首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sexual size dimorphism (SSD) is often assumed to reflect the phenotypic consequences of differential selection operating on each sex. Species that exhibit SSD may also show intersexual differences in other traits, including field‐active body temperatures, preferred temperatures, and locomotor performance. For these traits, differences may be correlated with differences in body size or reflect sex‐specific trait optima. Male and female Yarrow's spiny lizards, Sceloporus jarrovii, in a population in southeastern Arizona exhibit a difference in body temperature that is unrelated to variation in body size. The observed sexual variation in body temperature may reflect divergence in thermal physiology between the sexes. To test this hypothesis, we measured the preferred body temperatures of male and female lizards when recently fed and fasted. We also estimated the thermal sensitivity of stamina at seven body temperatures. Variation in these traits provided an opportunity to determine whether body size or sex‐specific variation unrelated to size shaped their thermal physiology. Female lizards, but not males, preferred a lower body temperature when fasted, and this pattern was unrelated to body size. Larger individuals exhibited greater stamina, but we detected no significant effect of sex on the shape or height of the thermal performance curves. The thermal preference of males and females in a thermal gradient exceeded the optimal temperature for performance in both sexes. Our findings suggest that differences in thermal physiology are both sex‐ and size‐based and that peak performance at low body temperatures may be adaptive given the reproductive cycles of this viviparous species. We consider the implications of our findings for the persistence of S. jarrovii and other montane ectotherms in the face of climate warming.  相似文献   

2.
Organismal performance abilities occupy a central position in phenotypic evolution; they are determined by suites of interacting lower-level traits (e.g., morphology and physiology) and they are a primary focus of natural selection. The mechanisms by which higher levels of organismal performance are achieved during evolution are therefore fundamentally important for understanding correlated evolution in general and coadaptation in particular. Here we address correlated evolution of morphological, physiological, and behavioral characteristics that influence interspecific variation in sprint speed in a clade of lacertid lizards. Phylogenetic analyses using independent contrasts indicate that the evolution of high maximum sprinting abilities (measured on a photocell-timed racetrack) has occurred via the evolution of (1) longer hind limbs relative to body size, and (2) a higher physiologically optimum temperature for sprinting. For ectotherms, which experience variable body temperatures while active, sprinting abilities in nature depend on both maximum capacities and relative performance levels (i.e., percent of maximum) that can be attained. With respect to temperature effects, relative performance levels are determined by the interaction between thermal physiology and thermoregulatory behavior. Among the 13 species or subspecies of lizards in the present study, differences in the optimal temperature for sprinting (body temperature at which lizards run fastest) closely matched interspecific variation in median preferred body temperature (measured in a laboratory photothermal gradient), indicating correlated evolution of thermal physiology and thermal preferences. Variability of the preferred body temperatures maintained by each species is, across species, negatively correlated with the thermal-performance breadth (range of body temperatures over which lizards can run relatively fast). This pattern leads to interspecific differences in the levels of relative sprint speed that lizards are predicted to attain while active at their preferred temperatures. The highest levels of predicted relative performance are achieved by species that combine a narrow, precise distribution of preferred temperatures with the ability to sprint at near-maximum speeds over a wide range of body temperatures. The observed among-species differences in predicted relative speed were positively correlated with the interspecific variation in maximum sprinting capacities. Thus, species that attain the highest maximum speeds are (1) also able to run at near-maximum levels over a wide range of temperatures and (2) also maintain body temperatures within a narrow zone near the optimal temperature for sprinting. The observed pattern of correlated evolution therefore has involved traits at distinct levels of biological organization, that is, morphology, physiology, and behavior; and trade-offs are not evident. We hypothesize that this particular trait combination has evolved in response to coadaptational selection pressures. We also discuss our results in the context of possible evolutionary responses to global climatic change.  相似文献   

3.
Montane reptiles are predicted to move to higher elevations in response to climate warming. However, whether upwards-shifting reptiles will be physiologically constrained by hypoxia at higher elevations remains unknown. We investigated the effects of hypoxic conditions on preferred body temperatures (Tpref) and thermal tolerance capacity of a montane lizard (Phrynocephalus vlangalii) from two populations on the Qinghai–Tibet Plateau. Lizards from 2600 m a.s.l. were exposed to O2 levels mimicking those at 2600 m (control) and 3600 m (hypoxia treatment). Lizards from 3600 m a.s.l. were exposed to O2 levels mimicking those at 3600 m (control) and 4600 m (hypoxia treatment). The Tpref did not differ between the control and hypoxia treatments in lizards from 2600 m. However, lizards from 3600 m selected lower body temperatures when exposed to the hypoxia treatment mimicking the O2 level at 4600 m. Additionally, the hypoxia treatment induced lower critical thermal minimum (CTmin) in lizards from both populations, but did not affect the critical thermal maximum (CTmax) in either population. Our results imply that upwards-shifting reptiles may be constrained by hypoxia if a decrease in Tpref reduces thermally dependent fitness traits, despite no observed effect on their heat tolerance.  相似文献   

4.
不同经度地区北草蜥的喜好体温和热耐受性   总被引:4,自引:3,他引:1  
杜卫国 《动物学报》2006,52(3):478-482
在外温动物热生理特征的进化理论中,“静态”和“易变”是两个持续争论的对立观点。热生理学特征的种内变异是检验此类假设的最有力证据。本研究比较了不同经度地区北草蜥的热环境和热生理特征,以检验“静态”和“易变”假设。东部沿海地区(宁德)的环境温度高于内陆地区(贵阳),与之相适应,沿海地区北草蜥的喜好体温也高于内陆地区。然而,两地区蜥蜴的上临界温度和下临界温度无显著差异。尽管这些热生理学特征的种群间变异趋势并不一致,但是喜好温度随环境温度变化而改变的结果符合“易变”假设的预测。此外,本研究表明蜥蜴的喜好体温存在沿经度方向的地理变异。  相似文献   

5.
Body size shapes the overall biology of organisms. We assessed the impact of size on temperature regulation in populations of normal-sized and large-bodied insular Mediterranean lizards (Podarcis gaigeae, Lacertidae). We hypothesized that large lizards would achieve higher body temperatures and thermoregulate more effectively than their smaller kin. Large- and small-bodied lizards share the same thermoregulation pattern, achieving similar body temperatures in the field. Large lizards, however, prefer higher set-point temperatures. Lizards in both populations thermoregulate effectively, but large lizards thermoregulated less effectively than normal-sized lizards. The particular conditions at the islet that harbors the large-bodied population (harsh intraspecific competition) seem to account for this pattern.  相似文献   

6.
Shawn R. Crowley 《Oecologia》1985,66(2):219-225
Summary The thermal sensitivity of sprint-running ability was investigated in two populations of Sceloporus undulatus that occupy thermally distinct habitats. Integration of field and laboratory data indicates that lizards inhabiting a cool, high-elevation habitat are frequently active at body temperatures that retard sprint-running velocity, which could affect adversely their ability to evade predators and to capture prey. These negative effects might be expected to select for local adaptation of thermal physiology. No differences in thermal physiology (optimal temperature for sprinting, critical thermal limits) were found, however, between lizards from the two habitats.Preferred body temperature of Sceloporus undulatus is lower than the body temperature that maximizes sprint velocity but is still well within an optimal performance range where lizards can run at better than 95% of maximum velocity. Analysis of data from other studies shows a similar concordance of preferred body temperature and temperatures that maximize sprint velocity for some, but not all lizard species studied.Low diversity of predators and high levels of food may compensate in part for the reduced sprinting ability of highelevation lizards active at low body temperatures. The lack of population differentiation supports the view that lizard thermal physiology is evolutionarily conservative.  相似文献   

7.
Many ectothermic vertebrates raise their preferred body temperature after feeding, likely expediting digestion. However, most studies documenting this phenomenon have relied upon laboratory thermal gradients, which grossly oversimplify an animal's environment. We explored the validity of thermal gradient methodology by investigating post-prandial thermophily in an Australian pygopodid lizard (Lialis burtonis Gray). Mean body temperatures did not differ between fed and unfed lizards in field enclosures. Feeding influenced body temperature in a thermal gradient, but in opposite directions depending on details of the methodology. When we introduced L. burtonis into the gradient at the warmer end, fed lizards had higher body temperatures than unfed conspecifics. However, the opposite was true when lizards were introduced at the cooler end. These contrasting results indicate that lizards with food in their stomachs did not seek out higher temperatures, but instead were more sedentary than unfed lizards. Our study highlights the need for caution in interpreting thermal gradient results unaccompanied by field data, and it demonstrates how minor changes in equipment design or procedures can significantly alter conclusions from laboratory studies.  相似文献   

8.
Obese and control women were immersed in a bath of water kept at 37 degrees C. Oral temperature was measured. The subjects left hand was placed outside the bath for the local application of thermal stimuli between 20 degrees and 45 degrees C, subjects reporting the most pleasant temperature. The lower oral temperatures and lower levels of skin temperature rated as pleasant by obese women as compared with women of normal body weight or less suggests that in obesity the set-point of body temperature is lowered.  相似文献   

9.
Locomotor activity performance of reptiles is largely temperature dependent and, in harsh environments with short activity periods during the day and throughout the year, plays a vital role in the fitness of the species. This particular study focuses on the performance and the thermal sensitivity for running, at different body temperatures, of the two southernmost species of lizards in the world, Liolaemus sarmientoi and Liolaemus magellanicus, studied at two locations in the south of Santa Cruz province, Argentina (51°S, 70°W and 50°S, 72°W; 133 m asl). The speed of sprint and long runs was measured in the field to determine the physiological performance of lizards at different air temperatures. In both species speed increases with the temperature, and they reach the highest performance at high temperatures. The difference between activity and thermal optima suggests that L. magellanicus has colonized its actual environment recently, and that it has not had enough time for its physiological mechanisms to evolve and achieve a maximum performance at the cold temperatures they have to tolerate at present. In contrast, L. sarmientoi achieved a high performance over a wider range of temperatures that included temperatures lower than the preferred temperatures in the lab, which they can generally find in their environment.  相似文献   

10.
Ectotherms thermoregulate to maintain their body temperature within the optimal range needed for performing vital functions. The effect of climate change on lizards has been studied as regards the sensitivity of locomotor performance to environmental temperatures. We studied thermoregulatory efficiency and locomotor performance for Liolaemus fitzgeraldi in the Central Andes of Argentina. We determined body temperature, micro-environmental temperatures and operative temperatures in the field. In the laboratory, we measured preferred temperatures and calculated the index of thermoregulatory efficiency. We estimated the thermal sensitivity of locomotion by measuring sprint speed (initial velocity and long sprint) and endurance at five different body temperatures. Body temperature was not associated with either micro-environmental temperature, nor did it show differences with preferred temperatures. Thermoregulatory efficiency was moderate (0.61). Initial velocity and long sprint trials showed differences at different temperatures; however, endurance did not. Moreover, the optimal temperatures for the performance trials showed no significant differences among themselves. We conclude that Liolaemus fitzgeraldi has thermal sensitivity in locomotor performance with respect to body temperature and that it is an eurythermic lizard that experiences a large variation in body temperature and that has thermal flexibility in the cold.  相似文献   

11.
Vertebrate ectotherms may deal with changes of environmental temperatures by behavioral and/or physiological mechanisms. Reptiles inhabiting tropical highlands face extreme fluctuating daily temperatures, and extreme values and intervals of fluctuations vary with altitude. Anolis heterodermus occurs between 1800 m to 3750 m elevation in the tropical Andes, and is the Anolis species found at the highest altitude known. We evaluated which strategies populations from elevations of 2200 m, 2650 m and 3400 m use to cope with environmental temperatures. We measured body, preferred, critical maximum and minimum temperatures, and sprint speed at different body temperatures of individuals, as well as operative temperatures. Anolis heterodermus exhibits behavioral adjustments in response to changes in environmental temperatures across altitudes. Likewise, physiological traits exhibit intrapopulation variations, but they are similar among populations, tended to the “static” side of the evolution of thermal traits spectrum. The thermoregulatory behavioral strategy in this species is extremely plastic, and lizards adjust even to fluctuating environmental conditions from day to day. Unlike other Anolis species, at low thermal quality of the habitat, lizards are thermoconformers, particularly at the highest altitudes, where cloudy days can intensify this strategy even more. Our study reveals that the pattern of strategies for dealing with thermal ambient variations and their relation to extinction risks in the tropics that are caused by global warming is perhaps more complex for lizards than previously thought.  相似文献   

12.
舒霖  张群利  屈彦福  计翔 《生态学报》2010,30(8):2036-2042
研究了青海沙蜥(Phrynocephalus vlangalii)成体的选择体温、热耐受性及食物同化和运动表现的热依赖性。结果显示:选择体温、临界低温和临界高温无显著的两性差异,其平均值分别为33.3、0.9℃和46.9℃。在27-35℃实验温度范围内,体温显著影响日摄食量,表观消化系数(ADC)和同化效率(AE)无显著影响。停顿次数随着体温的升高而降低,至39℃时停顿次数最少,但与37℃和41℃处理下的停顿次数无显著差异。疾跑速在17-39℃范围内随体温升高而加快,在39℃体温下最快。体温大于39℃后速度减慢。在17-27℃体温范围内,随体温的升高持续运动距离无显著差异。持续运动距离在29-41℃体温下大于较低体温(17-27℃)下的测定值。  相似文献   

13.
Across a range of taxa, individuals within a species differ in suites of correlated traits. These trait complexes, known as syndromes, can have dramatic evolutionary consequences as they do not evolve independently but rather as a unit. Current research focuses primarily on syndromes relating to aspects of behavior and life history. What is less clear is whether physiological traits also form a syndrome. We measured 10 thermal traits in the delicate skink, Lampropholis delicata, to test this idea. Repeatability was calculated and their across‐context correlations evaluated. Our results were in alignment with our predictions in that individual thermal traits varied consistently and were structured into a physiological syndrome, which we are referring to as the thermal behavior syndrome (TBS). Within this syndrome, lizards exhibited a “thermal type” with each being ranked along a cold–hot continuum. Hot types had faster sprint speeds and higher preferred body temperatures, whereas the opposite was true for cold types. We conclude that physiological traits may evolve as a single unit driven by the need to maintain optimal temperatures that enable fitness‐related behaviors to be maximized.  相似文献   

14.
We used Eremias brenchleyi as a model animal to examine differences in thermal tolerance, selected body temperature, and the thermal dependence of food assimilation and locomotor performance between juvenile and adult lizards. Adults selected higher body temperatures (33.5 vs. 31.7 degrees C) and were able to tolerate a wider range of body temperatures (3.4-43.6 vs. 5.1-40.8 degrees C) than juveniles. Within the body temperature range of 26-38 degrees C, adults overall ate more than juveniles, and food passage rate was faster in adults than juveniles. Apparent digestive coefficient (ADC) and assimilation efficiency (AE) varied among temperature treatments but no clear temperature associated patterns could be discerned for these two variables. At each test temperature ADC and AE were both higher in adults than in juveniles. Sprint speed increased with increase in body temperature at lower body temperatures, but decreased at higher body temperatures. At each test temperature adults ran faster than did juveniles, and the range of body temperatures where lizards maintained 90% of maximum speed differed between adults (27-34 degrees C) and juveniles (29-37 degrees C). Optimal temperatures and thermal sensitivities differed between food assimilation and sprint speed. Our results not only show strong patterns of ontogenetic variation in thermal tolerance, selected body temperature and thermal dependence of food assimilation and locomotor performance in E. brenchleyi, but also add support for the multiple optima hypothesis for the thermal dependence of behavioral and physiological variables in reptiles.  相似文献   

15.
The plastic capability of species to cope with the new conditions created by climate change is poorly understood. This is particularly relevant for organisms restricted to high elevations because they are adapted to cold temperatures and low oxygen availability. Therefore, evaluating trait plasticity of mountain specialists is fundamental to understand their vulnerability to environmental change. We transplanted mountain lizards, Iberolacerta cyreni, 800 m downhill to evaluate the plastic response in body condition, thermoregulation traits, haemoglobin level, and haemoparasite load. Initial measurements of body mass, total haemoglobin concentration ([Hb]), hematic parasite intensities, dorsal luminance, and thermoregulatory behaviour were resampled after two and four weeks of acclimation. We also tested whether an anti-parasitic drug reduced haemoparasite intensity. After only two weeks of acclimation to a lower elevation, lizards decreased 42% in [Hb], had 17% less parasite intensities, increased body condition by 25%, and raised by ~3% their mean preferred temperatures and their voluntary thermal maximum. The anti-parasitic treatment had no significant effect on the intensity of hematic parasites, but our results suggest that negative effects of haemoparasites on [Hb] are relaxed at lower elevation. The rapid plastic changes observed in thermal preferences, body condition, [Hb], and parasite intensity of I. cyreni demonstrate a potential plastic response of a mountain specialist. This may be adaptive under the climatic extremes typical of mountain habitats. However, there is uncertainty in whether the observed plasticity can also help overcome long term environmental changes.  相似文献   

16.
Biological impacts of climate warming are predicted to increase with latitude, paralleling increases in warming. However, the magnitude of impacts depends not only on the degree of warming but also on the number of species at risk, their physiological sensitivity to warming and their options for behavioural and physiological compensation. Lizards are useful for evaluating risks of warming because their thermal biology is well studied. We conducted macrophysiological analyses of diurnal lizards from diverse latitudes plus focal species analyses of Puerto Rican Anolis and Sphaerodactyus. Although tropical lowland lizards live in environments that are warm all year, macrophysiological analyses indicate that some tropical lineages (thermoconformers that live in forests) are active at low body temperature and are intolerant of warm temperatures. Focal species analyses show that some tropical forest lizards were already experiencing stressful body temperatures in summer when studied several decades ago. Simulations suggest that warming will not only further depress their physiological performance in summer, but will also enable warm-adapted, open-habitat competitors and predators to invade forests. Forest lizards are key components of tropical ecosystems, but appear vulnerable to the cascading physiological and ecological effects of climate warming, even though rates of tropical warming may be relatively low.  相似文献   

17.
Climate change is rapidly altering the way current species interact with their environment to satisfy life-history demands. In areas anticipated to experience extreme warming, rising temperatures are expected to diminish population growth, due either to environmental degradation, or the inability to tolerate novel temperature regimes. Determining how at risk ectotherms, and lizards in particular, are to changes in climate traditionally emphasizes the thermal ecology and thermal sensitivity of physiology of adult members of a population. In this study, we reveal ontogenetic differences in thermal physiological and ecological traits that have been used to anticipate how ectotherms will respond to climate change. We show that the thermal biological traits of juvenile Yarrow’s Spiny Lizards (Sceloporus jarrovii) differ from the published estimates of the same traits for adult lizards. Juvenile S. jarrovii differ in their optimal performance temperature, field field-active body temperature, and critical thermal temperatures compared to adult S. jarrovii. Within juvenile S. jarrovii, males and females exhibit differences in field-active body temperature and desiccation tolerance. Given the observed age- and sex-related variation in thermal physiology, we argue that not including physiological differences in thermal biology throughout ontogeny may lead to misinterpretation of patterns of ecological or evolutionary change due to climate warming. Further characterizing the potential for ontogenetic changes in thermal biology would be useful for a more precise and accurate estimation of the role of thermal physiology in mediating population persistence in warmer environments.  相似文献   

18.
Two hypotheses have prevailed to explain the evolution of viviparity in reptiles: the first proposed that viviparity evolved in response to cold-climates because the possibility of pregnant females to thermoregulate at higher temperatures than embryos could experience in a nest in nature. The second hypothesis posits that the advantage of viviparity is based on the possibility of females to maintain stable body temperatures during development, enhancing offspring fitness. With the aim to contribute to understanding the origins of viviparity in reptiles, we experimentally subjected pregnant females of the austral lizard Liolaemus sarmientoi to two temperature treatments until parturition: one that simulated environmental temperatures for a potential nest (17–25?°C) and another that allowed females to thermoregulate at their preferred body temperature (17–45?°C). Then, we analysed newborn body conditions and their locomotor performance to estimate their fitness. In addition, we measured the body temperature in the field and the preferred temperature in the laboratory of pregnant and non-pregnant females. Pregnant females thermoregulated to achieve higher temperatures than the environmental temperatures, and also thermoregulated within a narrower range than non-pregnant females. This could have allowed embryos to develop in higher and more stable temperatures than they would experience in a nest in nature. Thus, offspring developed at the female preferred temperature showed greater fitness and were born earlier in the season than those developed at lower environmental temperatures. Herein, we show that results are in agreement with the two hypotheses of the origin of viviparity for one of the southernmost lizards of the world.  相似文献   

19.
In laboratory studies we determined that the defensive responses used by two agamid lizards, Agama savignyi and A. pallida, change as a function of body temperature. At high body temperatures, these lizards flee rapidly from predators. At lower body temperatures, which reduce sprint speed, the lizards rarely run but instead hold their ground and attack aggressively. This temperature-dependent switch in defensive behaviour may have evolved because cold lizards that live in open habitats would have little chance of outrunning predators. Defensive behaviours of animals may in general be sensitive to physiological variables that influence locomotor performance.  相似文献   

20.
The color-mediated thermoregulation hypothesis predicts that dark body color (low reflectance) allows organisms to gain heat more efficiently than does pale coloration (high reflectance). This prediction is intuitive and widely assumed to be true, but has poor empirical support. We used rare, captive-bred, mutant melanistic, albino and wild-type Australian bluetongue lizards, Tiliqua scincoides to measure the effects of skin reflectance on the heating and cooling rates. We measured heating under an artificial radiant heat source and cooling rates in an ice-cooled box using live lizards in a room with still air. The effect of skin reflectance on heat transfer was clear, despite the substantial influence of body size. Melanistic T. scincoides showed low reflectance and gained heat faster than highly reflective albinos. Melanistic lizards also lost heat faster than albinos. Wild-type lizards were intermediate in reflectance, gained heat at rates indistinguishable from melanistic lizards, and lost heat at rates indistinguishable from albino lizards. This study system allowed us to control for variables that were confounded in other studies and may explain the inconsistent support for the color-mediated thermoregulation hypothesis. Our results provide clear evidence that skin reflectance influences the rate of heating and cooling in ectotherms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号