首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Association of the ribosome-inactivating proteins (RIPs): pokeweed antiviral protein (PAP), gelonin, Momordica charantia inhibitor (MCI), with reconstituted Sendai virus envelopes (RSVE) was obtained without detectable loss of activities either of RIPs or of viral envelope glycoproteins. RIPs are inactive towards intact cells, but, once encapsulated in RSVE, they become cytotoxic. The concentration of RSVE-associated PAP, which causes 50% inhibition of protein synthesis by Friend erythroleukemic cells, is 0.5 ng/ml. Substances capable to inhibit the viral activities block the acquired cytotoxicity of RIPs associated to RSVE.  相似文献   

2.
Reconstitution and fusogenic properties of Sendai virus envelopes   总被引:1,自引:0,他引:1  
Sendai virus membranes were reconstituted by detergent dialysis, using the non-ionic detergents Triton X-100 and octyl glucoside. Membrane reassembly was determined by measuring the surface-density-dependent efficiency of resonance energy transfer between two fluorescent phospholipid analogues, which were co-reconstituted with the viral envelopes. The functional incorporation of the viral proteins was established by monitoring the ability of the reconstitution products to fuse with erythrocyte membranes, utilizing assays based on either resonance energy transfer or on relief of fluorescence selfquenching. The persistent adherence of residual Triton X-100 with the reconstituted membrane was revealed by an artificial detergent-effect on the resonance energy transfer efficiency and the occurrence of hemolysis of human erythrocytes under conditions where fusion does not occur. Properly reconstituted Sendai virus envelopes were obtained with octyl glucoside. The fusion activity of the viral envelopes was dependent on the initial concentration of octyl glucoside used to disrupt the virus and the rate of detergent removal. Rapid removal of detergent by dialysis against large volumes of dialysis buffer (ratio 1:850) or by gel filtration produced reconstituted membranes capable of inducing hemagglutination but significant fusion activity was not detected. By decreasing the volume ratio of dialysate versus dialysis buffer to 1:250 or 1:25, fusogenic viral envelopes were obtained. The initial fusion kinetics of the reconstituted viral membrane and the parent virus were different in that both the onset and the initial rate of fusion of the reconstituted membranes were faster, whereas the extents to which both particles eventually fused with the target membrane were similar. The differences in the initial fusion kinetics lead us to suggest that the details of the fusion mechanism between Sendai virus and the target membrane involve factors other than the mere presence of glycoproteins F and HN in the viral bilayer. Finally, the results also indicate that determination of the viral fusion activity in a direct manner, rather than by an indirect assay, such as hemolysis, is imperative for a proper evaluation of the functional properties retained upon viral reconstitution.  相似文献   

3.
Incubation of intact Sendai virions or reconstituted Sendai virus envelopes with phosphatidylcholine/cholesterol liposomes at 37 degrees C results in virus-liposome fusion. Neither the liposome nor the virus content was released from the fusion product, indicating a nonleaky fusion process. Only liposomes possessing virus receptors, namely sialoglycolipids or sialoglycoproteins, became leaky upon interaction with Sendai virions. Fusion between the virus envelopes and phosphatidylcholine/cholesterol liposomes was absolutely dependent upon the presence of intact and active hemagglutinin/neuraminidase and fusion viral envelope glycoproteins. Fusion between Sendai virus envelopes and phosphatidylcholine/cholesterol liposomes lacking virus receptors was evident from the following results. Anti-Sendai virus antibody precipitated radiolabeled liposomes only after they had been incubated with fusogenic Sendai virions. Incubation of N-4-nitrobenzo-2-oxa-1,3-diazole-labeled fusogenic reconstituted Sendai virus particles with phosphatidylcholine/cholesterol liposomes resulted in fluorescence dequenching. Incubation of Tb3+-containing virus envelopes with phosphatidylcholine/cholesterol liposomes loaded with sodium dipicolinate resulted in the formation of the chelation complex Tb3+-dipicolinic acid, as was evident from fluorescence studies. Virus envelopes fuse efficiently also with neuraminidase/Pronase-treated erythrocyte membranes, i.e. virus receptor-depleted erythrocyte membranes, although fusion occurred only under hypotonic conditions.  相似文献   

4.
Sendai virus envelopes have been a useful tool in studying the mechanism of membrane-membrane fusion and have served as a vehicle for introducing foreign molecules (e.g., membrane proteins) into recipient cells. Reconstituted Sendai virus envelopes are routinely obtained following solubilization of virus particles with Triton X-100. This detergent has a low critical micellar concentration which precludes it from being the best detergent of choice in reconstitution studies. Nevertheless, it has remained in use since other detergents such as sodium deoxycholate and sodium cholate rendered the resultant vesicles inactive. Triton X-100 may be suboptimal for studies of some proteins that need be coreconstituted with the viral envelopes. Thus, alternative advantageous detergents, which retain the envelope fusogenic activity, have been sought. In this study we show that the synthetic detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (Chaps) effectively solubilizes the Sendai virions, and that the vesicles formed by simple reconstitution protocols appear structurally and biochemically similar to those obtained with Triton X-100. The resultant vesicles retain functional integrity as assessed in both fusion and hemolysis assays. This protocol seems to be useful in sendai envelope-mediated reimplantation of Fc epsilon receptors into the plasma membranes of rat basophilic leukemia cells.  相似文献   

5.
Epstein-Barr virus (EBV) was co-reconstituted with Sendai virus envelopes. The reconstituted "hybrid' virus could bind and penetrate into EBV-receptor negative cells. Using this approach, T-cell-derived human and mouse leukemia cells, human T-lymphocytes and mouse spleen cells were successfully infected as judged by the induction of EBV-determined antigens and stimulation of DNA synthesis. The T-cell-derived human leukemia line Molt-4, that can absorb EBV but without virus penetration, could be also infected by the reconstituted EBV.  相似文献   

6.
Chlorophyll a and chlorophyll b have been inserted into reconstituted envelopes of Sendai virus particles. Fluorescence measurements indicated a high efficiency of energy transfer between the two chlorophyll molecules due to their close proximity in the viral envelope. Fusion of reconstituted, pigmented virus envelopes with various biological cell membranes at 37 degrees C resulted in a significant decrease in the yield of energy transfer. Reduction in the efficiency of energy transfer was temperature and time dependent, and was also dependent upon the ratio between the reconstituted Sendai virus envelopes (donor) and recipient cells (acceptor). No reduction in the efficiency of energy transfer was observed when non-fusogenic, reconstituted viral envelopes were incubated with cell membranes.  相似文献   

7.
Sendal virus envelopes (SVE) were isolated from Sendal virus particles by Triton X-100 solubilization and ultracentrifugation. The envelopes were reconstituted in the presence of the fluorescent dye calcein by gradual removal of the detergent with Bio-beads SM-2. The internal volume of reconstituted Sendal virus envelopes (RSVE) was determined by quenching the fluorescence of calcein with cobalt (II) ions. The internal volume of RSVE was found to be proportional to the initial SVE protein concentration in the recon-stitution mixture, reaching about 18% of the total volume with 5.6 mg of SVE protein per ml. When radiolabelled cloned Epstein-Barr virus DNA fragment was included in the reconstitution mixture, the proportion of DNA associated with the vesicles much exceeded the trapping volume, indicating adsorption of DNA to the internal surface of RSVE. These deter-minations will allow optimization of the use of RSVE as gene-transfer vehicles.  相似文献   

8.
9.
Epstein-Barr virus (EBV) receptor-negative cells were treated with UV-inactivated Sendai virus (SV) or with reconstituted SV envelopes having a low hemolytic activity and then assayed for EBV binding or for susceptibility to EBV infection. EBV binding was assessed by using both unlabeled and fluoresceinated EBV preparations. It was found that SV or SV envelope treatment renders these cells able to bind EBV. Various experiments were performed to clarify the mechanism of this SV-induced binding. The EBV receptor-negative 1301 cells were treated with SV either at 0°C or at both 0 and 37°C successively and then examined for EBV binding at 0°C. It was thus found that when SV treatment was performed exclusively at 0°C, the target cells showed higher fluorescence intensity after their incubation with fluoresceinated EBV. In addition, Clostridium perfringens neuraminidase treatment of 1301 cells did not induce any EBV binding to these cells. These data indicate that EBV binding is not due to the disturbance of the cell membrane by SV envelope fusion or to the uncovering of EBV binding sites on the cells after the enzymatic action of SV neuraminidase. Moreover, bound EBV was partly eluted from SV-treated 1301 cells at 37°C, and the treatment of EBV with C. perfringens neuraminidase inhibited its SV-mediated binding. These data indicate that EBV binds to the hemagglutinin-neuraminidase of SV on the target cell surface and that a fraction of the bound EBV becomes irreversibly associated with the SV-treated cell membrane. Our data also show that EBV can penetrate into 1301 cells which have incorporated SV envelopes into their membrane, as demonstrated by the induction of the EBV-determined nuclear antigen by B95-8 EBV in SV envelope-treated 1301 cells.  相似文献   

10.
Fluorescently labeled (bearing N-4-nitrobenzo-2-oxa-1,3-diazole-phosphatidylethanolamine (N-NBD-PE)) reconstituted Sendai virus envelopes (RSVE) were used to study fusion between the viral envelopes and cultured living cells such as lymphoma, Friend erythroleukemia cells (FELC) and L cells. Incubation of fusogenic viruses with the above cell lines resulted in a relatively high degree (40-45%) of fluorescence dequenching. On the other hand, incubation of unfusogenic (trypsin or phenylmethylsulfonylfluoride (PMSF)-treated) RSVE with these cells led to very little (6-9%) fluorescence dequenching. The degree of fluorescence dequenching was linearly correlated to the surface density of the virus-inserted N-NBD-PE molecules. Fluorescence photobleaching recovery experiments showed that fusion of fluorescent RSVE with FELC resulted in an infinite dilution of the fluorescent molecules in the recipient cell membranes. The fluorescent probe 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole (N-NBD-Cl) was covalently attached to envelopes of intact Sendai virions without significantly impairing their biological activity. Incubation of fluorescently labeled, intact Sendai virions with cultured cells resulted in about 20% fluorescence dequenching. The present data clearly indicate that fluorescently labeled Sendai virions can be used for a quantitative estimation of the degree of virus-membrane fusion.  相似文献   

11.
Reconstituted Sendai virus envelopes containing both the fusion (F) protein and the hemagglutinin-neuraminidase (HN) (F,HN-virosomes) or only the F protein (F-virosomes) were prepared by solubilization of the intact virus with Triton X-100 followed by its removal by using SM2 Bio-Beads. Viral envelopes containing HN whose disulfide bonds were irreversibly reduced (HNred) were also prepared by treating the envelopes with dithiothreitol followed by dialysis (F,HNred-virosomes). Both F-virosomes and F,HNred-virosomes induced hemolysis of erythrocytes in the presence of wheat germ agglutinin, but the rates and extents were markedly lower than those for hemolysis induced by F,HN-virosomes. Using an assay based on the relief of self-quenching of a lipid probe incorporated in the Sendai virus envelopes, we demonstrate the fusion of both F,HN-virosomes and F-virosomes with cultured HepG2 cells containing the asialoglycoprotein receptor, which binds to a terminal galactose moiety of F. By desialylating the HepG2 cells, the entry mediated by HN-terminal sialic acid receptor interactions was bypassed. We show that both F-virosomes and F,HN-virosomes fuse with desialylated HepG2 cells, although the rate was two- to threefold higher if HN was included in the viral envelope. We also observed enhancement of fusion rates when both F and HN envelope proteins were attached to their specific receptors.  相似文献   

12.
A proteolytic activity is shown to be associated with relatively purified preparations of intact Sendai virus particles or with their reconstituted envelopes which are vesicles containing mainly the viral glycoproteins. Intact Sendai virus as well as reconstituted Sendai virus envelopes have been shown to be able to hydrolyze various protein molecules such as the human erythrocyte membrane polypeptide designated as band 3 and soluble polypeptides such as histone and insulin B-chain. The results of the present work raise the possibility that a direct correlation exists between the virus-associated proteolytic activity and the ability of the virions to lyse cells, to fuse with their membranes, and to promote cell-cell fusion. Inhibitors of proteolytic enzymes such as phenylmethylsulfonyl fluoride, tosyllysinechloromethylketone and tosylamidephenylethylchloromethylketone, or combinations thereof, inhibit the virus-associated proteolytic activity concomitantly with inhibition of its hemolytic and fusogenic activities. Electron microscopic studies showed that the various inhibitors did not affect the binding ability of the virus preparations. The possible involvement of a protease in the process of virus-membrane fusion is discussed.  相似文献   

13.
The biological activity of two glycoproteins, hemagglutinin and neuraminidase (HN) and fusion (F) proteins, of Sendai virus (HVJ) were studied using purified proteins. The proteins were purified by chromatography on DEAE and CM cellulose in the presence of Nonidet P-40 (NP40). The glycoproteins were reconstituted at various ratios of F to HN into lipid vesicles containing fragment A of diphtheria toxin. The association of HN and F proteins with the vesicles was confirmed by electron microscopy and sucrose density gradient centrifugation. The cytotoxic activity of vesicles containing fragment A on fusion with L cells was determined by measuring colony formation of the cells. It was found that for maximum cytotoxic activity of the vesicles, there was an optimal ratio of F to HN of two. This suggests that HN is not merely the initial binding site to the cell surface, and that interactions between HN and F proteins on the virus surface may be important for the biological activities of these proteins on the cells.  相似文献   

14.
A large number of viral materials are associated with the surface of cells after cell fusion with HVJ at 37 °C for 30 min. This is due to fusion of viral envelopes with the cell membrane. Studies were made on the process from viral adsorption to cell-cell, or cell-viral envelope fusion. On incubation at low temperatures, such as 0–15 °C, no envelope fusion or cell fusion was observed, although there was some interaction between the virus and cells. This interaction resulted in loss of hemadsorption (HA) activity of the cells and partial damage of the ion barrier of the cell membrane. The viral particles seem to come close to the lipid layer of the cell membrane at the low temperatures and to distort the non-flexible membrane structure. On incubation of the cell-virus complex at 37 °C, the cells rapidly became HA-positive and the HA activity was maximal within 5 min. At this stage there was much leakage of ions through the cell membrane. On further incubation the damage to the ion barrier of the cell membrane was repaired completely with completion of cell fusion. This process may be correlated with fusion of viral envelopes with cell membranes and restoration of the cell membrane fused with them.  相似文献   

15.
16.
Sendai virosomes were characrerized with respect to their ability to bind to, fuse with, and introduce substances into several rat brain preparations. Encapsulation efficiency for Sendai virosomes was enhanced but binding to cerebral cortical P2 preparations was attenuated by addition of bovine brain phosphatidylcholine during reconstitution. A higher percentage of Sendai virosomes than phosphatidylcholine liposomes appeared to bind to, fuse with and subsequently deliver [14C]sucrose into osmotically labile pools of the P2 preparation. Fusogenic activity was estimated by measuring dequenching of fluorescently labelled N-NBD-phosphatidylethanolamine. More virosomally encapsulated [14C]sucrose was bound to the P2 fraction than introduced into osmotically labile organelles, and the fraction of vesicles undergoing fusion was intermediate between these two values. Non-encapsulated [14C]sucrose did not bind to and was not taken up by the P2 fraction in a quantifiable manner. Virosomal envelopes also bound to primary cultures of rat brain neurons and glia in an apparently saturable manner. Addition of increasing amounts of the adenoassociated virus-derived vector pJDT95 increased encapsulation efficiency, and virosomes reconstituted in the presence of 60 g DNA retained most of their binding activity (5.4% of total label) compared to those containing [14C]sucrose alone (8.4%). These data indicate that Sendai virosomes may be useful in the delivery of substances into brain-derived tissues, potentially for the modulation of gene expression and neurotransmission.  相似文献   

17.
A G Gitman  I Kahane  A Loyter 《Biochemistry》1985,24(11):2762-2768
Anti-human erythrocyte antibodies or insulin molecules were covalently coupled to the glycoproteins (the hemagglutinin/neuraminidase and the fusion polypeptides) of Sendai virus envelopes with N-succinimidyl 3-(2-pyridyldithio)propionate and succinimidyl 4-(p-maleimidophenyl)butyrate as cross-linking reagents. Reconstituted Sendai virus envelopes, bearing covalently attached anti-human erythrocyte antibodies or insulin molecules, were able to bind to but not fuse with virus receptor depleted human erythrocytes (neuraminidase-treated human erythrocytes). Only coreconstitution of Sendai virus glycoproteins, bearing attached anti-human erythrocyte antibodies or insulin molecules with intact, untreated viral glycoproteins, led to the formation of fusogenic, targeted reconstituted Sendai virus envelopes. Binding and fusion of reconstituted Sendai virus envelopes, bearing anti-human erythrocyte antibodies or insulin molecules, with neuraminidase-treated human erythrocytes were blocked by the monovalent fraction, obtained after papain digestion of immunoglobulins, made of anti-human erythrocyte antibodies or free insulin molecules, respectively. The results of this work demonstrate an active role of the viral binding protein (hemagglutinin/neuraminidase polypeptide) in the virus membrane fusion process and show a novel and efficient method for the construction of targeted, fusogenic Sendai virus envelopes.  相似文献   

18.
Virion nucleic acid of Ebola virus.   总被引:4,自引:0,他引:4       下载免费PDF全文
The virion nucleic acid of Ebola virus consists of a single-stranded RNA with a molecular weight of approximately 4.0 x 10(6). The virion RNA did not bind to oligodeoxythymidylic acid-cellulose under conditions known to bind RNAs rich in polyadenylic acid and was not infectious under conditions which yielded infectious RNA from Sindbis virus, suggesting that Ebola virus virion nucleic acid is a negative-stranded RNA.  相似文献   

19.
Sendai virus (hemagglutinating virus of Japan; HVJ) is a negative-strand RNA virus with robust fusion activity, and has been utilized for gene transfer and drug delivery. Hemagglutinin-neuraminidase (HN) protein on the viral membrane is important for cell fusion, but causes agglutination of red blood cells. HN-depleted HVJ has been desired for in vivo transfection in order to improve safety. Here, we succeeded in producing HN-depleted HVJ using HN-specific short interfering RNA (siRNA). Viral production was not affected by the siRNA. HN protein was markedly decreased in the new HVJ, while other viral proteins were retained. Consequently, the hemagglutinating activity was substantially reduced and infection activity was suppressed. When the HN-depleted HVJ was mixed with cultured cells and the mixture was centrifuged for 10min at 2000xg, the modified HVJ recovered its infectivity to approximately 80% of wild HVJ. However, infectivity was abolished in the presence of anti-F antibody. Moreover, transfection of FITC-labeled oligodeoxynucleotides using the modified HVJ was also recovered by centrifugation. Thus, the HN-depleted HVJ produced using siRNA technology will be applicable to a delivery vector.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号