首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The species of inorganic carbon (CO2 or HCO3) taken up a source of substrate for photosynthetic fixation by isolated Asparagus sprengeri mesophyll cells is investigated. Discrimination between CO2 or HCO3 transport, during steady state photosynthesis, is achieved by monitoring the changes (by 14C fixation) which occur in the specific activity of the intracellular pool of inorganic carbon when the inorganic carbon present in the suspending medium is in a state of isotopic disequilibrium. Quantitative comparisons between theoretical (CO2 or HCO3 transport) and experimental time-courses of 14C incorporation, over the pH range of 5.2 to 7.5, indicate that the specific activity of extracellular CO2, rather than HCO3, is the appropriate predictor of the intracellular specific activity. It is concluded, therefore, that CO2 is the major source of exogenous inorganic carbon taken up by Asparagus cells. However, at high pH (8.5), a component of net DIC uptake may be attributable to HCO3 transport, as the incorporation of 14C during isotopic disequilibrium exceeds the maximum possible incorporation predicted on the basis of CO2 uptake alone. The contribution of HCO3 to net inorganic carbon uptake (pH 8.5) is variable, ranging from 5 to 16%, but is independent of the extracellular HCO3 concentration. The evidence for direct HCO3 transport is subject to alternative explanations and must, therefore, be regarded as equivocal. Nonlinear regression analysis of the rate of 14C incorporation as a function of time indicates the presence of a small extracellular resistance to the diffusion of CO2, which is partially alleviated by a high extracellular concentration of HCO3.  相似文献   

2.
Carbonyl sulfide (COS), a substrate for carbonic anhydrase, inhibited alkalization of the medium, O2 evolution, dissolved inorganic carbon accumulation, and photosynthetic CO2 fixation at pH 7 or higher by five species of unicellular green algae that had been air-adapted for forming a CO2-concentrating process. This COS inhibition can be attributed to inhibition of external HCO3 conversion to CO2 and OH by the carbonic anhydrase component of an active CO2 pump. At a low pH of 5 to 6, COS stimulated O2 evolution during photosynthesis by algae with low CO2 in the media without alkalization of the media. This is attributed to some COS hydrolysis by carbonic anhydrase to CO2. Although COS had less effect on HCO3 accumulation at pH 9 by a HCO3 pump in Scenedesmus, COS reduced O2 evolution probably by inhibiting internal carbonic anhydrases. Because COS is hydrolyzed to CO2 and H2S, its inhibition of the CO2 pump activity and photosynthesis is not accurate, when measured by O2 evolution, by NaH14CO3 accumulation, or by 14CO2 fixation.  相似文献   

3.
Utilization of Inorganic Carbon by Ulva lactuca   总被引:2,自引:0,他引:2  
Drechsler Z  Beer S 《Plant physiology》1991,97(4):1439-1444
Thalli discs of the marine macroalga Ulva lactuca were given inorganic carbon in the form of HCO3, and the progression of photosynthetic O2 evolution was followed and compared with predicted O2 evolution as based on calculated external formation of CO2 (extracellular carbonic anhydrase was not present in this species) and its carboxylation (according to the Km(CO2) of ribulose-1,5-bisphosphate carboxylase/oxygenase), at two different pHs, assuming a photosynthetic quotient of 1. The Km(inorganic carbon) was some 2.5 times lower at pH 5.6 than at the natural seawater pH of 8.2, whereas Vmax was similar under the two conditions, indicating that the unnaturally low pH per se had no adverse effect on U. lactuca's photosynthetic performance. These results, therefore, could be evaluated with regard to differential CO2 and HCO3 utilization. The photosynthetic performance observed at the lower pH largely followed that predicted, with a slight discrepancy probably reflecting a minor diffusion barrier to CO2 uptake. At pH 8.2, however, dehydration rates were too slow to supply CO2 for the measured photosynthetic response. Given the absence of external carbonic anhydrase activity, this finding supports the view that HCO3 transport provides higher than external concentrations of CO2 at the ribulose-1,5-bisphosphate carboxylase/oxygenase site. Uptake of HCO3 by U. lactuca was further indicated by the effects of potential inhibitors at pH 8.2. The alleged band 3 membrane anion exchange protein inhibitor 4,4′-diisothiocyanostilbene-2,2′disulphonate reduced photosynthetic rates only when HCO3 (but not CO2) could be the extracellular inorganic carbon form taken up. A similar, but less drastic, HCO3-competitive inhibition of photosynthesis was obtained with Kl and KNO3. It is suggested that, under ambient conditions, HCO3 is transported into cells at defined sites either via facilitated diffusion or active uptake, and that such transport is the basis for elevated internal [CO2] at the site of ribulose-1,5-bisphosphate carboxylase/oxygenase carboxylation.  相似文献   

4.
Membrane-permeable and impermeable inhibitors of carbonic anhydrase have been used to assess the roles of extracellular and intracellular carbonic anhydrase on the inorganic carbon concentrating system in Chlamydomonas reinhardtii. Acetazolamide, ethoxzolamide, and a membrane-impermeable, dextran-bound sulfonamide were potent inhibitors of extracellular carbonic anhydrase measured with intact cells. At pH 5.1, where CO2 is the predominant species of inorganic carbon, both acetazolamide and the dextran-bound sulfonamide had no effect on the concentration of CO2 required for the half-maximal rate of photosynthetic O2 evolution (K0.5[CO2]) or inorganic carbon accumulation. However, a more permeable inhibitor, ethoxzolamide, inhibited CO2 fixation but increased the accumulation of inorganic carbon as compared with untreated cells. At pH 8, the K0.5(CO2) was increased from 0.6 micromolar to about 2 to 3 micromolar with both acetazolamide and the dextran-bound sulfonamide, but to a higher value of 60 micromolar with ethoxzolamide. These results are consistent with the hypothesis that CO2 is the species of inorganic carbon which crosses the plasmalemma and that extracellular carbonic anhydrase is required to replenish CO2 from HCO3 at high pH. These data also implicate a role for intracellular carbonic anhydrase in the inorganic carbon accumulating system, and indicate that both acetazolamide and the dextran-bound sulfonamide inhibit only the extracellular enzyme. It is suggested that HCO3 transport for internal accumulation might occur at the level of the chloroplast envelope.  相似文献   

5.
Scenedesmus cells grown on high CO2, when adapted to air levels of CO2 for 4 to 6 hours in the light, formed two concentrating processes for dissolved inorganic carbon: one for utilizing CO2 from medium of pH 5 to 8 and one for bicarbonate accumulation from medium of pH 7 to 11. Similar results were obtained with assays by photosynthetic O2 evolution or by accumulation of dissolved inorganic carbon inside the cells. The CO2 pump with K0.5 for O2 evolution of less than 5 micromolar CO2 was similar to that previously studied with other green algae such as Chlamydomonas and was accompanied by plasmalemma carbonic anhydrase formation. The HCO3 concentrating process between pH 8 to 10 lowered the K0.5 (DIC) from 7300 micromolar HCO3 in high CO2 grown Scenedesmus to 10 micromolar in air-adapted cells. The HCO3 pump was inhibited by vanadate (Ki of 150 micromolar), as if it involved an ATPase linked HCO3 transporter. The CO2 pump was formed on low CO2 by high-CO2 grown cells in growth medium within 4 to 6 hours in the light. The alkaline HCO3 pump was partially activated on low CO2 within 2 hours in the light or after 8 hours in the dark. Full activation of the HCO3 pump at pH 9 had requirements similar to the activation of the CO2 pump. Air-grown or air-adapted cells at pH 7.2 or 9 accumulated in one minute 1 to 2 millimolar inorganic carbon in the light or 0.44 millimolar in the dark from 150 micromolar in the media, whereas CO2-grown cells did not accumulate inorganic carbon. A general scheme for concentrating dissolved inorganic carbon by unicellular green algae utilizes a vanadate-sensitive transporter at the chloroplast envelope for the CO2 pump and in some algae an additional vanadate-sensitive plasmalemma HCO3 transporter for a HCO3 pump.  相似文献   

6.
The active transport of CO2 in the cyanobacterium Synechococcus UTEX 625 was inhibited by H2S. Treatment of the cells with up to 150 micromolar H2S + HS at pH 8.0 had little effect on Na+-dependent HCO3 transport or photosynthetic O2 evolution, but CO2 transport was inhibited by more than 90%. CO2 transport was restored when H2S was removed by flushing with N2. At constant total H2S + HS concentrations, inhibition of CO2 transport increased as the ratio of H2S to HS increased, suggesting a direct role for H2S in the inhibitory process. Hydrogen sulfide does not appear to serve as a substrate for transport. In the presence of H2S and Na+ -dependent HCO3 transport, the extracellular CO2 concentration rose considerably above its equilibrium level, but was maintained far below its equilibrium level in the absence of H2S. The inhibition of CO2 transport, therefore, revealed an ongoing leakage from the cells of CO2 which was derived from the intracellular dehydration of HCO3 which itself had been recently transported into the cells. Normally, leaked CO2 is efficiently transported back into the cell by the CO2 transport system, thus maintaining the extracellular CO2 concentration near zero. It is suggested that CO2 transport not only serves as a primary means of inorganic carbon acquisition for photosynthesis but also serves as a means of recovering CO2 lost from the cell. A schematic model describing the relationship between the CO2 and HCO3 transport systems is presented.  相似文献   

7.
The possibility of HCO3 transport in the blue-green alga (cyanobacterium) Coccochloris peniocystis has been investigated. Coccochloris photosynthesized most rapidly in the pH range 8 to 10, where most of the inorganic C exists as HCO3. If photosynthesis used only CO2 from the external solution the rate of photosynthesis would be limited by the rate of HCO3 dehydration to CO2. Observed rates of photosynthesis at alkaline pH were as much as 48-fold higher than could be supported by spontaneous dehydration of HCO3 in the external solution. Assays for extracellular carbonic anhydrase were negative. The evidence strongly suggests that HCO3 was a direct C source for photosynthesis.  相似文献   

8.
An O2 electrode system with a specially designed chamber for `whorl' cell complexes of Chara corallina was used to study the combined effects of inorganic carbon and O2 concentrations on photosynthetic O2 evolution. At pH = 5.5 and 20% O2, cells grown in HCO3 medium (low CO2, pH ≥ 9.0) exhibited a higher affinity for external CO2 (K½(CO2) = 40 ± 6 micromolar) than the cells grown for at least 24 hours in high-CO2 medium (pH = 6.5), (K½(CO2) = 94 ± 16 micromolar). With O2 ≤ 2% in contrast, both types of cells showed a high apparent affinity (K½(CO2) = 50 − 52 micromolar). A Warburg effect was detectable only in the low affinity cells previously cultivated in high-CO2 medium (pH = 6.5). The high-pH, HCO3-grown cells, when exposed to low pH (5.5) conditions, exhibited a response indicating an ability to fix CO2 which exceeded the CO2 externally supplied, and the reverse situation has been observed in high-CO2-grown cells. At pH 8.2, the apparent photosynthetic affinity for external HCO3 (K½[HCO3]) was 0.6 ± 0.2 millimolar, at 20% O2. But under low O2 concentrations (≤2%), surprisingly, an inhibition of net O2 evolution was elicited, which was maximal at low HCO3 concentrations. These results indicate that: (a) photorespiration occurs in this alga and can be revealed by cultivation in high-CO2 medium, (b) Chara cells are able to accumulate CO2 internally by means of a process apparently independent of the plasmalemma HCO3 transport system, (c) molecular oxygen appears to be required for photosynthetic utilization of exogenous HCO3: pseudocyclic electron flow, sustained by O2 photoreduction, may produce the additional ATP needed for the HCO3 transport.  相似文献   

9.
Equations have been developed which quantitatively predict the theoretical time-course of photosynthetic 14C incorporation when CO2 or HCO3 serves as the sole source of exogenous inorganic carbon taken up for fixation by cells during steady state photosynthesis. Comparison between the shape of theoretical (CO2 or HCO3) and experimentally derived time-courses of 14C incorporation permits the identification of the major species of inorganic carbon which crosses the plasmalemma of photosynthetic cells and facilitates the detection of any combined contribution of CO2 and HCO3 transport to the supply of intracellular inorganic carbon. The ability to discriminate between CO2 or HCO3 uptake relies upon monitoring changes in the intracellular specific activity (by 14C fixation) which occur when the inorganic carbon, present in the suspending medium, is in a state of isotopic disequilibrium (JT Lehman 1978 J Phycol 14: 33-42). The presence of intracellular carbonic anhydrase or some other catalyst of the CO2-HCO3 interconversion reaction is required for quantitatively accurate predictions. Analysis of equations describing the rate of 14C incorporation provides two methods by which any contribution of HCO3 ions to net photosynthetic carbon uptake can be estimated.  相似文献   

10.
Miller AG  Canvin DT 《Plant physiology》1989,91(3):1044-1049
When studying active CO2 and HCO3 transport by cyanobacteria, it is often useful to be able to inhibit concomitant CO2 fixation. We have found that glycolaldehyde was an efficient inhibitor of photosynthetic CO2 fixation in Synechococcus UTEX 625. Glycolaldehyde did not inhibit inorganic carbon accumulation due to either active CO2 or HCO3 transport. When glycolaldehyde (10 millimolar) was added to rapidly photosynthesizing cells, CO2 fixation was stopped within 15 seconds. The quenching of chlorophyll a fluorescence remained high (≤ 82% control) when CO2 fixation was completely blocked by glycolaldehyde. This quenching was relieved upon the addition of a glucose oxidase oxygentrap. This is consistent with our previous finding that q-quenching in the absence of CO2 fixation was due to O2 photoreduction. Photosynthetic CO2 fixation was also inhibited by d,l,-glyceraldehyde but a sixfold higher concentration was required. Glycolaldehyde acted much more rapidly than iodoacetamide (15 seconds versus 300 seconds) and did not cause the onset of net O2 evolution often observed with iodoacetamide. Glycolaldehyde will be a useful inhibitor when it is required to study CO2 and HCO3 transport without the complication of concomitant CO2 fixation.  相似文献   

11.
The utilization of HCO3 as carbon source for photosynthesis by aquatic angiosperms results in the production of 1 mole OH for each mole CO2 assimilated. The OH ions are subsequently released to the medium. In several Potamogeton and Elodea species, the site of the HCO3 influx and OH efflux are spatially separated. Described here are light- and dark-induced pH changes at the lower and upper epidermis of the leaves of Potamogeton lucens, Elodea densa, and Elodea canadensis.  相似文献   

12.
Inorganic Carbon Uptake by Chlamydomonas reinhardtii   总被引:15,自引:12,他引:3  
The rates of CO2-dependent O2 evolution by Chlamydomonas reinhardtii, grown with either air levels of CO2 or air with 5% CO2, were measured at varying external pH. Over a pH range of 4.5 to 8.5, the external concentration of CO2 required for half-maximal rates of photosynthesis was constant, averaging 25 micromolar for cells grown with 5% CO2. This is consistent with the hypothesis that these cells take up CO2 but not HCO3 from the medium and that their CO2 requirement for photosynthesis reflects the Km(CO2) of ribulose bisphosphate carboxylase. Over a pH range of 4.5 to 9.5, cells grown with air required an external CO2 concentration of only 0.4 to 3 micromolar for half-maximal rates of photosynthesis, consistent with a mechanism to accumulate external inorganic carbon in these cells. Air-grown cells can utilize external inorganic carbon efficiently even at pH 4.5 where the HCO3 concentration is very low (40 nanomolar). However, at high external pH, where HCO3 predominates, these cells cannot accumulate inorganic carbon as efficiently and require higher concentrations of NaHCO3 to maintain their photosynthetic activity. These results imply that, at the plasma membrane, CO2 is the permeant inorganic carbon species in air-grown cells as well as in cells grown on 5% CO2. If active HCO3 accumulation is a step in CO2 concentration by air-grown Chlamydomonas, it probably takes place in internal compartments of the cell and not at the plasmalemma.  相似文献   

13.
Light-induced acidification by the cyanobacterium Anabaena variabilis is biphasic (a fast phase I and slow phase II) and shown to be sodium-dependent with an optimum concentration of 40 to 60 millimolar Na+. Cells grown under low CO2 concentrations at pH 9 (i.e. mainly HCO3 present in the medium) exhibited the slow phase II of proton efflux only, while cells grown under low CO2 concentrations at pH 6.3 (i.e. CO2 and HCO3 present) exhibited both phases. Light-induced proton release of phase I was dependent on inorganic carbon available in the bathing medium with an apparent Km for CO2 of 20 to 70 micromolar. As was concluded from the CO2 dependence of acidification measured at different pH of the bathing medium, bicarbonate inhibited phase-I acidification noncompetetively. Acidification was inhibited by acetazolamide, an inhibitor of carbonic anhydrase. Apparently, acidification of phase I is due to a light-dependent uptake of CO2 being converted to HCO3 by a carbonic anhydrase-like function of the HCO3-transport system (M Volokita, D Zenvirth, A Kaplan, L Reinhold 1984 Plant Physiol 76: 599-602) before or during entering the cell, thus releasing one proton per CO2 converted to HCO3.  相似文献   

14.
Carbon oxysulfide (carbonyl sulfide, COS) is a close structural analog of CO2. Although hydrolysis of COS (to CO2 and H2S) does occur at alkaline pH (>9), at pH 8.0 the rate of hydrolysis is slow enough to allow investigation of COS as a possible substrate and inhibitor of the active CO2 transport system of Synechococcus UTEX 625. A light-dependent uptake of COS was observed that was inhibited by CO2 and the ATPase inhibitor diethylstilbestrol. The COS taken up by the cells could not be recovered when the lights were turned off or when acid was added. It was concluded that most of the COS taken up was hydrolyzed by intracellular carbonic anhydrase. The production of H2S was observed and COS removal from the medium was inhibited by ethoxyzolamide. Bovine erythrocyte carbonic anhydrase catalysed the stoichiometric hydrolysis of COS to H2S. The active transport of CO2 was inhibited by COS in an apparently competitive manner. When Na+-dependent HCO3 transport was allowed in the presence of COS, the extracellular [CO2] rose considerably above the equilibrium level. This CO2 appearing in the medium was derived from the dehydration of transported HCO3 and was leaked from the cells. In the presence of COS the return to the cells of this leaked CO2 was inhibited. These results showed that the Na+-dependent HCO3 transport was not inhibited by COS, whereas active CO2 transport was inhibited. When COS was removed by gassing with N2, a normal pattern of CO2 uptake was observed. The silicone fluid centrifugation method showed that COS (100 micromolar) had little effect upon the initial rate of HCO3 transport or CO2 fixation. The steady state rate of CO2 fixation was, however, inhibited about 50% in the presence of COS. This inhibition can be at least partially explained by the significant leakage of CO2 from the cells that occurred when CO2 uptake was inhibited by COS. Neither CS2 nor N2O acted like COS. It is concluded that COS is an effective and selective inhibitor of active CO2 transport.  相似文献   

15.
Rates of photosynthetic O2 evolution, for measuring K0.5(CO2 + HCO3) at pH 7, upon addition of 50 micromolar HCO3 to air-adapted Chlamydomonas, Dunaliella, or Scenedesmus cells, were inhibited up to 90% by the addition of 1.5 to 4.0 millimolar salicylhydroxamic acid (SHAM) to the aqueous medium. The apparent K1(SHAM) for Chlamydomonas cells was about 2.5 millimolar, but due to low solubility in water effective concentrations would be lower. Salicylhydroxamic acid did not inhibit oxygen evolution or accumulation of bicarbonate by Scenedesmus cells between pH 8 to 11 or by isolated intact chloroplasts from Dunaliella. Thus, salicylhydroxamic acid appears to inhibit CO2 uptake, whereas previous results indicate that vanadate inhibits bicarbonate uptake. These conclusions were confirmed by three test procedures with three air-adapted algae at pH 7. Salicylhydroxamic acid inhibited the cellular accumulation of dissolved inorganic carbon, the rate of photosynthetic O2 evolution dependent on low levels of dissolved inorganic carbon (50 micromolar Na-HCO3), and the rate of 14CO2 fixation with 100 micromolar [14C] HCO3. Salicylhydroxamic acid inhibition of O2 evolution and 14CO2-fixation was reversed by higher levels of NaHCO3. Thus, salicylhydroxamic acid inhibition was apparently not affecting steps of photosynthesis other than CO2 accumulation. Although salicylhydroxamic acid is an inhibitor of alternative respiration in algae, it is not known whether the two processes are related.  相似文献   

16.
The nature of the inorganic carbon utilized during photosynthesis by Chlorella pyrenoidosa was investigated using three experimental techniques (open gas analysis system with “artificial leaf” or “aqueous” chambers and O2 electrode system) to measure carbon assimilation. Photosynthesis was studied as a function of pH and CO2 concentration. The CO2 concentration was inadequate to meet the requirements of photosynthesis only when HCO3 was added at high pH. Under all other conditions, the low and constant Km (CO2), in contrast to the highly variable Km (HCO3), suggested that CO2 was the major species utilized.  相似文献   

17.
The possibility of HCO3 transport into isolated leaf mesophyll cells of Asparagus sprengeri Regel has been investigated. Measurement of the inorganic carbon pool in these cells over an external pH range 6.2 to 8.0, using the silicone-fluid filtration technique, indicated that the pool was larger than predicted by passive 14CO2 distribution, suggesting that HCO3 as well as CO2 crosses the plasmalemma. Intracellular pH values, calculated from the distribution of 14CO2 between the cells and the medium, were found to be higher (except at pH 8.0) than those previously determined by 5,5-dimethyl[2-14C]oxazolidine-2,4-dione distribution. It is suggested that the inorganic carbon accumulated above predicted concentrations may be bound to proteins and membranes and thus may not represent inorganic carbon actively accumulated by the cells, inasmuch as in a closed system at constant CO2 concentration, the photosynthetic rates at pH 7.0 and 8.0 were 5 to 8 times lower than the maximum rate which could be supported by CO2 arising from the spontaneous dehydration of HCO3. Furthermore, CO2 compensation points of the cells in liquid media at 21% O2 at pH 7.0 and 8.0, and the K½ CO2 (CO2 concentration supporting the half maximal rate of O2 evolution) at 2% O2 at pH 7.0 and 8.0 are not consistent with HCO3 transport. These results indicate that the principal inorganic carbon species crossing the plasmalemma in these cells is CO2.  相似文献   

18.
Abel KM 《Plant physiology》1984,76(3):776-781
Photosynthetic carbon uptake of the tropical seagrass Thalassia hemprichii (Ehrenb.) Aschers was studied by several methods. Photosynthesis in buffered seawater in media in the range of pH 6 to pH 9 showed an exponentially increasing rate with decreasing pH, thus indicating that free CO2 was a photosynthetic substrate. However, these experiments were unable to determine whether photosynthesis at alkaline pH also contained some component due to HCO3 uptake. This aspect was further investigated by studying photosynthetic rates in a number of media of varying pH (7.8-8.61) and total inorganic carbon (0.75-13.17 millimolar). In these media, photosynthetic rate was correlated with free CO2 concentration and was independent of the HCO3 concentration in the medium. Short time-course experiments were conducted during equilibration of free CO2 and HCO3 after injection of 14C labeled solution at acid or alkaline pH. High initial photosynthetic rates were observed when acidic solutions (largely free CO2) were used but not with alkaline solutions. The concentration of free CO2 was found to be a limiting factor for photosynthesis in this plant.  相似文献   

19.
Ogawa T  Kaplan A 《Plant physiology》1987,83(4):888-891
The pH of the medium during CO2 uptake into the intracellular inorganic carbon (Ci) pool of a high CO2-requiring mutant (E1) and wild type of Anacystis nidulans R2 was measured. Experiments were performed under conditions where photosynthetic CO2 fixation is inhibited. There was an acidification of the medium during CO2 uptake in the light and an alkalization during CO2 efflux after darkening. A one to one stoichiometry existed between the amounts of H+ appearing in the medium and CO2 taken up into the intracellular Ci pool, regardless of the carbon species transported. The results indicate that (a) CO2 is taken up simultaneously with an efflux of equimolar H+, probably produced as a result of CO2 hydration during transport and (b) HCO3 produced by hydration of CO2 in the medium was transported into the cells without accompanying net flux of H+ or OH. The influx and efflux of Ci during Ci transport produced nonequilibrium between CO2 and HCO3 in the medium, with the concentration of HCO3 being higher than that expected under equilibrium conditions. The nonequilibrium was present even under the conditions where the influx of Ci is compensated by its efflux. The direction of this nonequilibrium suggested that efflux of HCO3 occurs during uptake of Ci.  相似文献   

20.
At low levels of dissolved inorganic carbon (DIC) and alkaline pH the rate of photosynthesis by air-grown cells of Synechococcus leopoliensis (UTEX 625) was enhanced 7- to 10-fold by 20 millimolar Na+. The rate of photosynthesis greatly exceeded the CO2 supply rate and indicated that HCO3 was taken up by a Na+-dependent mechanism. In contrast, photosynthesis by Synechococcus grown in standing culture proceeded rapidly in the absence of Na+ and exceeded the CO2 supply rate by 8 to 45 times. The apparent photosynthetic affinity (K½) for DIC was high (6-40 micromolar) and was not markedly affected by Na+ concentration, whereas with air-grown cells K½ (DIC) decreased by more than an order of magnitude in the presence of Na+. Lithium, which inhibited Na+-dependent HCO3 uptake in air-grown cells, had little effect on Na+-independent HCO3 uptake by standing culture cells. A component of total HCO3 uptake in standing culture cells was also Na+-dependent with a K½ (Na+) of 4.8 millimolar and was inhibited by lithium. Analysis of 14C-fixation during isotopic disequilibrium indicated that standing culture cells also possessed a Na+-independent CO2 transport system. The conversion from Na+-independent to Na+-dependent HCO3 uptake was readily accomplished by transferring cells grown in standing to growth in cultures bubbled with air. These results demonstrated that the conditions experienced during growth influenced the mode by which Ssynechococcus acquired HCO3 for subsequent photosynthetic fixation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号