首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AIMS: Rhodovulum sulfidophilum was grown in sardine processing wastewater to assess growth characteristics for the production of bacterial biomass with simultaneous reduction of chemical oxygen demand. METHODS AND RESULTS: Growth characteristics were compared in diluted and undiluted, settled and non-settled wastewater growing in anaerobic light and aerobic dark conditions; and also at different agitation speeds. The highest biomass (8.75 g l(-1)) and a reduction in chemical oxygen demand of 71% were obtained in unsettled, undiluted wastewater after 120 h culture with 15% inoculum. In settled wastewater, highest biomass (7.64 g l(-1)) and a COD reduction of 77% was also obtained after 120 h. Total biomass was higher (4.34 g l(-1)) after 120 h culture in anaerobic light compared to (3.23 g l(-1)) in aerobic dark growth. CONCLUSIONS, SIGNIFICANCE AND IMPACT OF THE STUDY: Better performance, mean of total biomass (6.97 g l(-1) after 96 h), total carotenoids (4.24 mg g(-1) dry cell from 24 h) and soluble protein (431 microg ml(-1) after 96 h) were obtained from aerobic dark culture at 300 rev min(-1). The COD reduction, however, was lower (69%) after 96 h culture. Thus, the benefits in the production of bacterial biomass in non-sterilized sardine processing wastewater with the reduction of chemical oxygen demand could be achieved.  相似文献   

2.
Citrobacter sp. strain KCTC 18061P was found to be able to decolorize textile plant effluent containing different types of reactive dyes. Effects of physico-chemical parameters, such as aeration, nitrogen source, glucose and effluent concentrations on the color removal of real dye effluent by this strain were investigated. The observed changes in the visible spectra indicated color removal by the absorption of dye to cells during incubation with the strain. This strain showed higher decolorization ability under aerobic than static culture conditions. With 1% glucose, this strain removed 70% of effluent color within 5 days. Decolorization was not significantly dependent on the nitrogen sources tested. Chemical oxygen demand (COD) and biological oxygen demand (BOD) were decreased in proportion to incubation times, and their removal rates were about 35% and 50%, respectively, at 7 days of culture.  相似文献   

3.
The aim of the study was to investigate the effect of nitrate on anaerobic color removal efficiencies. For this aim, anaerobic–aerobic sequencing batch reactor (SBR) fed with a simulated textile effluent including Remazol Brilliant Violet 5R azo dye was operated with a total cycle time of 12 h, including anaerobic (6 h) and aerobic cycles (6 h). Microorganism grown under anaerobic phase of the reactor was exposed to different amounts of competitive electron acceptor (nitrate) and performance of the system was determined by monitoring color removal efficiency, nitrate removal, nitrite formation and removal, oxidation reduction potential, color removal rate, chemical oxygen demand (COD), specific anaerobic enzyme (azo reductase) and aerobic enzyme (catechol 1,2 dioxygenase), and formation and removal of aromatic amines. Variations of population dynamics of microorganisms exposed to various amount of nitrate were identified by denaturing gradient gel electrophoresis (DGGE). It was found that nitrate has adverse effect on anaerobic color removal efficiency and color removal was achieved after denitrification process was completed. It was found that nitrate stimulates the COD removal efficiency and accelerates the COD removal in the first hour of anaerobic phase. About 90 % total COD removal efficiencies were achieved in which microorganism exposed to increasing amount of nitrate. Population dynamics of microorganisms exposed to various amount of nitrate were changed and diversity was increased.  相似文献   

4.
A systematic lab-scale experimental investigation is reported for the external nitrification (EN) biological nutrient removal (BNR) activated sludge (ENBNRAS) system, which is a combined fixed and suspended medium system. The ENBNRAS system was proposed to intensify the treatment capacity of BNR-activated sludge (BNRAS) systems by addressing two difficulties often encountered in practice: (a) the long sludge age for nitrification requirement; and (b) sludge bulking. In the ENBNRAS system, nitrification is transferred from the aerobic reactor in the suspended medium activated sludge system to a fixed medium nitrification system. Thus, the sludge age of the suspended medium activated sludge system can be reduced from 20 to 25 days to 8 to 10 days, resulting in a decrease in reactor volume per ML wastewater treated of about 30%. Furthermore, the aerobic mass fraction can also be reduced from 50% to 60% to <30% and concommitantly the anoxic mass fraction can be increased from 25% to 35% to >55% (if the anaerobic mass fraction is 15%), and thus complete denitrification in the anoxic reactors becomes possible. Research indicates that both the short sludge age and complete denitrification could ameliorate anoxic aerobic (AA) or low food/microorganism (F/M) ratio filamentous bulking, and hence reduce the surface area of secondary settling tanks or increase the treatment capacity of existing systems. The lab-scale experimental investigations indicate that the ENBNRAS system can obtain: (i) very good chemical oxygen demand (COD) removal, even with an aerobic mass fraction as low as 20%; (ii) high nitrogen removal, even for a wastewater with a high total kjeldahl nitrogen (TKN)/COD ratio, up to 0.14; (iii) adequate settling sludge (diluted sludge volume index [DSVI] <100 mL/g); and (iv) a significant reduction in oxygen demand.  相似文献   

5.
Combination of anaerobic–aerobic sequencing processes result in both anaerobic color removal and aerobic aromatic amine removal during the treatment of dye-containing wastewaters. The aim of the present study was to gain more insight into the competitive biochemical reactions between sulfate and azo dye in the presence of glucose as electron donor source. For this aim, anaerobic–aerobic sequencing batch reactor fed with a simulated textile effluent including Remazol Brilliant Violet 5R (RBV 5R) azo dye was operated with a total cycle time of 12 h including anaerobic (6 h) and aerobic cycles (6 h). Microorganism grown under anaerobic phase of the reactor was exposed to different amounts of competitive electron acceptor (sulfate). Performance of the anaerobic phase was determined by monitoring color removal efficiency, oxidation reduction potential, color removal rate, chemical oxygen demand (COD), color, specific anaerobic enzyme (azo reductase) and aerobic enzyme (catechol 1,2-dioxygenase), and formation of aromatic amines. The presence of sulfate was not found to significantly affect dye decolorization. Sulfate and azo dye reductions took place simultaneously in all operational conditions and increase in the sulfate concentration generally stimulated the reduction of RBV 5R. However, sulfate accumulation under anaerobic conditions was observed proportional to increasing sulfate concentration.  相似文献   

6.
A laboratory study has been conducted to obtained preliminary process information of a suspended growth Predenitrification (SGPDN)system. System performance was evaluated, in terms of chemical oxygen demand (COD) removal, NH(3)-N removal, system biomass yield and inventory, and effluent qualities, at different solids retention times (SRTs) and recycle ratios. Chemical oxygen demand removal in an SGPDN system occurs mainly in the anoxic reactor, which accounts for 94% of total COD removal. The overall COD removal rate is independent of recycle ratio (ranging from 2-5) used in this study; however, effluent COD increase with increasing recycle ratio. The observed anoxic and aerobic COD removal rates decrease with increasing SRT. The NH(3)-N removal in an SGPDN system is induced by two mechanisms: assimilatory NH(3)-N requirement for biomass production in the anoxic reactor and nitrification in the aerobic reactor. The observed anoxic NH(3)-N removal rate relates directly to the anoxic COD removal rate and agrees fairly well with the assimilatory NH(3)-N requirement theoretically predicted. The overall NH(3)-N removal rate is independent of SRTs and recycle ratios used in this study. Biomass yield in an SGPDN system occurs mainly in the anoxic reactor. However, uniform distribution of biomass throughout the entire system is obtained because of the high recycle rate used. The observed biomass yield (Y(O)) decreases with increasing STR. Tertiary treatment efficiency can be achieved in an SGPDN system. More than 90% reduction in feed COD., feed NH(3)-N, and NO(2) + NO(3)-N is obtained at all SRTs and recycle ratios used in this study. Higher MLVSS loading rates can be applied to a final clarifier without impairing its separation efficiency because of the excellent settleability of the Predenitrification activated sludge.  相似文献   

7.
This paper presents the integrated removal of carbon (measured as chemical oxygen demand i.e. COD) and NO(x)-N by sequentially adapted sludge, studied in an airlift reactor (ALR). Simultaneous removal of COD and nitrate occurs by denitrification (anoxic) and oxidation (aerobic). Aerobic (riser) and anoxic (remaining part) conditions prevail in different parts of the reactor. Studies were carried out in a 42 L ALR operated at low aeration rate to maintain anoxic and aerobic conditions as required for denitrification and COD removal, respectively. The sludge was adapted sequentially to increasing levels of NO(x)-N and COD over a period of 45 days. Nitrate removal efficiency of the sludge increased due to adaptation and degraded 900 ppm NO(3)-N completely in 2h (initially the sludge could not degrade 100 ppm NO(3)-N). The performance of the adapted sludge was tested for the degradation of synthetic waste with COD/N loadings in the range of 4-10. The reduction of COD was significantly faster in the presence of NO(x)-N and was attributed to the availability of oxygen from NO(x)-N and distinct conditions in the reactor. This hypothesis was justified by the material balance of COD.  相似文献   

8.
Electrochemical oxidation for the treatment of textile industry wastewater   总被引:2,自引:0,他引:2  
This study elucidates the reduction of organics from textile effluents through electrochemical oxidation technique. Effect of pH and current intensity were investigated in this system. It was found that degradation was maximum at the current intensity of 0.6 A and at a pH of 1.3. Under the same experimental conditions the removal of chemical oxygen demand (COD), total solids, total dissolved solids and total organic carbon were found to be approximately 68%, 49.2%, 50.7% and 96.8%, respectively. Effect of current intensity on color removal was also investigated as a function of electrolysis time (30-210 minutes) and it showed that maximum removal efficiency (96%) was reached within 60 minutes at 0.6 A. While studying the effect of pH on COD removal, it was observed that a decrease in pH to an optimum of 1.3 showed maximum COD reduction of 68%. These results suggest an important role of these parameters in electrochemical process for removing organic pollutants.  相似文献   

9.
Liu T  He Z  Hu H  Ni Y 《Bioresource technology》2011,102(7):4712-4717
A novel two-stage biological/flocculation process was developed for treating the pulping effluent from the alkaline peroxide mechanical pulping (APMP) process. In the first biological stage, the aerobic fermentation by using Aspergillus niger can decrease the chemical oxygen demand (COD) by about 60% while producing about 7 g/l of solid biomass. In the second stage (post-coagulation/flocculation), the residual COD, turbidity and color, can be further decreased by using alum and polyacrylamide (PAM). The overall removal efficiencies of COD, color and turbidity from the APMP pulping effluent by the above two-stage biological-coagulation/flocculation process were 93%, 92% and 99%, respectively, under the conditions studied.  相似文献   

10.
The biodegradability of Pinus radiata bleached kraft mill wastewater by an activated sludge treatment during a period of 280 days was evaluated. The effect of varying hydraulic retention time (HRT) in the range of 48 to 4.5 h and nitrogen (N) and phosphorus (P) addition on removal of biological oxygen demand (BOD5), chemical oxygen demand (COD), suspended solids (TSS and VSS), total phenolic compounds, tannin and lignin and reduction of toxicity was investigated. Removal of BOD5 was higher than 90% when HRT varied from 16 to 6 h, but decreased when HRT was less than 6 h. Similar performance was observed for COD removal, which was about 60% when HRT was varied from 16 to 6 h. Removal of total phenolic compounds and tannin and lignin was seriously affected by HRT. N and P addition to maintaining a ratio of 100:5:0.3 provided optimal BOD5, COD and suspended solids removal when HRT varied from 16 to 7 h, and no toxicity (using Daphnia) was detected in the treated effluent. When HRT was less than 6 h, the system showed destabilisation and pH, COD, BOD5 and suspended solids removal decreased.  相似文献   

11.
This investigation proved that respirometry combined with sequencing batch reactor (SBR) could be an effective way for the removal of COD in tannery wastewater. Measurement of oxygen uptake rates (OUR) and corresponding COD uptake rates showed that a 12-h operating cycle was optimum for tannery wastewater. The removal of COD by degradation was stoichiometric with oxygen usage. A plot of OUR values provided a good indication of the biological activity in the reactor. A high OUR value corresponded to the feed period; at the end of the cycle, when the substrate was depleted, the OUR value was low. At a 12-h SBR cycle with a loading rate of 1.9-2.1 kgm(-3) d(-1), removal of 80-82% COD, 78-80% TKN and 83-99% NH(3)-N were achieved. These removal efficiencies were much higher than the conventional aerobic systems. A simple method of COD fractionation was performed from the OUR and COD uptake rate data of the SBR cycle. About 66-70% of the influent COD was found to be readily biodegradable, 10-14% was slowly degradable and 17-21% was non-biodegradable. The oxygen mass transfer coefficient, K(L)a (19 +/- 1.7 h(-1)) was derived from respirometry. It was observed that with the exception of high organic load at the initial feed the oxygen transfer capacity was in excess of the OUR, and aerobic condition was generally maintained. Simultaneous nitrification-denitrification was observed in the SBR during the feed period as proved by mass balance.  相似文献   

12.
AIMS: To test the potential use of Phanerochaete chrysosporium and other white-rot fungi to detoxify olive mill wastewaters (OMW) in the presence of a complex activated sludge. To combine the aerobic with anaerobic treatment to optimize the conversion of OMW in biogas. METHODS AND RESULTS: A 25-l air lift reactor was used to pretreat OMW by white-rot fungi. Detoxification of the OMW was monitored by size exclusion HPLC analysis, chemical oxygen demand (COD)/biological oxygen demand (BOD(5)) ratio evolution, and bioluminescence toxicity test. Anaerobic treatment of OMW was performed in a 12-l anaerobic filter reactor. Efficiency of the treatment was evaluated by organic matter removal, and biogas production. By comparison with the pretreatment by activated sludge only, the bioaugmentation with Phanerochaete chrysosporium or Trametes versicolor led to high removal of organic matter, decreased the COD/BOD(5) ratio and the toxicity. The subsequent anaerobic digestion of the OMW pretreated with activated sludge-white-rot fungi showed higher biomethanization yields than that pretreated with activated sludge only. Higher loading rates (7 g COD l(-1) day(-1)) were reached without any acidification or inhibition of biomethanization. CONCLUSIONS: The use of white-rot fungi, even in the presence of complex biological consortia to detoxify OMW, proved to be possible and made the anaerobic digestion of OMW for methane production feasible. SIGNIFICANCE AND IMPACT OF THE STUDY: The use of fungi for OMW reuse and energy production could be adapted to industrial applications.  相似文献   

13.
The aim of this study was to treat the wastewater collected from equalization tank of Common Effluent Treatment Plant (CETP), which was a mixture of waste coming from 525 small-scale industries manufacturing textile and dyestuff intermediate, pigments and pharmaceuticals. Initially a pretreatment using ferric chloride and lime was carried out to increase the biodegradability (BOD(5)/COD) of the effluent, which showed color removal of 74% and COD reduction of 75% at a concentration of 10 and 4 g/L. respectively. The biological treatment system using anaerobic fixed film reactor was investigated as secondary treatment. A mixture of bacterial consortium DMAB and cowdung slurry was used for the formation of biofilm. The effect of hydraulic retention time (HRT) and organic loading rate (OLR) on the efficiency of treatment of anaerobic reactor was analysed. Subsequent aerobic treatment after anaerobic step using aerobic culture Pseudomonas aeroginosa helped in further removal of COD and color. Formation of aromatic amines during anaerobic treatment was mineralized by sequential aerobic treatment.  相似文献   

14.
Influence of phenol on cultures of acetate-fed aerobic granular sludge   总被引:6,自引:0,他引:6  
AIMS: This paper attempts to investigate the inhibition of phenol on the acetate utilization in acetate-fed aerobic granular sludge culture. METHODS AND RESULTS: Acetate-fed aerobic granules with a mean diameter of 1.0 mm were predeveloped in a column sequencing aerobic sludge blanket reactor. The present study looked into the utilization kinetics of acetate by acetate-fed aerobic granules in the presence of different phenol concentrations ranging from 0 mg l(-1) to 50 mg l(-1). For this purpose, batch experiments were conducted at 25 degrees C, while the initial biomass and acetate concentrations were in a range of 109-186 mg mixed liquor suspended solids (MLSS) l(-1) and 185-300 mg acetate-chemical oxygen demand (COD) l(-1). Results showed that the utilization of acetate in the presence of phenol was subject to a zero-order reaction kinetics. The relative phenol concentration in terms of the ratio of initial phenol concentration (C(p)) to initial biomass concentration (X(0)) was used to describe the real inhibitory strength of phenol imposed on acetate-fed aerobic granules. When the C(p)/X(0) ratio increased from 0 to 0.19 mg phenol mg(-1) MLSS, the zero-order reaction rate constant of acetate dropped from 1.15 mg l(-1) min(-1) to 0.38 mg l(-1) min(-1), and a similar trend was also observed in specific oxygen utilization rate. As compared to the control test without addition of phenol, the acetate-COD removal efficiency was reduced by nearly 50% at a C(p)/X(0) value of 0.19 mg phenol mg(-1) MLSS. It was found that biodegradation of phenol was negligible in acetate-fed aerobic granular sludge batch culture. CONCLUSIONS: It appears that phenol can seriously repress the utilization of acetate in the acetate-fed aerobic granular sludge batch cultures. A simple zero-order reaction model could adequately describe the utilization of acetate by acetate-fed aerobic granules in the presence of phenol. SIGNIFICANCE AND IMPACT OF THE STUDY: It is expected that this study would lead to a better understanding of the behaviour of acetate-fed aerobic granules in the presence of inhibitory organic compounds.  相似文献   

15.
The effect of cyclic anaerobic–aerobic conditions on the biodegradative capability of the mixed microbial culture for the azo dye Remazol Brilliant Violet 5R (RBV-5R) was investigated in the sequencing batch reactor (SBR) fed with a synthetic textile wastewater. The SBR had a 12-h cycle time with anaerobic–aerobic periods of 3/9, 6/6 and 9/3 h. General SBR performance was assessed by measurement of catabolic enzymes (catechol 2,3-dioxygenase, azo reductase), chemical oxygen demand (COD), color and amount of aromatic amines. In this study, under steady-state conditions, the anaerobic period of the cyclic SBR was found to allow the reductive decolorization of azo dye. Longer anaerobic periods resulted in higher color removal efficiencies, approximately 71% for the 3-h, 87% for 6-h and 92% for the 9-h duration. Total COD removal efficiencies were over 84% under each of the cyclic conditions and increased as the length of the anaerobic period was increased; however, the highest color removal rate was attained for the cycle with the shortest anaerobic period of 3 h. During the decolorization of RBV-5R, two sulfonated aromatic amines (benzene based and naphthalene based) were formed. Additionally, anaerobic azo reductase enzyme was found to be positively affected with the increasing duration of the anaerobic period; however; it was vice versa for the aerobic catechol 2,3-dioxygenase (C23DO) enzyme.  相似文献   

16.
An up-flow anaerobic sludge blanket reactor–microbial fuel cell–biological aerated filter (UASB–MFC–BAF) system was developed for simultaneous bioelectricity generation and molasses wastewater treatment in this study. The maximum power density of 1410.2 mW/m2 was obtained with a current density of 4947.9 mA/m2 when the high strength molasses wastewater with chemical oxygen demand (COD) of 127,500 mg/l was employed as the influent. The total COD, sulfate and color removal efficiencies of the proposed system were achieved of 53.2%, 52.7% and 41.1%, respectively. Each unit of this system had respective function and performed well when integrated together. The UASB reactor unit was mainly responsible for COD removal and sulfate reduction, while the MFC unit was used for the oxidation of generated sulfide with electricity generation. The BAF unit dominated color removal and phenol derivatives degradation. This study is a beneficial attempt to combine MFC technology with conventional anaerobic–aerobic processes for actual wastewater treatment.  相似文献   

17.
Simultaneous COD, nitrogen, and phosphate removal by aerobic granular sludge   总被引:31,自引:0,他引:31  
Aerobic granular sludge technology offers a possibility to design compact wastewater treatment plants based on simultaneous chemical oxygen demand (COD), nitrogen and phosphate removal in one sequencing batch reactor. In earlier studies, it was shown that aerobic granules, cultivated with an aerobic pulse-feeding pattern, were not stable at low dissolved oxygen concentrations. Selection for slow-growing organisms such as phosphate-accumulating organisms (PAO) was shown to be a measure for improved granule stability, particularly at low oxygen concentrations. Moreover, this allows long feeding periods needed for economically feasible full-scale applications. Simultaneous nutrient removal was possible, because of heterotrophic growth inside the granules (denitrifying PAO). At low oxygen saturation (20%) high removal efficiencies were obtained; 100% COD removal, 94% phosphate (P-) removal and 94% total nitrogen (N-) removal (with 100% ammonium removal). Experimental results strongly suggest that P-removal occurs partly by (biologically induced) precipitation. Monitoring the laboratory scale reactors for a long period showed that N-removal efficiency highly depends on the diameter of the granules.  相似文献   

18.
Kraft mill is responsible for massive discharge of highly polluted effluents. The main characteristics of this effluent are high toxicity and low biodegradability due to tannin, lignin and chlorophenol compounds. The composition may vary dramatically depending, for instance, on the utilised feedstock and process. The purpose of this work was to investigate the molecular weight distribution of Pinus radiata kraft pulping wastewater treated by anaerobic digestion by using two types of anaerobic reactors: fixed bed and sludge blanket. Anaerobic sludge blanket (UASB) and anaerobic filter (AF) were operated. In both reactors, the total alkalinity ranged between 1.0 and 1.5 g CaCO3/l, while the organic load rate (OLR) was increasing during operation from 1.2 to 3.3 gCOD/l d. COD and total phenolic compounds (UV215) removal ranged between 30-50% and 13-20%, respectively, while the BOD5 removal ranged 60-90%. However only a partial biodegradation (10-43%) of tannin and lignin was observed. Results from ultrafiltration analyses indicated that the fraction with a molecular weight (MW) < 1000, COD and colour decreased after anaerobic treatment, but the total phenolic compounds increased. In the 1000 < MW < 10,000 fraction, there was no change in COD, UV215 and colour. In the > 10,000 MW fraction, colour and COD fraction increased by 14% and 5%, respectively, after anaerobic treatment. It can be concluded from this study, that treatment with UASB or AF reactors is not enough, under the conditions tested, for a large COD removal from Pinus radiata wastewater.  相似文献   

19.
AIMS: This study attempted to demonstrate nitrite interference on chemical oxygen demand (COD) determination in piggery wastewater, and the capability of aerobic denitrification of the SU2 strain which is capable of promoting the efficiency of nitrogen and COD removal from piggery wastewater. METHODS AND RESULTS: This study was performed in a 17-litre reactor with a 30% packing ratio, with a ratio of immobilized SU2 cells to sludge of 100:1. The ratio of aeration to nonaeration was 4 : 1.5. Removal efficiency of COD was 86.8%. Removal efficiency of BOD and SS was higher than 90%, and removal efficiency of NH4+-N and TKN was almost 100%. CONCLUSIONS: NO2- -N interference is significant when its concentration in piggery wastewater exceeds 100 mg l-1. COD in piggery wastewater can be indirectly reduced following nitrite reduction by SU2 strain. SIGNIFICANCE AND IMPACT OF THE STUDY: Utilizing immobilized SU2 cells in coordination with an SBR system simultaneously reduces nitrite and COD concentrations.  相似文献   

20.
Anaerobic biological wastewater treatment has numerous advantages over conventional aerobic processes; anaerobic biotechnologies, however, still have a reputation for low-quality effluents and operational instabilities. In this study, anaerobic bioreactors were augmented with an oxygen-transferring membrane to improve treatment performance. Two anaerobic bioreactors were fed a synthetic high-strength wastewater (chemical oxygen demand, or COD, of 11,000 mg l(-1)) and concurrently operated until biomass concentrations and effluent quality stabilized. Membrane aeration was then initiated in one of these bioreactors, leading to substantially improved COD removal efficiency (> 95%) compared to the unaerated control bioreactor (approximately 65%). The membrane-augmented anaerobic bioreactor required substantially less base addition to maintain circumneutral pH and exhibited 75% lower volatile fatty acid concentrations compared to the unaerated control bioreactor. The membrane-aerated bioreactor, however, failed to improve nitrogenous removal efficiency and produced 80% less biogas than the control bioreactor. A third membrane-augmented anaerobic bioreactor was operated to investigate the impact of start-up procedure on nitrogenous pollutant removal. In this bioreactor, excellent COD (>90%) and nitrogenous (>95%) pollutant removal efficiencies were observed at an intermediate COD concentration (5,500 mg l(-1)). Once the organic content of the influent wastewater was increased to full strength (COD = 11,000 mg l(-1)), however, nitrogenous pollutant removal stopped. This research demonstrates that partial aeration of anaerobic bioreactors using oxygen-transferring membranes is a novel approach to improve treatment performance. Additional research, however, is needed to optimize membrane surface area versus the organic loading rate to achieve the desired effluent quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号