首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The effects of long-term NaCl and KCl treatment on plant growth and antioxidative responses were investigated in Chenopodium album, a salt-resistant species widely distributed in semi-arid and light-saline areas of Xinjiang, China. Growth parameters [plant height, branch number, leaf morphology and chlorophyll (Chl) content], the level of oxidative stress [superoxide anion radical (O2 ), hydrogen peroxide (H2O2) and malondialdehyde (MDA) concentrations], activity of antioxidant enzymes [superoxide dismutase (SOD), catalase (CAT), peroxidase (POX)], the contents of non-enzymatic antioxidants [carotenoids (Car) and ascorbic acid (AsA)] and expression of selected genes were investigated. Plants were grown in the presence of 0, 50, and 300 mM NaCl or KCl for 2 months. Growth was stimulated by 50 mM NaCl or KCl, maintained stable at 300 mM NaCl, but was inhibited by 300 mM KCl. Three hundred mM NaCl did not affect O2 , H2O2, MDA, Car and AsA, but increased the activities of SOD, CAT and POX compared to the controls. RT-PCR analysis suggested that expression of some genes encoding antioxidant enzymes could be induced during long-term salt stress, which was consistent with the enzyme activities. Treatment with 300 mM KCl was associated with elevated oxidative stress, and significantly decreased Car and AsA contents. These results suggest that an efficient antioxidant machinery is important for overcoming oxidative stress induced by treatment with high NaCl concentrations in C. album. Other strategies of ion regulation may also contribute to the differential tolerance to Na and K at higher concentrations.  相似文献   

2.
The effects of Ca(NO3)2 stress on biomass production, oxidative damage, antioxidant enzymes activities and polyamine contents in roots of grafted and non-grafted tomato plants were investigated. Results showed that when exposed to 80 mM Ca(NO3)2 stress, the biomass production reduction in non-grafted plants was more significant than that of grafted plants. Under Ca(NO3)2 stress, superoxide anion radical (O2) producing rate, hydrogen peroxide (H2O2) and malondialdehyde (MDA) contents of non-grafted plants roots were significantly higher than those of grafted plants, however, nitrate (NO3 ), ammonium (NH4 +) and proline contents, superoxide dismutase (SOD, EC1.15.1.1), peroxidase (POD, EC1.11.1.7), catalase (CAT, EC1.11.1.6) and arginine decarboxylase (ADC, EC 4.1.1.19) activities of grafted plants roots were significantly higher than those of non-grafted plants. Regardless of stress, free, conjugated and bound polyamine contents in roots of grafted plants were significantly higher than those of non-grafted plants. The possible roles of antioxidant enzymes, prolines and polyamines in adaptive mechanism of tomato roots to Ca(NO3)2 stress were discussed. Gu-Wen Zhang and Zheng-Lu Liu contributed equally to this work.  相似文献   

3.
Hydrogen peroxide (H2O2), an active oxygen species, is widely generated in many biological systems and mediates various physiological and biochemical processes in plants. In this study, we demonstrated that exogenous H2O2 was able to improve the tolerance of wheat seedlings to salt stress. Treatments with exogenous H2O2 for 2 days significantly enhanced salt stress tolerance in wheat seedlings by decreasing the concentration of malondialdehyde (MDA), the production rate of superoxide radical (O2 ), and increasing the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX), and the concentration of glutathione (GSH) and carotenoids (CAR). To further clarify the role of H2O2 in preventing salt stress damage, CAT and ascorbate (AsA), the specific H2O2 scavengers, were used. The promoting effect of exogenous H2O2 on salt stress could be reversed by the addition of CAT and AsA. It was suggested that exogenous H2O2 induced changes in MDA, O2 , antioxidant enzymes and antioxidant compounds were responsible for the increase in salt stress tolerance observed in the experiments. Therefore, H2O2 may participate in antioxidant enzymes and antioxidant compounds induced tolerance of wheat seedlings to salt stress. The results also showed that exogenous H2O2 had a positive physiological effect on the growth and development of salt-stressed seedlings.  相似文献   

4.
The oxidative stress and antioxidant systems in soybean leaves and roots infected with plant pathogen Aspergillus niger were studied following treatment with different concentrations of cholic acid. Several oxidative stress parameters were analyzed: production of superoxide (O2 ·−) and hydroxyl radicals (·OH), lipid peroxidation (LP), and superoxide dismutase (SOD; EC 1.15.1.1) activity, as well as the content of reduced glutathione (GSH). Results showed that inoculation with A. niger led to the increase of O2 ·− production and GSH quantities in leaves and ·OH in roots. The highest activity of SOD occured in infected plants treated with cholic acid in concentrations of 40 and 60 mg L−1 which ultimately led to a decrease in O2 ·− production. Inoculation with Aspergillus in combination with elevated cholic acid concentrations also increased ·OH production which is correlated with increased LP. These results may support the idea of using cholic acid as an elicitor to trigger hypersensitive response in plant cells. Use of cholic acid may also actively contribute to soybean plants defense response against pathogen attack.  相似文献   

5.
The paper reports the effects of selenium (Se) supply on growth and antioxidant traits of wheat (Triticum aestivum L. cv Han NO.7086) seedlings exposed to enhanced ultraviolet-B (UV-B) stress. Antioxidant responses of seedlings were different depending on the Se concentration. Compared with the control, the lower amount used (0.5 mg Se kg−1 soil) had no significant effect on biomass accumulation. The treatments with 1.0, 2.0, and 3.0 mg Se kg−1 promoted biomass accumulation of wheat seedlings, and the increased amount in biomass was the most at 1.0 mg Se kg−1 treatment. Se treatments with 1.0, 2.0, and 3.0 mg kg−1 also significantly increased activities of peroxidase (POD) and superoxide dismutase (SOD) and reduced the rate of superoxide radical (O2) production and malondialdehyde (MDA) content of wheat seedlings. In addition, anthocyanins and phenolic compounds content in wheat seedlings evidently increased by the treatments with 1.0 and 2.0 mg Se kg−1. The lower Se treatment had no significant effect on MDA content, although it increased activities of antioxidant enzymes (POD, SOD, and catalase activities) and reduced the rate of O2 production in wheat seedlings. These results suggest that optimal Se supply is favorable for the growth of wheat seedlings and that optimal Se supply can reduce oxidative stress of seedlings under enhanced UV-B radiation.  相似文献   

6.
In order to investigate the effects of spermidine (Spd) and spermine (Spm) on cadmium stress, the content of chlorophyll, hydrogen peroxide (H2O2), malondialdehyde (MDA), soluble protein and proline, the rate of O2·− generation, and activities of antioxidant enzymes (superoxide dismutase (SOD), peroxidase (POD), ascorbate peroxidase (APX), and glutathione reductase (GR)) in Potamogeton malaianus Miq. were measured. Exogenous application of Spd or Spm significantly enhanced the level of proline, retarded the loss of chlorophyll, enhanced photosynthesis, decreased the rate of O2·− generation and H2O2 content, and prevented Cd-induced lipid peroxidation. Spd and Spm also effectively maintained the balance of antioxidant enzyme activities under Cd stress; however, GR activity was found to increase only slightly in response to polyamines (PAs). The antioxidant systems, which were modified by PAs, were able to moderate the radical-scavenging system and to lessen in this way the oxidative stress. These results suggest that both Spd and Spm can enhance Cd tolerance of P. malaianus.  相似文献   

7.
Senescence is a developmentally regulated and highly ordered sequence of events. Senescence leads to abscission of plant organs and eventually leads to death of a plant or part of it. Present study revealed that Phalaenopsis flower undergo senescence due to over activation of O2 ·−generating xanthine oxidase (XO), which consequently increases the concentrations of O2 ·− leading to enhanced oxidative damage and disturbed cellular redox environment as indicated by increased lipid peroxidation and DHA/AsA + DHA ratio, respectively. While activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), and non-specific peroxidase (POD) were enhanced in sepals and petals of old flower, activities of catalase (CAT) and glutathione reductase (GR) were decreased. Exogenous application of nitric oxide (NO) retarded H2O2-induced senescence of Phalaenopsis flower by downregulating activity of XO and concentrations of O2 ·−, H2O2 and malondialdehyde (MDA, an index of lipid peroxidation). Exogenous application of NO also downregulated SOD activity and upregulated antioxidant enzymes involved in the detoxification of H2O2 (CAT and APX), and in the regulation of redox couples viz, monodehydroascorbate reductase (MDHAR) and GR, together with the modulation in non-protein thiol status and DHA/AsA + DHA ratio.  相似文献   

8.
In this study, we examined the modulation of Cu toxicity-induced oxidative stress by excess supply of iron in Zea mays L. plants. Plants receiving excess of Cu (100 μM) showed decreased water potential and simultaneously showed wilting in the leaves. Later, the young leaves exhibited chlorosis and necrotic scorching of lamina. Excess of Cu suppressed growth, decreased concentration of chloroplastic pigments and fresh and dry weight of plants. The activities of peroxidase (EC 1.11.1.7; POD), ascorbate peroxidase (EC 1.11.1.11; APX) and superoxide dismutase (EC 1.15.1.1; SOD) were increased in plants supplied excess of Cu. However, activity of catalase (EC 1.11.1.6; CAT), was depressed in these plants. In gel activities of isoforms of POD, APX and SOD also revealed upregulation of these enzymes. Excess (500 μM)-Fe-supplemented Cu-stressed plants, however, looked better in their phenotypic appearance, had increased concentration of chloroplastic pigments, dry weight, and improved leaf tissue water status in comparison to the plants supplied excess of Cu. Moreover, activities of antioxidant enzymes including CAT were further enhanced and thiobarbituric acid reactive substance (TBARS) and H2O2 concentrations decreased in excess-Fe-supplemented Cu-stressed plants. In situ accumulation of H2O2, contrary to that of O2 ·− radical, increased in both leaf and roots of excess-Cu-stressed plants, but Cu-excess plants supplied with excess-Fe showed reduced accumulation H2O2 and little higher of O2 ·− in comparison to excess-Cu plants. It is, therefore, concluded that excess-Cu (100 μM) induces oxidative stress by increasing production of H2O2 despite of increased antioxidant protection and that the excess-Cu-induced oxidative damage is minimized by excess supply of Fe.  相似文献   

9.
The objective of the present study was to determine the influence of potassium deprivation on the halophyte species Hordeum maritimum grown in hydroponics for 2 weeks. Treatments were with potassium (+K) or without potassium (−K). Growth, water status, mineral nutrition, parameters of oxidative stress [malondialdehyde (MDA), carbonyl groups (C=O), and hydrogen peroxide concentration (H2O2) contents], antioxidant enzyme activities [superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), guaiacol peroxidase (GPX, EC 1.11.1.7), ascorbate peroxidase (APX, EC 1.11.1.11), monodehydroascorbate peroxidase (MDHAR, EC 1.6.5.4), dehydroascorbate peroxidase (DHAR, EC 1.8.5.1), and glutathione reductase (GR, EC 1.6.4.2)], and antioxidant molecules [ascorbate (ASC), and glutathione (GSH)] were determined. Results showed that the growth of vegetative organs decreased owing to potassium deficiency with roots (−36%) more affected than shoots (−12%). Water status was only diminished in roots (reduction of 24%). Potassium deprivation decreased potassium concentration in both organs, this decrease was more pronounced in roots (−81%) than in shoots (−55%). In contrast to carbonyl groups, MDA content increased owing to potassium deprivation. Except for CAT activity that remained unaffected; SOD, GPX, APX, GR, MDHAR, and DHAR activities were significantly increased. H2O2 concentration was negatively correlated with the activities of enzymes and the accumulation of non-enzymatic antioxidants implicated in its detoxification. In conclusion, a cooperative process between the antioxidant systems is important for the tolerance of H. maritimum to potassium deficiency.  相似文献   

10.
To elucidate the physiological mechanism of chilling stress mitigated by cinnamic acid (CA) pretreatment, a cucumber variety (Cucumis sativus cv. Jinchun no. 4) was pretreated with 50 μM CA for 2 d and was then cultivated at two temperatures (15/8 and 25/18 °C) for 1 d. We investigated whether exogenous CA could protect cucumber plantlets from chilling stress (15/8 °C) and examined whether the protective effect was associated with the regulation of antioxidant enzymes and lipid peroxidation. At 2 d, exogenous CA did not influence plant growth, but induced the activities of some antioxidant enzymes, including superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), guaiacol peroxidase (GPX, EC 1.11.1.7), glutathione peroxidase (GSH-Px, EC 1.6.4.2) and ascorbate peroxidase (APX, EC 1.11.1.11) in cucumber leaves, and it also elevated the contents of reduced glutathione (GSH) and ascorbate (AsA). When CA was rinsed and the CA-pretreated seedlings were exposed to different temperatures, the antioxidant activities in leaves at 3 d had undergone additional change. Chilling increased the activities of CAT, GSH-PX, APX, GSH and AsA in leaves, but the combination of CA pretreatment and chilling enhanced the antioxidant activities even more. Moreover, chilling inhibited plant growth and increased the contents of malonaldehyde (MDA), superoxide radical (O2) and hydrogen peroxide (H2O2) in cucumber leaves, and the stress resulted in 87.5% of the second leaves being withered. When CA pretreatment was combined with the chilling stress, we observed alleviated growth inhibition and decreased contents of MDA, H2O2 and O2 in comparison to non-pretreated stressed plants, and found that the withered leaves occurred at a rate of 25.0%. We propose that CA pretreatment increases antioxidant enzyme activities in chilling-stressed leaves and decreases lipid peroxidation to some extent, enhancing the tolerance of cucumber leaves to chilling stress.  相似文献   

11.
The green unicellular alga, Haematococcus pluvialis has two antioxidative mechanisms against environmental oxidative stress: antioxidative enzymes in vegetative cells and the antioxidative ketocarotenoid, astaxanthin, in cyst cells. We added a reagent that generates superoxide anion radicals (O2 ), methyl viologen, to mature and immature cysts of H. pluvialis. Tolerance to methyl viologen was higher in mature than in immature cysts. Mature (astaxanthin-rich) cysts showed high antioxidant activity against O2 in permeabilized cells, but not in astaxanthin-free cell extracts, while immature (astaxanthin-poor) cysts had very low antioxidant activities against O2 in both. The results suggested that astaxanthin accumulated in the cyst cells functions as an antioxidant against excessive oxidative stress. The same levels of antioxidant activities against O2 in both permeabilized cells and cell extracts from vegetative cells suggested the presence of antioxidative enzymes (superoxide dismutase). Received: 13 January 1997 / Received revision: 26 February 1997 / Accepted: 27 March 1997  相似文献   

12.
The effects of cannabinoids in mitochondria after acute oxidative stress insult are not fully established. We investigated the ability of CP55,940 and JWH-015 to scavenge reactive oxygen species and their effect on mitochondria permeability transition (MPT) in either a mitochondria-free superoxide anion generation system, intact rat brain mitochondria or in sub-mitochondrial particles (SMP) treated with paraquat (PQ). Oxygen consumption, mitochondrial membrane potential (Δψm) and MPT were determined as parameters of mitochondrial function. It is found that both cannabinoids effectively attenuate mitochondrial damage against PQ-induced oxidative stress by scavenging anion superoxide radical (O2 ∙−) and hydrogen peroxide (H2O2), maintaining Δψm and by avoiding Ca2+-induced mitochondrial swelling. Understanding the mechanistic action of cannabinoids on mitochondria might provide new insights into more effective therapeutic approaches for oxidative stress related disorders.  相似文献   

13.
Nitric oxide (NO) has emerged as a key molecule involved in many physiological events in plants. To characterize roles of NO in tolerance of tomato (Lycopersicom esculentum Mill.) to salt stress, the protective effects of NO against salt-induced oxidative stress in the leaves of tomato cultivar Hufan1480 (salt-tolerant) and Hufan2496 (salt-sensitive) were evaluated. Under salt stress, Hufan1480 showed higher biomass accumulation, and less oxidative damage when compared with the Hufan2496. Application of exogenous sodium nitroprusside, a NO donor, dramatically alleviated growth suppression induced by salt stress in two tomato ecotypes, reflected by decreased malondialdehyde and O2·− production. Furthermore, the antioxidant enzymes superoxide dismutase, guaiacol peroxidase, catalase and ascorbate peroxidase, the antioxidant metabolites ascorbate and reduced glutathione, and the osmosis molecules proline and soluble sugar were increased in both ecotypes in the presence of NO under salt stress. Therefore, the protective effect of NO against salt-induced oxidative damages in tomato seedlings is most likely mediated through stimulation of antioxidant system.  相似文献   

14.
Using open top chambers, the effects of elevated O3 (80 nmol mol−1) and elevated CO2 (700 μmol mol−1), alone and in combination, were studied on young trees of Quercus mongolica. The results showed that elevated O3 increased malondialdehyde content and decreased photosynthetic rate after 45 days of exposure, and prolonged exposure (105 days) induced significant increase in electrolyte leakage and reduction of chlorophyll content. All these changes were alleviated by elevated CO2, indicating that oxidative stress on cell membrane and photosynthesis was ameliorated. After 45 days of exposure, elevated O3 stimulated activities of superoxide dismutase (SOD, EC 1.15.1.1) and ascorbate peroxidase (APX, EC 1.11.1.11), but the stimulation was dampened under elevated CO2 exposure. Furthermore, ascorbate (AsA) and total phenolics contents were not higher in the combined gas treatment than those in elevated O3 treatment. It indicates that the protective effect of elevated CO2 against O3 stress was achieved hardly by enhancing ROS scavenging ability after 45 days of exposure. After 105 days of exposure, elevated O3 significantly decreased activities of SOD, catalase (CAT, EC 1.11.1.6) and APX and AsA content. Elevated CO2 suppressed the O3-induced decrease, which could ameliorate the oxidative stress in some extent. In addition, elevated CO2 increased total phenolics content in the leaves both under ambient O3 and elevated O3 exposure, which might contribute to the protection against O3-induced oxidative stress as well.  相似文献   

15.
Salicylic acid (SA) as a signal molecule mediates many biotic and environmental stress-induced physiologic responses in plants. In this study we investigated the role of SA in regulating growth and oxidative stress in Malus robusta Rehd under both normoxic and hypoxic conditions. Hypoxia stress inhibited plant growth and dramatically reduced biomass. Addition of SA significantly alleviated the plant growth inhibition. The amounts of superoxide radicals (O2 ) and hydrogen peroxide (H2O2) significantly increased in leaves of the plants exposed to hypoxia stress and resulted in oxidative stress, which was indicated by accumulated concentration of malondialdehyde (MDA) and electrolyte leakage. Addition of SA significantly decreased the level of O2 , electrolyte leakage, and lipid peroxidation and enhanced the activities of superoxide dismutase (SOD), peroxidase (POD), and ascorbate peroxidase (APX) under hypoxia stress. As important antioxidants, ascorbate (AsA) and glutathione (GSH) contents in the plant leaves were slightly increased by SA treatment compared to hypoxia stress treatment alone. It was concluded that SA could alleviate the detrimental effects of hypoxia stress on plant growth and of oxidative stress by enhancing the antioxidant defense system in leaves of M. robusta Rehd.  相似文献   

16.
This study was conducted to examine the extent of oxidative stress and the role of antioxidant enzymes on hypoxia tolerance in highly tolerant wild species Vigna luteola, and mung bean (Vigna radiata) cvs. T 44 (tolerant) and Pusa Baisakhi (susceptible). Two days of water-logging caused about 40–50% decline in superoxide radical (O2 ·−) and hydrogen peroxide (H2O2) contents in all the genotypes, however, further water-logging to 8 days caused significant increase in O2 ·− and H2O2 contents, and the values were 80–90% of the control values. In control and revived plants O2 ·− and H2O2 contents were higher in Pusa Baisakhi, while under water-logging stress T 44 and V. luteola showed greater increases in the O2 ·− and H2O2 contents. Hypoxia induced increase in superoxide dismutase, ascorbate peroxidase, and glutathione reductase activities were higher in T 44 and V. luteola compared with Pusa Baisakhi; and the increases in T 44 and V. luteola continued up to 8th day of water-logging, while in case of Pusa Baisakhi, the maximum increase was observed only on the 2nd day of water-logging. Gene expression studies showed enhanced expression of cytosolic-Cu/Zn-superoxide dismutase (SOD) and cytosolic-ascorbate peroxidase (APX) in the roots of waterlogged V. luteola and T 44, while little expression was observed in control or treated plants of Pusa Baisakhi. PCR band products were cloned and sequenced, and partial cDNAs of Cu/Zn-SOD and APX, respectively, were obtained. Results suggest that increase in the activity of antioxidant enzymes is to scavenge reactive oxygen species produced both during and after relief from water-logging stress.  相似文献   

17.
The effects of arsenite treatment on generation of reactive oxygen species, induction of oxidative stress, response of antioxidative system, and synthesis of phytochelatins were investigated in two indica rice (Oryza sativa L.) cvs. Malviya-36 and Pant-12 grown in sand cultures for a period of 5–20 days. Arsenite (As2O3; 25 and 50 μM) treatment resulted in increased formation of superoxide anion (O2.−), elevated levels of H2O2 and thiobarbituric acid reactive substances, showing enhanced lipid peroxidation. An enhanced level of ascorbate (AA) and glutathione (GSH) was observed irrespective of the variation in the level of dehydroascorbate (DHA) and oxidized glutathione (GSSG) which in turn influenced redox ratios AA/DHA and GSH/GSSG. With progressive arsenite treatment, synthesis of total acid soluble thiols and phytochelatins (PC) increased in the seedlings. Among antioxidative enzymes, the activities of superoxide dismutase (EC 1.15.1.1), catalase (EC 1.11.1.6), total ascorbate peroxidase (APX, EC 1.11.1.11), chloroplastic ascorbate peroxidase, guaiacol peroxidase (EC 1.11.1.7), monodehydroascorbate reductase (EC 1.6.5.4), and glutathione reductase (EC 1.6.4.2) increased in arsenite treated seedlings, while dehyroascorbate reductase (EC 1.8.5.1) activity declined initially during 5–10 days and increased thereafter. Results suggest that arsenite treatment causes oxidative stress in rice seedlings, increases the levels of many enzymatic and non-enzymatic antioxidants, and induces synthesis of thiols and PCs, which may serve as important components in mitigating arsenite-induced oxidative damage.  相似文献   

18.
The objective of this study was to determine the development of the antioxidant enzymes induced by drought stress in white clover (Trifolium repens L.) leaves. Water stress was imposed during 28 d by decreasing the daily irrigation. Leaf water potential (Φw) gradually decreased from −0.46 to −2.33 MPa. For the first 7 d, dry mass (DM), H2O2 and lipid peroxidation were not significantly affected by water deficit. From 14 d of treatment, water stress decreased dry mass and increased content of reactive oxygen species (O2 ·− and H2O2) and oxidative stress (malondialdehyde content). The ascorbate peroxidase (APOD) was activated most rapidly, already during the first week of water stress, but then its activity slowly decreased. Activation of superoxide dismutase (SOD) and catalase (CAT) by water deficit continued during the 14 d (Φw ≥ −1.65 MPa) and then their activities remain on the similar level. The activity of guaiacol-peroxidase (GPOD) increased mostly under progressive water stress and was correlated with increase in lipid peroxidation and growth restriction.  相似文献   

19.
The effects of exogenous 24-epibrassinolide (EBR) on the growth, oxidative damage, antioxidant system and ion contents in eggplant (Solanum melongena L.) seedlings under salt stress were investigated. Eggplant seedlings were exposed to 90 mM NaCl with 0, 0.025, 0.05, 0.10 and 0.20 mg dm−3 EBR for 10 d. EBR, especially at concentration 0.05 mg dm−3, alleviated growth suppression caused by NaCl stress, decreased electrolyte leakage, superoxide production and content of malondialdehyde and H2O2 in NaCl-treated plants. EBR also increased activities of superoxide dismutase, guaiacol peroxidase, catalase and ascorbate peroxidase and the contents of ascorbic acid and reduced glutathione. Furthermore, we also found that Na+, Cl contents were decreased, K+, Ca2+ contents and K+/Na+, Ca2+/Na+ ratios were increased in the presence of EBR under salt stress.  相似文献   

20.
Zhang F  Zhang H  Xia Y  Wang G  Xu L  Shen Z 《Plant cell reports》2011,30(8):1475-1483
We examined ameliorative effects of salicylic acid (SA) on two cadmium (Cd)-stressed legume crops with different Cd tolerances, viz. Phaseolus aureus (Cd sensitive) and Vicia sativa (Cd tolerant). Cd at 50 μM significantly increased the production of hydrogen peroxide (H2O2) and superoxide anion (O2·−) in root apoplasts of P. aureus and V. sativa. When comparing the two species, we determined that Cd-induced production of H2O2 and O2·− was more pronounced in P. aureus root apoplasts than in V. sativa root apoplasts. V. sativa had higher activities of superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) than P. aureus in root symplasts and apoplasts. Seed-soaking pretreatment with 100 μM SA decreased Cd-induced production of H2O2 and O2·− in apoplasts of both species, and increased activities of symplastic and apoplastic SOD, symplastic APX, and apoplastic CAT under Cd stress. Hence, SA-induced Cd tolerances in P. aureus and V. sativa are likely associated with increases in symplastic and apoplastic antioxidant enzyme activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号