首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The allosteric transition in triply ferric hemoglobin has been studied with different ferric ligands. This valency hybrid permits observation of oxygen or CO binding properties to the single ferrous subunit, whereas the liganded state of the other three ferric subunits can be varied. The ferric hemoglobin (Hb) tetramer in the absence of effectors is generally in the high oxygen affinity (R) state; addition of inositol hexaphosphate induces a transition towards the deoxy (T) conformation. The fraction of T-state formed depends on the ferric ligand and is correlated with the spin state of the ferric iron complexes. High-spin ferric ligands such as water or fluoride show the most T-state, whereas low-spin ligands such as cyanide show the least. The oxygen equilibrium data and kinetics of CO recombination indicate that the allosteric equilibrium can be treated in a fashion analogous to the two-state model. The binding of a low-spin ferric ligand induces a change in the allosteric equilibrium towards the R-state by about a factor of 150 (at pH 6.5), similar to that of the ferrous ligands oxygen or CO; however, each high-spin ferric ligand induces a T to R shift by a factor of 40.  相似文献   

2.
Kim SO  Orii Y  Lloyd D  Hughes MN  Poole RK 《FEBS letters》1999,445(2-3):389-394
The flavohaemoglobin Hmp of Escherichia coli is inducible by nitric oxide (NO) and provides protection both aerobically and anaerobically from inhibition of growth by NO and agents that cause nitrosative stress. Here we report rapid kinetic studies of NO binding to Fe(III) Hmp with a second order rate constant of 7.5 x 10(5) M(-1) s(-1) to generate a nitrosyl adduct that was stable anoxically but decayed in the presence of air to reform the Fe(III) protein. NO displaced CO bound to dithionite-reduced Hmp but, remarkably, CO recombined after only 2 s at room temperature indicative of NO reduction and dissociation from the haem. Addition of NO to anoxic NADH-reduced Hmp also generated a nitrosyl species which persisted while NADH was oxidised. These results are consistent with direct demonstration by membrane-inlet mass spectrometry of NO consumption and nitrous oxide production during anoxic incubation of NADH-reduced Hmp. The results demonstrate a new mechanism by which Hmp may eliminate NO under anoxic growth conditions.  相似文献   

3.
G S Lukat  K R Rodgers  H M Goff 《Biochemistry》1987,26(22):6927-6932
Electron paramagnetic resonance (EPR) studies of the nitrosyl adduct of ferrous lactoperoxidase (LPO) confirm that the fifth axial ligand in LPO is bound to the iron via a nitrogen atom. Complete reduction of the ferric LPO sample is required in order to observe the nine-line hyperfine splitting in the ferrous LPO/NO EPR spectrum. The ferrous LPO/NO complex does not exhibit a pH or buffer system dependence when examined by EPR. Interconversion of the ferrous LPO/NO complex and the ferric LPO/NO2- complex is achieved by addition of the appropriate oxidizing or reducing agent. Characterization of the low-spin LPO/NO2- complex by EPR and visible spectroscopy is reported. The pH dependence of the EPR spectra of ferric LPO and ferric LPO/CN- suggests that a high-spin anisotropic LPO complex is formed at high pH and an acid-alkaline transition of the protein conformation near the heme site does occur in LPO/CN-. The effect of tris(hydroxymethyl)aminomethane buffer on the LPO EPR spectrum is also examined.  相似文献   

4.
A basic heme peroxidase isoenzyme (AKPC) has been purified to homogeneity from artichoke flowers (Cynara scolymus L.). The enzyme was shown to be a monomeric glycoprotein, M(r)=42300+/-1000, (mean+/-S.D.) with an isoelectric point >9. The native enzyme exhibits a typical peroxidase ultraviolet-visible spectrum with a Soret peak at 404 nm (epsilon=137,000+/-3000 M(-1) cm(-1)) and a Reinheitzahl (Rz) value (A(404nm)/A(280nm)) of 3.8+/-0.2. The ultraviolet-visible absorption spectra of compounds I, II and III were typical of class III plant peroxidases but unlike horseradish peroxidase isoenzyme C, compound I was unstable. Resonance Raman and UV-Vis spectra of the ferric form show that between pH 5.0 and 7.0 the protein is mainly 6 coordinate high spin with a water molecule as the sixth ligand. The substrate-specificity of AKPC is characteristic of class III (guaiacol-type) peroxidases with chlorogenic and caffeic acids, that are abundant in artichoke flowers, as particularly good substrates at pH 4.5. Ferric AKPC reacts with hydrogen peroxide to yield compound I with a second-order rate constant (k(+1)) of 7.4 x 10(5) M(-1) s(-1) which is significantly slower than that reported for most other class III peroxidases. The reaction of ferric and ferrous AKPC with nitric oxide showed a potential use of this enzyme for quantitative spectrophotometric determination of NO and as a component of novel NO sensitive electrodes.  相似文献   

5.
Respiration of Escherichia coli catalyzed either by cytochrome bo' or bd is sensitive to micromolar extracellular NO; extensive, transient inhibition of respiration increases as dissolved oxygen tension in the medium decreases. At low oxygen concentrations (25-33 microm), the duration of inhibition of respiration by 9 microm NO is increased by mutation of either oxidase. Respiration of an hmp mutant defective in flavohemoglobin (Hmp) synthesis is extremely NO-sensitive (I(50) about 0.8 microm); conversely, cells pre-grown with sodium nitroprusside or overexpressing plasmid-borne hmp(+) are insensitive to 60 microm NO and have elevated levels of immunologically detectable Hmp. Purified Hmp consumes O(2) at a rate that is instantaneously and extensively (>10-fold) stimulated by NO due to NO oxygenase activity but, in the absence of NO, Hmp does not contribute measurably to cell oxygen consumption. Cyanide binds to Hmp (K(d) 3 microm). Concentrations of KCN (100 microm) that do not significantly inhibit cell respiration markedly suppress the protection of respiration from NO afforded by Hmp and abolish NO oxygenase activity of purified Hmp. The results demonstrate the role of Hmp in protecting respiration from NO stress and are discussed in relation to the energy metabolism of E. coli in natural O(2)-depleted environments.  相似文献   

6.
Diarylpropane oxygenase, an H2O2-dependent lignin-degrading enzyme from the basidiomycete fungus Phanerochaete chrysosporium, catalyzes the oxygenation of various lignin model compounds with incorporation of a single atom of dioxygen (O2). Diarylpropane oxygenase is also capable of oxidizing some alcohols to aldehydes and/or ketones. This enzyme (Mr = 41,000) contains a single iron protoporphyrin IX prosthetic group. Previous studies revealed that the Soret maximum of the ferrous-CO complex of diarylpropane oxygenase is at approximately 420 nm, as in ferrous-CO myoglobin (Mb), and not like the approximately 450 nm absorption of the CO complex of the ubiquitous heme monooxygenase, cytochrome P-450. This spectral difference between two functionally similar heme enzymes is of interest. To elucidate the structural requirements for heme iron-based oxygenase reactions, we have compared the electronic absorption, EPR, and resonance Raman (RR) spectral properties of diarylpropane oxygenase with those of other heme proteins and enzymes of known axial ligation. The absorption spectra of native (ferric), cyano, and ferrous diarylpropane oxygenase closely resemble those of the analogous myoglobin complexes. The EPR g values of native diarylpropane oxygenase, 5.83 and 1.99, also agree well with those of aquometMb. The RR spectra of ferric diarylpropane oxygenase have their spin- and oxidation-state marker bands at frequencies analogous to those of aquometMb and indicate a high-spin, hexacoordinate ferric iron. The RR spectra of ferrous diarylpropane oxygenase have frequencies analogous to those of deoxy-Mb that suggest a high-spin, pentacoordinate Fe(II) in the reduced form. The RR spectra of both ferric and ferrous diarylpropane oxygenase are less similar to those of horseradish peroxidase, catalase, or cytochrome c peroxidase and are clearly distinct from those of P-450. These observations suggest that the fifth ligand to the heme iron of diarylpropane oxygenase is a neutral histidine and that the iron environment must resemble that of the oxygen transport protein, myoglobin, rather than that of the peroxidases, catalase, or P-450. Given the functional similarity between diarylpropane oxygenase and P-450, this work implies that the mechanism of oxygen insertion for the two systems is different.  相似文献   

7.
Escherichia coli possesses a two-domain flavohemoglobin, Hmp, implicated in nitric oxide (NO) detoxification. To determine the contribution of each domain of Hmp toward NO detoxification, we genetically engineered the Hmp protein and separately expressed the heme (HD) and the flavin (FD) domains in a defined hmp mutant. Expression of each domain was confirmed by Western blot analysis. CO-difference spectra showed that the HD of Hmp can bind CO, but the CO adduct showed a slightly blue-shifted peak. Overexpression of the HD resulted in an improvement of growth to a similar extent to that observed with the Vitreoscilla hemeonly globin Vgb, whereas the FD alone did not improve growth. Viability of the hmp mutant in the presence of lethal concentrations of sodium nitroprusside was increased (to 30% survival after 2 h in 5 mM sodium nitroprusside) by overexpressing Vgb or the HD. However, maximal protection was provided only by holo-Hmp (75% survival under the same conditions). Cellular respiration of the hmp mutant was instantaneously inhibited in the presence of 13.5 microM NO but remained insensitive to NO inhibition when these cells overexpressed Hmp. When HD or FD was expressed separately, no significant protection was observed. By contrast, overexpression of Vgb provided partial protection from NO respiratory inhibition. Our results suggest that, despite the homology between the HD from Hmp and Vgb (45% identity), their roles seem to be quite distinct.  相似文献   

8.
Changes in heme coordination state and protein conformation of cytochrome P450(cam) (P450(cam)), a b-type heme protein, were investigated by employing pH jump experiments coupled with time-resolved optical absorption, fluorescence, circular dichroism, and resonance Raman techniques. We found a partially unfolded form (acid form) of ferric P450(cam) at pH 2.5, in which a Cys(-)-heme coordination bond in the native conformation was ruptured. When the pH was raised to pH 7.5, the acid form refolded to the native conformation through a distinctive intermediate. Formations of similar acid and intermediate forms were also observed for ferrous P450(cam). Both the ferric and ferrous forms of the intermediate were found to have an unidentified axial ligand of the heme at the 6th coordination sphere, which is vacant in the high spin ferric and ferrous forms at the native conformation. For the ferrous form, it was also indicated that the 5th axial ligand is different from the native cysteinate. The folding intermediates identified in this study demonstrate occurrences of non-native coordination state of heme during the refolding processes of the large b-type heme protein, being akin to the well known folding intermediates of cytochromes c, in which c-type heme is covalently attached to a smaller protein.  相似文献   

9.
Heme oxygenase (HO) catalyzes heme degradation by utilizing O(2) and reducing equivalents to produce biliverdin IX alpha, iron, and CO. To avoid product inhibition, the heme[bond]HO complex (heme[bond]HO) is structured to markedly increase its affinity for O(2) while suppressing its affinity for CO. We determined the crystal structures of rat ferrous heme[bond]HO and heme[bond]HO bound to CO, CN(-), and NO at 2.3, 1.8, 2.0, and 1.7 A resolution, respectively. The heme pocket of ferrous heme-HO has the same conformation as that of the previously determined ferric form, but no ligand is visible on the distal side of the ferrous heme. Fe[bond]CO and Fe[bond]CN(-) are tilted, whereas the Fe[bond]NO is bent. The structure of heme[bond]HO bound to NO is identical to that bound to N(3)(-), which is also bent as in the case of O(2). Notably, in the CO- and CN(-)-bound forms, the heme and its ligands shift toward the alpha-meso carbon, and the distal F-helix shifts in the opposite direction. These shifts allow CO or CN(-) to bind in a tilted fashion without a collision between the distal ligand and Gly139 O and cause disruption of one salt bridge between the heme and basic residue. The structural identity of the ferrous and ferric states of heme[bond]HO indicates that these shifts are not produced on reduction of heme iron. Neither such conformational changes nor a heme shift occurs on NO or N(3)(-) binding. Heme[bond]HO therefore recognizes CO and O(2) by their binding geometries. The marked reduction in the ratio of affinities of CO to O(2) for heme[bond]HO achieved by an increase in O(2) affinity [Migita, C. T., Matera, K. M., Ikeda-Saito, M., Olson, J. S., Fujii, H., Yoshimura, T., Zhou, H., and Yoshida, T. (1998) J. Biol. Chem. 273, 945-949] is explained by hydrogen bonding and polar interactions that are favorable for O(2) binding, as well as by characteristic structural changes in the CO-bound form.  相似文献   

10.
Nitric-oxide synthase (NOS) catalyzes conversion of L-arginine to nitric oxide, which subsequently stimulates a host of physiological processes. Prior work suggests that NOS is inhibited by NO, providing opportunities for autoregulation. This contribution reports that NO reacts rapidly (ka congruent with 2 x 10(7) M-1 s-1) with neuronal NOS in both its ferric and ferrous oxidation states. Association kinetics are almost unaffected by L-arginine or the cofactor tetrahydrobiopterin. There is no evidence for the distinct two phases previously reported for association kinetics of CO. Small amounts of geminate recombination of NO trapped in a protein pocket can be observed over nanoseconds, and a much larger amount is inferred to take place at picosecond time scales. Dissociation rates are also very fast from the ferric form, in the neighborhood of 50 s-1, when measured by extrapolating association rates to the zero NO concentration limit. Scavenging experiments give dissociation rate constants more than an order of magnitude slower: still quite fast. For the ferrous species, extrapolation is not distinguishable from zero, while scavenging experiments give a dissociation rate constant near 10(-4) s-1. Implications of these results for interactions near the heme binding site are discussed.  相似文献   

11.
A protein containing a heme-binding PAS (PAS is from the protein names in which imperfect repeat sequences were first recognized: PER, ARNT, and SIM) domain from Escherichia coli has been implied a direct oxygen sensor (Ec DOS) enzyme. In the present study, we isolated cDNA for the Ec DOS full-length protein, expressed it in E. coli, and examined its structure-function relationships for the first time. Ec DOS was found to be tetrameric and was obtained as a 6-coordinate low spin ferric heme complex. Its alpha-helix content was calculated as 53% by CD spectroscopy. The redox potential of the heme was found to be +67 mV versus SHE. Mutation of His-77 of the isolated PAS domain abolished heme binding, whereas mutation of His-83 did not, suggesting that His-77 is one of the heme axial ligands. Ferrous, but not ferric, Ec DOS had phosphodiesterase (PDE) activity of nearly 0.15 min(-1) with cAMP, which was optimal at pH 8.5 in the presence of Mg(2+) and was strongly inhibited by CO, NO, and etazolate, a selective cAMP PDE inhibitor. Absorption spectral changes indicated tight CO and NO bindings to the ferrous heme. Therefore, the present study unequivocally indicates for the first time that Ec DOS exhibits PDE activity with cAMP and that this is regulated by the heme redox state.  相似文献   

12.
Carbon monoxide -- a "new" gaseous modulator of gene expression   总被引:19,自引:0,他引:19  
Carbon monoxide (CO) is an odorless, tasteless and colorless gas which is generated by heme oxygenase enzymes (HOs). HOs degrade heme releasing equimolar amounts of CO, iron and biliverdin, which is subsequently reduced to bilirubin. CO shares many properties with nitric oxide (NO), an established cellular messenger. Both CO and NO are involved in neural transmission and modulation of blood vessel function, including their relaxation and inhibition of platelet aggregation. CO, like NO, binds to heme proteins, although CO binds only ferrous (FeII) heme, whereas NO binds both ferrous and ferric (FeIII). CO enhances the activity of guanylate cyclase although it is less potent than NO. In contrast, CO inhibits other heme proteins, such as catalase or cytochrome p450. The effects of CO on gene expression can be thus varied, depending on the cellular microenvironment and the metabolic pathway being influenced. In this review the regulation of gene expression by HO/CO in the cardiovascular system is discussed. Recent data, derived also from our studies, indicate that HO/CO are significant modulators of inflammatory reactions, influencing the underlying processes such as cell proliferation and production of cytokines and growth factors.  相似文献   

13.
Cytoglobin (Cgb) represents a fourth member of the globin superfamily in mammals, but its function is unknown. Site-directed mutagenesis, in which six histidine residues were replaced with alanine, was carried out, and the results indicate that the imidazoles of His81 (E7) and His113 (F8) bind to the heme iron as axial ligands in the hexacoordinate and the low-spin state. The optical absorption, resonance Raman, and IR spectral results are consistent with this conclusion. The redox potential measurements revealed an E' of 20 mV (vs NHE) in the ferric/ferrous couple, indicating that the imidazole ligands of His81 and His113 are electronically neutral. On the basis of the nu(Fe-CO) and nu(C-O) values in the resonance Raman and infrared spectra of the ferrous-CO complexes of Cgb and its mutants, it was found that CO binds to the ferrous iron after the His81 imidazole is dissociated, and three conformers are present in the resultant CO coordination structure. Two are in closed conformations of the heme pocket, in which the bound CO ligand interacts with the dissociated His81 imidazole, while the third is in an open conformation. The nu(Fe-O2) in the resonance Raman spectra of oxy Cgb can be observed at 572 cm(-1), suggesting a polar heme environment. These structural properties of the heme pocket of Cgb are discussed with respect to its proposed in vivo oxygen storage function.  相似文献   

14.
Heme oxygenase (HO) converts hemin to biliverdin, CO, and iron applying molecular oxygen and electrons. During successive HO reactions, two intermediates, α-hydroxyhemin and verdoheme, have been generated. Here, oxidation state of the verdoheme-HO complexes is controversial. To clarify this, the heme conversion by soybean and rat HO isoform-1 (GmHO-1 and rHO-1, respectively) was compared both under physiological conditions, with oxygen and NADPH coupled with ferredoxin reductase/ferredoxin for GmHO-1 or with cytochrome P450 reductase for rHO-1, and under a non-physiological condition with hydrogen peroxide. EPR measurements on the hemin-GmHO-1 reaction with oxygen detected a low-spin ferric intermediate, which was undetectable in the rHO-1 reaction, suggesting the verdoheme in the six-coordinate ferric state in GmHO-1. Optical absorption measurements on this reaction indicated that the heme degradation was extremely retarded at verdoheme though this reaction was not inhibited under high-CO concentrations, unlike the rHO-1 reaction. On the contrary, the Gm and rHO-1 reactions with hydrogen peroxide both provided ferric low-spin intermediates though their yields were different. The optical absorption spectra suggested that the ferric and ferrous verdoheme coexisted in reaction mixtures and were slowly converted to the ferric biliverdin complex. Consequently, in the physiological oxygen reactions, the verdoheme is found to be stabilized in the ferric state in GmHO-1 probably guided by protein distal residues and in the ferrous state in rHO-1, whereas in the hydrogen peroxide reactions, hydrogen peroxide or hydroxide coordination stabilizes the ferric state of verdoheme in both HOs.  相似文献   

15.
CO and NO are small toxic gaseous molecules that play pivotal roles in biology as gasotransmitters. During bacterial infection, NO, produced by the host via the inducible NO synthase, exerts critical antibacterial effects while CO, generated by heme oxygenases, enhances phagocytosis of macrophages. In Escherichia coli, other bacteria and fungi, the flavohemoglobin Hmp is the most important detoxification mechanism converting NO and O2 to the ion nitrate (NO3). The protoheme of Hmp binds not only O2 and NO, but also CO so that this ligand is expected to be an inhibitor of NO detoxification in vivo and in vitro. CORM-3 (Ru(CO)3Cl(glycinate)) is a metal carbonyl compound extensively used and recently shown to have potent antibacterial properties. In this study, attenuation of the NO resistance of E. coli by CORM-3 is demonstrated in vivo. However, polarographic measurements showed that CO gas, but not CORM-3, produced inhibition of the NO detoxification activity of Hmp in vitro. Nevertheless, CO release from CORM-3 in the presence of soluble cellular compounds is demonstrated by formation of carboxy-Hmp. We show that the inability of CORM-3 to inhibit the activity of purified Hmp is due to slow release of CO in protein solutions alone i.e. when sodium dithionite, widely used in previous studies of CO release from CORM-3, is excluded. Finally, we measure intracellular CO released from CORM-3 by following the formation of carboxy-Hmp in respiring cells. CORM-3 is a tool to explore the concerted effects of CO and NO in vivo.  相似文献   

16.
The novel class III ascorbate peroxidase isoenzyme II from tea leaves (TcAPXII), with an unusually high specific ascorbate peroxidase activity associated with stress response, has been characterized by resonance Raman (RR), electronic absorption, and Fourier transform infrared (FT-IR) spectroscopies. Ferric and ferrous forms and the complexes with fluoride, cyanide, and CO have been studied at various pH values. The overall blue shift of the electronic absorption spectrum, the high RR frequencies of the core size marker bands, similar to those of 6-coordinate low-spin heme, and the complex RR spectrum in the low-frequency region of ferric TcAPXII indicate that this protein contains an unusual 5-coordinate quantum mechanically mixed-spin heme. The spectra of both the fluoride and the CO adducts suggest that these exogenous ligands are strongly hydrogen-bonded with a residue that appears to be unique to this peroxidase. Electronic absorption spectra also emphasize structural differences between the benzhydroxamic acid binding sites of TcAPXII and horseradish peroxidases (HRPC). It is concluded that TcAPXII is a paradigm peroxidase since it is the first example of a hybrid enzyme that combines spectroscopic signatures, structural elements, and substrate specificities previously reported only for distinct class I and class III peroxidases.  相似文献   

17.
18.
Globin-like oxygen-binding proteins occur in bacteria, yeasts and other fungi, and protozoa. The simplest contain protohaem as sole prosthetic group, but show considerable variation in their similarity to the classical animal globins and plant globins. Flavohaemoglobins comprise a haem domain homologous to classical globins and a ferredoxin-NADP+ reductase (FNR)-like domain that converts the globin into an NAD(P)H-oxidizing protein with diverse reductase activities. In Escherichia coli, the prototype flavohaemoglobin (Hmp) is clearly involved in responses to nitric oxide (NO) and nitrosative stress: (i) the structural gene hmp is upregulated by NO and nitrosating agents; (ii) purified Hmp binds NO avidly, but also converts it to nitrate (aerobically) or nitrous oxide (anaerobically); (iii) hmp mutants are hypersensitive to NO and nitrosative stresses. Here, we review recent advances in E. coli and the growing number of microbes in which globins are known, draw particular attention to the essential chemistry of NO and related reactive species and their interactions with globins, and suggest that microbial globins have additional functions unrelated to 'NO' stresses.  相似文献   

19.
CO recombination to the cloned cytochrome c peroxidase [CCP(MI)] and mutants of CCP(MI) prepared by site-directed mutagenesis was examined as a function of pH by flash photolysis. The mutants examined included distal Arg 48----Leu, Lys; proximal Asp 235----Asn; and His 181----Gly. At alkaline pH, ferrous CCP(MI) was converted to a hexacoordinate form by a cooperative two-proton ionization, apparent pK(a) = 8.0. This change was observed in all of the mutants, although in the His 181----Gly mutant, the conversion to the hexacoordinate form was the result of a single-proton ionization, implicating His 181 as one of the two residues deprotonated in this isomerization. The pH-dependent conversion of CO ferrous CCP(MI) from acidic to alkaline forms was also observed and was similar to that reported for cytochrome c peroxidase from bakers' yeast [Iizuka, T., Makino, R., Ishimura, Y., & Yonetani, T. (1985) J. Biol. Chem. 260, 1407-1412]. Photolysis of the acidic form of the CO complex of CCP(MI) produces a kinetic form of the ferrous enzyme (form A) which exhibits the slow rate of CO recombination (l1' approximately 10(3) M-1 s-1) characteristic of peroxidases, while photolysis of the alkaline form of the CO complex produces a second kinetic form (form B), which exhibits a much faster rate of recombination (l2' approximately 10(5) M-1 s-1). Kinetic forms analogous to forms A and B were observed in all of the mutants examined. A third kinetic form (form B*) with a bimolecular rate constant l3' approximately 10(6) M-1 s-1 was also observed in the mutants at alkaline pH. Although the pH dependence for the conversion of form A to form B with increasing pH was altered by changes in the local heme environment, the rate of CO recombination by the respective forms was not dramatically altered in the mutants. Transient spectra of the reaction of CO with ferrous CCP(MI) after photolysis show that equilibrium between penta- and hexacoordinate ferrous enzyme is rapid relative to CO recombination. The presence of the internal sixth ligand has no discernible effect on the observed rate of recombination, however. The results presented indicate that in CCP(MI) the rate of ligand binding is determined primarily by isomerization of the protein from a closed conformation at acidic pH to an open conformation at alkaline pH and that polar effects of proximal Asp 235 and distal Arg 48 are of minor significance in the rate of CO recombination in both conformations.  相似文献   

20.
Nitrophorin 4 (NP4) is one of seven nitric oxide (NO) transporting proteins in the blood-sucking insect Rhodnius prolixus. In its physiological function, NO binds to a ferric iron centered in a highly ruffled heme plane. Carbon monoxide (CO) also binds after reduction of the heme iron. Here we have used Fourier transform infrared spectroscopy at cryogenic temperatures to study CO and NO binding and migration in NP4, complemented by x-ray cryo-crystallography on xenon-containing NP4 crystals to identify cavities that may serve as ligand docking sites. Multiple infrared stretching bands of the heme-bound ligands indicate different active site conformations with varying degrees of hydrophobicity. Narrow infrared stretching bands are observed for photodissociated CO and NO; temperature-derivative spectroscopy shows that these bands are associated with ligand docking sites close to the extremely reactive heme iron. No rebinding from distinct secondary sites was detected, although two xenon binding cavities were observed in the x-ray structure. Photolysis studies at approximately 200 K show efficient NO photoproduct formation in the more hydrophilic, open NP4 conformation. This result suggests that ligand escape is facilitated in this conformation, and blockage of the active site by water hinders immediate reassociation of NO to the ferric iron. In the closed, low-pH conformation, ligand escape from the active site of NP4 is prevented by an extremely reactive heme iron and the absence of secondary ligand docking sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号