/130/110 kDa. The rhoptry complex binds to liposomes containing neutrally, positively, and negatively charged phospholipids. However, liposomes containing phosphatidylethanolamine compete effectively for rhoptry protein binding to mouse erythrocytes. The rhoptry complex also binds to membrane and inside-out-vesicles prepared from human erythrocytes and erythrocytes from other species. The rhoptry complex associated with the erythrocyte membrane in ring-infected erythrocytes is accessible to cleavage by phospholipase A. Studies are in progress to identify the molecular epitopes on the individual proteins within the complex responsible for lipid interaction in the erythrocyte bilayer and to determine the specificity of the phospholipid interaction using erythrocyte phospholipids.  相似文献   

11.
Invasion of human erythrocytes by Plasmodium knowlesi requires the Duffy blood group antigen. P. knowlesi merozoites synthesize a 135-kDa polypeptide which binds to the Duffy antigen with receptor-like specificity. In this study, we show that the sulfated polysaccharide fucoidan and the glycosaminoglycan dextran sulfate inhibit the binding of the 135-kDa polypeptide to human Duffy-positive and rhesus erythrocytes while the chondroitin sulfates do not. Fucoidan and dextran sulphate also blocked the in vitro invasion of human Duffy b and rhesus erythrocytes cells by P. knowlesi merozoites. These inhibitors were more effective at blocking the binding of the 135-kDa polypeptide to human Duffy b erythrocytes than to rhesus erythrocytes, which correlated with them having a greater inhibitory effect on invasion of merozoites into human than into rhesus erythrocytes. The blocking by these sulfated sugars is not related to charge density on the polysaccharides; fucoidan with a relatively low charge density blocks binding of the 135-kDa polypeptide at 4 micrograms/ml, while the highly negatively charged chondroitin sulfates do not block binding even at the concentration of 1 mg/ml. Furthermore, fucoidan-Sepharose bound and removed the 135-kDa polypeptide from parasite culture supernatants with a selectivity equal to that of the Duffy blood group antigen. The negatively charged sulfate groups on fucoidan and dextran sulfate and the conformation in which they are held possibly mimic similarly charged groups on the Duffy antigen which bind the 135-kDa P. knowlesi polypeptide.  相似文献   

12.
In Plasmodium falciparum, the rhoptries involved in the invasion process are a pair of flask-shaped organelles located at the apical tip of invading stages. They, along with the more numerous micronemes and dense granules, constitute the apical complex in Plasmodium and other members of the phylum Apicomplexa. Several proteins of varying molecular weight have been identified in P. falciparum rhoptries. These include the 225-, 140/130/110-, 80/60/40-, RAP-1 80-, AMA-1 80-, QF3 80-, and 55-kDa proteins. Some of these proteins are lost during schizont rupture and release of merozoites. Others such as the 140/130/110-kDa complex are transferred to the erythrocyte membrane during invasion. The ring-infected surface antigen (RESA), a 155-kDa polypeptide located in dense granules also associates with the erythrocyte membrane during invasion. Erythrocyte-binding studies have demonstrated that both the 140/130/110-kDa rhoptry complex and RESA bind to inside-out-vesicles (IOVs) prepared from human erythrocytes. The 140/130/110-kDa complex also binds to erythrocyte membranes prepared by hypotonic lysis. These proteins, however, do not bind to intact human erythrocytes. In a heterologous erythrocyte model, both the 140/130/110-kDa complex and RESA are shown to bind directly to mouse erythrocytes. Other studies have shown that RESA associates with spectrin in the erythrocyte cytoskeleton. We have recently developed a liposome-binding assay to demonstrate the lipophilic binding properties of the P. falciparum rhoptry complex of 140/130/110 kDa. The rhoptry complex binds to liposomes containing neutrally, positively, and negatively charged phospholipids. However, liposomes containing phosphatidylethanolamine compete effectively for rhoptry protein binding to mouse erythrocytes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Human erythrocytes contain an unidentified plasma membrane redox system that can reduce extracellular monodehydroascorbate by using intracellular ascorbate (Asc) as an electron donor. Here we show that human erythrocyte membranes contain a cytochrome b(561) (Cyt b(561)) and hypothesize that it may be responsible for this activity. Of three evolutionarily closely related Cyts b(561), immunoblots of human erythrocyte membranes showed only the duodenal cytochrome b(561) (DCytb) isoform. DCytb was also found in guinea pig erythrocyte membranes but not in erythrocyte membranes from the mouse or rat. Mouse erythrocytes lost a majority of the DCytb in the late erythroblast stage during erythropoiesis. Absorption spectroscopy showed that human erythrocyte membranes contain an Asc-reducible b-type Cyt having the same spectral characteristics as recombinant DCytb and biphasic reduction kinetics, similar to those of the chromaffin granule Cyt b(561). In contrast, mouse erythrocytes did not exhibit Asc-reducible b-type Cyt activity. Furthermore, in contrast to mouse erythrocytes, human erythrocytes much more effectively preserved extracellular Asc and transferred electrons from intracellular Asc to extracellular ferricyanide. These results suggest that the DCytb present in human erythrocytes may contribute to their ability to reduce extracellular monodehydroascorbate.  相似文献   

14.
R Jürss  M Hekman  E J Helmreich 《Biochemistry》1985,24(13):3349-3354
A protease that can be inhibited by glutathione, dithiothreitol, and o-phenanthroline but not by ethylenediaminetetraacetic acid converts the 50-kilodalton beta-adrenergic receptor in turkey erythrocyte membranes to a 40-kDa polypeptide which retains the specific ligand binding site. This conversion is attenuated in intact erythrocytes. The large 50-kDa peptide contains N-linked, complex carbohydrates and is retained on wheat germ agglutinin-Sepharose. The 40-kDa product of proteolysis does not bind to the wheat germ agglutinin and can thus be separated from the 50-kDa polypeptide by lectin chromatography. However, the large difference in molecular weights of the two receptor peptides cannot be accounted for solely by the different extent of glycosylation.  相似文献   

15.
During Plasmodium falciparum merozoite invasion into human and mouse erythrocytes, a 110-kDa rhoptry protein is secreted from the organelle into the erythrocyte membrane. In the present study our interest was to examine the interaction of rhoptry proteins of P. falciparum with the erythrocyte membrane. It was observed that the complex of rhoptry proteins of 140/130/110 kDa bind directly to a trypsin sensitive site on intact mouse erythrocytes, and not human, saimiri, or other erythrocytes. However, when erythrocytes were disrupted by hypotonic lysis, rhoptry proteins of 140/130/110 kDa were found to bind to membranes and inside-out vesicles prepared from human, mouse, saimiri, rhesus, rat, and rabbit erythrocytes. A binding site on the cytoplasmic face of the erythrocyte membrane suggests that the rhoptry proteins may be translocated across the lipid bilayer during merozoite invasion. Furthermore, pretreatment of human erythrocytes with a specific peptide derived from MSA-1, the major P. falciparum merozoite surface antigen of MW 190,000-200,000, induced binding of the 140/130/110-kDa complex. The rhoptry proteins bound equally to normal human erythrocytes and erythrocytes treated with neuraminidase, trypsin, and chymotrypsin indicating the binding site was independent of glycophorin and other major surface proteins. The rhoptry protein complex also bound specifically to liposomes prepared from different types of phospholipids. Liposomes containing PE effectively block binding of the rhoptry proteins to mouse cells, suggesting that there are two binding sites on the mouse membrane for the 140/130/110-kDa complex, one protein and a second, possibly lipid in nature. The results of this study suggest that the 140/130/110 kDa protein complex may interact directly with sites in the lipid bilayer of the erythrocyte membrane.  相似文献   

16.
The distributions of ankyrin, spectrin, band 3, and glycophorin A were examined in Plasmodium falciparum-infected erythrocytes by immunoelectron microscopy to determine whether movement of parasite proteins and membrane vesicles between the parasitophorous vacuole membrane and erythrocyte surface membrane involves internalization of host membrane skeleton proteins. Monospecific rabbit antisera to spectrin, band 3 and ankyrin and a mouse monoclonal antibody to glycophorin A reacted with these erythrocyte proteins in infected and uninfected human erythrocytes by immunoblotting. Cross-reacting malarial proteins were not detected. The rabbit sera also failed to immunoprecipitate [3H]isoleucine labeled malarial proteins from Triton X-100 and sodium dodecyl sulfate (SDS) extracts of infected erythrocytes. These three antibodies as well as the monoclonal antibody to glycophorin A bound to the membrane skeleton of infected and uninfected erythrocytes. The parasitophorous vacuole membrane was devoid of bound antibody, a result indicating that this membrane contains little, if any, of these host membrane proteins. With ring-, trophozoite- and schizont-infected erythrocytes, spectrin, band 3 and glycophorin A were absent from intracellular membranes including Maurer's clefts and other vesicles in the erythrocyte cytoplasm. In contrast, Maurer's clefts were specifically labeled by anti-ankyrin antibody. There was a slight, corresponding decrease in labeling of the membrane skeleton of infected erythrocytes. A second, morphologically distinct population of circular, vesicle-like membranes in the erythrocyte cytoplasm was not labeled with anti-ankyrin antibody. We conclude that membrane movement between the host erythrocyte surface membrane and parasitophorous vacuole membrane involves preferential sorting of ankyrin into a subpopulation of cytoplasmic membranes.  相似文献   

17.
T Yamaguchi  E Kimoto 《Biochemistry》1992,31(7):1968-1973
Effects of sulfhydryl-reactive reagents on phosphate transport across human erythrocyte membranes were examined using 31P NMR. Phosphate transport was significantly inhibited in erythrocytes treated with sulfhydryl modifiers such as N-ethylmaleimide, diamide, and Cu2+/o-phenanthroline. Quantitation of sulfhydryl groups in band 3 showed that the inhibition is closely associated with the decrease of sulfhydryl groups. Data from erythrocytes treated with diamide or Cu2+/o-phenanthroline demonstrated that intermolecular cross-linking of band 3 by oxidation of a sulfhydryl group, perhaps Cys-201 or Cys-317, decreases the phosphate influx by about 10%. The inhibition was reversed by reduction using dithiothreitol. These results suggest that sulfhydryl groups in the cytoplasmic domain of band 3 may play an important role in the regulation of anion exchange across the membrane.  相似文献   

18.
The binding of human erythrocyte ankyrin (band 2.1) to the erythrocyte membrane has been characterized by reassociating purified ankyrin with ankyrin-depleted inside-out vesicles. Ankyrin reassociates at high affinity with a limited number of protease-sensitive sites located only on the cytoplasmic side of the erythrocyte membrane. Depleting the vesicles of band 4.2 does not affect their binding capacity. A 45,000-dalton polypeptide derived from the cytoplasmic portion of band 3 competitively inhibits the binding of ankyrin to inside-out vesicles. Although the bulk of band 3 molecules appear to have the potential for binding ankyrin, nly a fraction of the band 3 molecules in native membranes or in reconstituted liposomes actually provides accessible high affinity ankyrin binding sites.  相似文献   

19.
Since birth-induced oxidative stress (OS) results in the removal of erythrocytes from the blood stream, we studied the binding of autologous IgG to erythrocyte band 3 dimers (the 170-kDa band, which marks the erythrocytes for removal) in preterm and term newborns and in adults. The 170-kDa band was present in as much as 74% of preterm, in 21% of term newborns, and in 10% of adults. During erythrocyte ageing "in vitro" (0, 24, and 48 h aerobic incubation), the appearance of the band occurred much faster with erythrocytes from newborns (particularly preterm) than with those from adults. When the blots for the 170-kDa band were quantified by scanning densitometry, it was seen that the 0 time values were significantly higher in preterm compared to term and adult values. After aerobic incubation a progressive increase in the optical density was observed in each group and the densities were higher in preterm than in the other groups. The course of iron release during the various incubations was analogous to that of the 170-kDa band blots, and significant correlations were found at 0 and 48 h. Methemoglobin formation roughly paralleled iron release. Esterified F(2)-isoprostanes (markers of OS) and O(2)(-) production in the nonincubated (0 time) erythrocytes were much higher in newborn (preterm and term) than in adult erythrocytes. Plasma free F(2)-isoprostanes were significantly higher in preterms than in terms and in terms than in adults. Plasma non-protein-bound iron (NPBI) was higher in preterm than in term newborns and not detectable in adults. In conclusion dimers of band 3 with autologous IgG are found under conditions in which OS can be detected in erythrocytes or in plasma: namely in newborns or in aged erythrocytes.  相似文献   

20.
Human erythrocytes infected with five strains of Plasmodium falciparum and Aotus erythrocytes infected with three strains of P. falciparum were studied by thin-section and freeze-fracture electron microscopy. All strains of P. falciparum we studied induced electron-dense conical knobs, measuring 30-40 nm in height and 90-100 nm in diameter on erythrocyte membranes. Freeze-fracture demonstrated that the knobs were distributed over the membrane of both human and Aotus erythrocytes. A distinct difference was seen between the intramembrane particle (IMP) distribution over the knobs of human and Aotus erythrocyte membranes. There was no change in IMP distribution in infected human erythrocyte membranes, but infected Aotus erythrocytes showed an aggregation of IMP over the P face of the knobs with a clear zone at the base. This difference in IMP distribution was related only to the host species and not to parasite strains. Biochemical analysis demonstrated that a higher proportion of band 3 was bound to the cytoskeleton of uninfected Aotus erythrocytes than uninfected human erythrocytes after Triton X-100 extraction. This may account for the different effects of P. falciparum infection on IMP distribution in the two different cell types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号