首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Nitrogen (N) supply can limit the yields of soybean [Glycine max (L.) Merr.] in highly productive environments. To explore the physiological mechanisms underlying this limitation, seasonal changes in N dynamics, aboveground dry matter (ADM) accumulation, leaf area index (LAI) and fraction of absorbed radiation (fAPAR) were compared in crops relying only on biological N2 fixation and available soil N (zero-N treatment) versus crops receiving N fertilizer (full-N treatment). Experiments were conducted in seven high-yield environments without water limitation, where crops received optimal management. In the zero-N treatment, biological N2 fixation was not sufficient to meet the N demand of the growing crop from early in the season up to beginning of seed filling. As a result, crop LAI, growth, N accumulation, radiation-use efficiency and fAPAR were consistently higher in the full-N than in the zero-N treatment, leading to improved seed set and yield. Similarly, plants in the full-N treatment had heavier seeds with higher N concentration because of greater N mobilization from vegetative organs to seeds. Future yield gains in high-yield soybean production systems will require an increase in biological N2 fixation, greater supply of N from soil or fertilizer, or alleviation of the trade-off between these two sources of N in order to meet the plant demand.  相似文献   

2.
Breeding for high seed protein concentration in soybean [Glycine max (L.) Merrill] often results in lower yield, but the basis for this negative relationship is not well understood. To address this question, we evaluated the N acquisition characteristics of three high protein and three normal soybean genotypes in the field for 3 years. Plants were grown in 0.76 m rows following conventional cultural practices and water stress was minimized with sprinkler irrigation. We determined the mass and N concentration of leaves, petioles and stems at the beginning of seed filling (growth stage R5) and of stems at maturity. The N concentration of abscised leaves and petioles was also determined. There was significant variation among genotypes in total seed N (g m−2) at maturity (range from 14.7 to 24.4 g N m−2) as a result of variation in seed N concentration and yield. There was no evidence that the larger amounts of mature seed N were associated with a larger vegetative N reservoir at growth stage R5 as determined by vegetative mass at R5 or the concentration of N in vegetative tissues. Increasing seed N at maturity did not lower the N concentration in abscised leaves and petioles, or in the stems at maturity. The rate and timing of leaf senescence (loss of chlorophyll) was essentially the same for all genotypes. With no increase in the contribution from redistributed N, increases in N uptake or fixation during seed filling must have been responsible for the higher levels of seed N at maturity in high-protein genotypes. These data suggest that increasing total seed N at maturity by selecting for higher seed protein concentration or higher yield in soybean does not require, as some models suggest, a larger vegetative N reservoir at the beginning of seed filling or more rapid senescence.  相似文献   

3.
Abstract. The relative growth rates and leaf area were graphed against leaf area, normalized with respect to final leaf area, to assess the applicability of the Lockhart cell wall expansion equation to soybean, Glycine max (L.) Merr., leaf development under field conditions. For leaves that had completed more than 20% of their growth, relative growth rates decreased linearly with an increase in the normalized leaf area, indicating that these leaves were undergoing strictly expansive growth. Drought stress significantly decreased the relative growth rate of these larger leaves. Small leaves which had completed less than 20% of their growth, were found to have highly variable relative growth rates. The large variability in relative growth rates indicated that the Lockhart cell wall expansion equation was inadequate to evaluate the growth of these young leaves. Drought stress had virtually no influence on the relative growth rates observed in the small leaves.  相似文献   

4.
A photoautotrophic soybean suspension culture was used to study free amino acid pools during a subculture cycle. Free amino acid analysis showed that the intracellular concentrations of asparagine, serine, glutamine, and alanine reached peaks of 200, 10, 9 and 7 mM, respectively, at specific times in the 14-day subculture cycle. Asparagine and serine levels peaked at day 14 but glutamine level rose quickly after subculture, peaking at day three and then declined gradually. Roughly similar patterns were found in the conditioned culture medium although the levels were 1000-fold lower than those found in cells. Photoautotrophic (SB-P) and photomixotrophic (SB-M) cultures were quantitatively similar with regard to free asparagine and serine but not glutamine or free ammonia. Heterotrophic (SB-H) cells had 81–85% less free asparagine on day seven than did SB-M or SB-P cells. Hence, similar to the phloem sap of a soybean plant, asparagine, glutamine, alanine and serine were the predominant amino acids in photoautotrophic soybean cell cultures. Varying the amount of total nitrogen in culture medium for two subcultures at 10, 25, 50, and 100% Of normal levels showed that growth was inhibited only at the 10 and 25% levels but that growth on medium containing 50% of the normal nitrogen was as good as that on 100% nitrogen. Moreover, cellular chlorophyll content correlated exceptionally well with initial nitrogen content of the medium. Thus, the photosynthesis of SB-P cells was not limited by chlorophyll content. SB-P cells grown for two subcultures on 10% nitrogen contained very low free amino acid levels and only 1% of the free ammonia levels found in cells growing on a full nitrogen complement.Abbreviations SB-P photoautotrophic soybean cells (no sucrose, high CO2, high light) - SB-M photomixotrophic soybean cells (1% w/v sucrose, high light) - SB-H heterotrophic soybean cells (3% sucrose, dark)  相似文献   

5.
Summary Inoculated soybeans [Glycine max (L.) Merrill] were grown in controlled environments to evaluate the relationship between temperature and applied NO3−N on growth rates, N accumulation, and acetylene reduction activity during the vegetative growth stage. Soybeans were grown at day/night temperatures of 22/18 and 26/22°C in sand culture with daily applications of 21.4 mM (high) and 2.1 mM (low) NO3−N in a complete nutrient solution for durations of 14, 21, and 42 days after emergence and with an N-free solution. Dry matter and N accumulation were greater at 26/22 than 22/18°C. In general, both increased as the level and duration of applied NO3−N was increased. These increases were attributable to an abbreviation in the interval between emergence and onset of rapid growth. The presence and assimilation of NO3−N, even at the high level, did not inhibit development of functional nodules. Neither mass nor acetylene reduction activity of nodules was reduced by high NO3−N; however, the root mass was increased by NO3−N more than the nodule mass. There was an interaction between temperature and NO3−N on specific nodule activity as measured by acetylene reduction. The specific nodule activity was unaffected by NO3−N at 22/18°C, but at 26/22°C the specific activity was lower in the absence of NO3−N than when NO3−N was present. Apparently, rapid early growth at 26/22°C depleted cotyledonary reserves of N before nodules became active and, thereafter, the plants were unable to develop adequate leaf area to support nodule development and functioning. This result has implications in N fertilization of late-planted soybeans. Paper number 6637 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh, North Carolina, 27650. The research was supported in part by a grant from the North Carolina Soybean Producers Association and by USDA-SEA-CR grant 701-15-26.  相似文献   

6.
Nitrogen fixation activity by soybean (Glycine max (L.) Merr.) nodules has been shown to be especially sensitive to soil dehydration. Specifically, nitrogen fixation rates have been found to decrease in response to soil dehydration preceding alterations in plant gas exchange rates. The objective of this research was to investigate possible genetic variation in the sensitivity of soybean cultivars for nitrogen fixation rates in response to soil drying. Field tests showed substantial variation among cultivars with Jackson and CNS showing the least sensitivity in nitrogen accumulation to soil drying. Glasshouse experiments confirmed a large divergence among cultivars in the nitrogen fixation response to drought. Nitrogen fixation in Jackson was again found to be tolerant of soil drying, but the other five cultivars tested, including CNS, were found to be intolerant. Experiments with CNS which induced localized soil drying around the nodules did not result in decreases in nitrogen fixation rates, but rather nitrogen fixation responded to drying of the entire rooting volume. The osmotic potential of nodules was found to decrease markedly upon soil drying. However, the decrease in nodule osmotic potential occurred after significant decreases in nitrogen fixation rates had already been observed. Overall, the results of this study indicate that important genetic variations for sensitivity of nitrogen fixation to soil drying exist in soybean, and that the variation may be useful in physiology and breeding studies.  相似文献   

7.
Endomycorrhizal fungi in nitrogen transfer from soybean to maize   总被引:5,自引:0,他引:5  
Using 15N as a tracer, interspecific N-transfer was studied during the course of plant development. The use of barriers of differing permeabilities between donor and receiver plants allowed separation of the effect of mycorrhizal colonization, root or hyphal contact and interplant hyphal bridging, on 15N-transfer from soybean (Glycine max (L.) Merrill) to maize (Zea mays L.). More transfer was measured between mycorrhizal plants, but transport of 15N from the labelled host plant to Glomus versiforme (Karsten) Berch did not seem to occur at the symbiotic interface, suggesting that the fungus is independent of its host for its N-nutrition, and that the role of hyphal bridges in N-transfer between plants, is not significant. Uptake by the receiver plant of the N excreted by the donor plant root system appears to be the mechanism of N-transfer between plants. The factor most affecting 15N-transfer between plants was found to be the extent of the contact between plant root systems. The presence of the endomycorrhizal fungus in plant roots reduced 15N-loss from soybean, but at the same time, its extensive hyphal network improved the efficiency of the maize root system for the recovery of the 15N excreted by soybeans. The net result was a better conservation of the N resource within the plant system. The transfer of N between mycorrhizal plants was particularly enhanced by the death of the soybean.  相似文献   

8.
Two high (NC106, NC111) and two normal (NC103, NC107) seed protein concentration lines, derived from two different recurrent selection populations of soybean (Glycine max L. Merr.) were subjected to partial defoliation at beginning seed fill (R5) under outdoor pot culture and field conditions. The aim of this study was to test the hypothesis that capacity to store N in vegetative organs and/or to mobilize that N to reproductive organs is associated with the high seed protein concentration trait. Symbiotic N2 fixation was the sole source of N in the pot experiment and the major source of N (met > 50% of the N requirement) in the low N soil used in the field experiment. Seed protein concentration and seed yield at maturity in both experiments and N accumulation and mobilization between R5 and maturity in the pot experiment were measured. The four genotypes did not differ significantly with respect to the amount of N accumulated before beginning seed fill (R5). Removal of up to two leaflets per trifoliolate leaf at R5 significantly decreased the seed protein concentration of NC107/111 but had no effect on this trait in NC103/106. Defoliation treatments significantly decreased seed yield, whole plant N accumulation (N2-fixation) during reproductive growth and vegetative N mobilization of all genotypes. Differences in harvest indices between the high and low protein lines accounted for approximately 35% of the differences in protein concentration. The two normal protein lines mobilized more vegetative N to the seed (average. 5.26 g plant–1) than the two high protein lines (average. 4.28 g plant–1). The two high seed protein lines (NC106, NC111) exhibited significantly different relative dependencies of reproductive N accumulation on vegetative N mobilization, 45% vs. 29%, in the control treatment. Whereas, NC103 with normal and NC106 with high seed protein concentration exhibited similar relative dependencies of reproductive N accumulation on vegetative N mobilization, (47% vs. 45%). Collectively, these results indicate that N stored in shoot organs before R5 and greater absolute and relative contribution of vegetative N mobilization to the reproductive N requirement are not responsible for the high seed protein concentration trait.Abbreviations DAT days after transplanting - R5 fifth reproductive stage according to Fehr and Caviness, 1977 Mention of trademark or proprietary product does not constitute a guarantee or warranty of the product by the United States Department of Agriculture and does not imply its approval to the exclusion of other products that may also be suitable.  相似文献   

9.
Inoculated soybeans (Glycine max L. (Merrill)) were grown in controlled environments to evaluate the relationship between genotype and plant water status on nodule function, nitrogen assimilation, growth rates, and seed yield. Plants were grown under well-watered (WW) and water-stressed (WS) conditions during the linear pod-filling growth stage in sand culture using N-free nutrient solution. Dry matter and N accumulation were greater for the drought-adapted Plant Introduction 416937 (PI) than for Forrest, a commercially adapted genotype of similar phenology. These differences are attributed to: (i) more favorable internal water balance throughout the pod-filling period (higher total leaf water potential), (ii) higher photosynthetic function (more total leaf area and higher net carbon exchange rates), and (iii) stronger nodule function (larger nodule mass, greater specific and total nodule activity, and thus more nitrogen assimilation) for the PI than for Forrest. While Forrest out yielded the PI under WW conditions, the percentage reduction in seed mass per plant was less for the PI than for Forrest when both genotypes were exposed to desiccating conditions. The inference is that soybean germplasm with the capacity to maintain tissue turgidity, and thus leaf and nodule function, during reproductively-imposed desiccation may reduce the extent to which yield is compromised during drought. These findings have implications for the role of symbiotic nitrogen fixation in conserving yield under dry weather conditions.Abbreviations DAE Days After Emergence - NCE Net CO2 Exchange - PI PI 416937 - SNA Specific Nodule Activity - TNA Total Nodule Activity - WS Water Stressed - WW Well Watered  相似文献   

10.
连作障碍因素对大豆养分吸收和固氮作用的影响   总被引:33,自引:2,他引:33  
采用分室装置,利用不同孔径的膜研究大豆连作条件下,化感物质、土壤有害生物和大豆胞囊线虫等因素不断累加对植株生长、生物固氮作用和矿质养分吸收和分配的影响。结果表明,随着各因素不断累加,植株的地上部、根系和根瘤干重逐渐降低;除Ca元素外,植株组织的P、K等矿质元素单位含量下降,吸收总量下降,地上部分配的养分比例下降。在化感物质和土壤有害生物因素的基础上接种线虫,对生物固氮和矿质养 分的吸收和分配影响明显。  相似文献   

11.
Membrane lipids in soybean nodules may undergo oxidative degradation resulting in the loss of membrane structural integrity and physiological activities. One of the final products of lipid peroxidation is malondialdehyde (MDA), which can react with thiobarbituric acid (TBA) in vitro to form a chromogenic adduct, a Schiff base product that can be measured spectrophotometrically. MDA formation was quantified in the nodules as well as in the adjacent root tissue. Lipid peroxidation was initially high in soybean nodules induced by Bradyrhizobium japonicum, but sharply declined following an increase in both leghemoglobin content and nitrogen fixation rate. Lipid peroxidation was 2 to 4 times higher in the nodules than in their corresponding adjoining root tissue. Malondialdehyde levels in ineffective nodules were 1.5 times higher than those in effective nodules. MDA formation was also shown to occur in the ‘leghemoglobin-free’ cytosolic fraction, the ‘leghemoglobin’ fraction, and the nodule tissue pellet. Antioxidants, such as reduced ascorbic acid, glutathione, and 8-hydroxyquinoline, caused a partial suppression of lipid peroxidation, whereas ferrous sulfate, hydrogen peroxide, iron EDTA, disodium-EDTA, and β-carotene induced MDA formation. In contrast, quenchers of oxygen free radicals such as HEPES, MES, MOPS, PIPES, phenylalanine, Tiron, thiourea, sodium azide, and sodium cyanide (uncouplers of oxidative phosphorylation) caused somewhere between a 12 to 70 percnt; reduction in MDA production. TBA-reactive products were formed despite the incorporation of superoxide dismutase, proxidase, and catalase into the reaction mixture.  相似文献   

12.
The initial (in vivo) and total (activity present after preincubation with CO2 and Mg2+) activities of ribulose bisphosphate carboxylase were both assayed in extracts of leaves of soybean (Glycine max) plants which had been grown under 4 different irradiance levels. The total carboxylase activity per unit leaf area decreased with decreased irradiance during growth but was not different on a dry weight basis. The initial activity as a percentage of the total activity was unchanged (approximately 95%) except in leaves of plants grown at the lowest irradiance (74%). When the plants grown at the lowest irradiance were exposed to high irradiance, the initial activity was increased to 93% of the total. Light saturated rates of photosynthesis per unit leaf area were lower and saturated at lower irradiance for plants grown at lower irradiances. Initial carboxylase activity was correlated closely (r2=0.84) with leaf photosynthesis rate on a dry weight basis.  相似文献   

13.
武玉妹  周强  於丙军 《生态学报》2011,31(22):6669-6676
大豆异黄酮( Soybean isoflavones)是在大豆生长过程中形成并在成熟种子和叶片中积累较多的一类具有生物活性的次生代谢物,通常可作为人们日常生活中的一类营养保健品.研究了外源大豆苷或染料木苷溶液(0.01 mg/L)浸种处理对盐胁迫栽培大豆(N23674品种)和滩涂野大豆(BB52种群)及其经逐代耐盐性筛选的杂交后代(4076株系,F5)幼苗叶片伤害率、光合作用、Na+含量和Na+/K+值、活性氧清除酶活性及内源大豆异黄酮含量等生理指标的影响.结果表明:盐胁迫下,两种外源大豆异黄酮浸种处理均可显著抑制叶片相对电解质渗透率和硫代巴比妥酸反应物(TBARS)含量的上升及净光合速率(Pn)的下降,降低Na+含量和Na+/K+值,增强超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)活性,提高内源大豆异黄酮含量,从而表现对盐害的缓解效应,其中对耐盐性较弱的栽培大豆N23674品种效应更明显.这为大豆异黄酮在大豆耐盐育种、化学调控和盐碱地种植利用等提供了理论依据.  相似文献   

14.
Effects of N source and media-N and P levels were examined on growth, N uptake, and N2 fixation ofAzolla pinnata withAnabaena azollae association (azolla) at two inoculum-P concentrations. Each expeiment was conducted for 7 days in a growth chamber using azolla at a predetermined inoculum-P concentration and the growth media containing a combination of four levels of P (0, 15, 75, and 200 M) and three levels (0, 1, and 5 mM) of either15N-enriched NH 4 + as ammonium sulfate or15N-enriched NO 3 as potassium nitrate. Nitrogen uptake and N2 fixation were measured by15N isotopic dilution method. Tissue P and N, N uptake, and N2-fixation increased with increasing P concentration in the media regardless of the inoculum-P level of azolla. Increasing P concentration in the media increased growth of azolla at low inoculum P, but the effect on high inoculum-P azolla was either small or absen. High inoculum-P concentration resulted in increased growth, tissue-N and P concentrations, N uptake, and N2 fixation by azolla. Ammonium in the growth media caused larger increase in tissue-N and greater repression of N2 fixation than equimolar concentration of NO 3 . In the presence of NH 4 + or NO 3 , in the growth media, N uptake by azolla exceeded the corresponding decrease in N2 fixation, resulting in an overall increase in tissue-N concentration. Phosphorus in the media tended to negate the inhibitory effect of NH 4 + or NO 3 on N2 fixation. A multiple regression model showed that the effect of tissue-N on N2 fixation was negative while that of tissue-P was positive. Therefore, a relative change in tissue-N and P appeared to regulate N2 fixation. Tissue-N and P had similar effects on relative growth rate of azolla also. Inoculum-P level of azolla was important in determining the response to media-P.This research was supported by a grant from USAID under Indo-US Science and Technology Initiative.  相似文献   

15.
Although the use of 15N fertilizers to measure nitrogen (N2) fixed in crops has increased substantially in recent years, some methodological uncertainties still remain unresolved. The results obtained from a greenhouse study of soybean [Glycine max. (L.) Merrill] inoculated by six different methods have been examined for potential errors arising from incorporating 15N labelled fertilizer into soil to estimate N2 fixed in pods or shoots or the whole plant at three growth stages (50% flowering, pod-initiation and physiological maturity) using as reference crops, an uninoculated soybean cultivar and a non-nodulating soybean isoline. At the first harvest when N2 fixed was very low, the estimates of N2 fixed by the two reference crops did not match. At this stage the uninoculated soybean estimated about four times as much N2 fixed in the symbiotic soybean as that measured using the non-nodulating soybean. For the second and third harvests, there were substantial increases in N2 fixed, and both the non-nodulating and uninoculated soybean were equally suitable as reference crops for assessing N2 fixed in the symbiotic soybean. These results indicate how critical and difficult the choice of the reference crop could be at early harvests, or when N2 fixed is low. Even though there were significant differences in 15N enrichments in different organs (generally nodules < pods < roots < shoots), the estimates of N2 fixed in soybean plants obtained by excluding roots and nodules did not differ much from those based on the whole plant. Of the above-ground organs, % N2 fixed in pods (containing seeds) was closest to that of the whole plant (similar at P<0.05 at physiological maturity). However, the total N2 fixed in pods or shoots was substantially lower than that fixed by the whole plant (P<0.05), although that for the pods and enclosed seeds once again was closer to N2 fixed in the whole plant than that in the shoots.  相似文献   

16.
17.
RFLP analysis of soybean seed protein and oil content   总被引:20,自引:0,他引:20  
Summary The objectives of this study were to present an expanded soybean RFLP map and to identify quantitative trait loci (QTL) in soybean [Glycine max (L.) Merr.] for seed protein and oil content. The study population was formed from a cross between a G. max experimental line (A81-356022) and a G. soja Sieb. and Zucc. plant introduction (PI 468916). A total of 252 markers was mapped in the population, forming 31 linkage groups. Protein and oil content were measured on seed harvested from a replicated trial of 60 F2-derived lines in the F3 generation (F23 lines). Each F23 line was genotyped with 243 RFLP, five isozyme, one storage protein, and three morphological markers. Significant (P<0.01) associations were found between the segregation of markers and seed protein and oil content. Segregation of individual markers explained up to 43% of the total variation for specific traits. All G. max alleles at significant loci for oil content were associated with greater oil content than G. soja alleles. All G. soja alleles at significant loci for protein content were associated with greater protein content than G. max alleles.  相似文献   

18.
Three slow-growingBradyrhizobium japonicum (G3, USDA-110 and KUL-150) of diverse origins and two fast-growing strains ofRhizobium fredii (USDA-192 and USDA-193) were tested with a cropped soybean (Glycine max L. Merrill) cultivar, two cowpeas (Vigna unguiculata), one mung-bean (Phaseolus radiata), one winged-bean (Psophocarpus tetragonolobus) and one field bean (Phaseolus vulgaris) varieties.TheR. fredii strains nodulated and fixed Nitrogen as effectively as the strains ofB. japonicum in a modern european soybean cultivar, namely Fiskeby V. The other western bred soybeans tested were not nodulated by theseR. fredii strains. All of the soybean rhizobia produced nodules in both cowpeas and in mung-bean; theR. fredii strains showed effective N2-fixation in the cowpeas, particularly USDA-193, yielding shoot dry weights greater than those from theB. japonicum. The symbiotic performance of theR. fredii strains with soybean and other legumes indicated that they should be placed in an intermediate group between the slow-growingB. japonicum and cowpearhizobium sp.The hydrogen uptake activites suggested a possible host effect on the expression of such genes in one out of theB. japonicum strains tested. Furthermore, the slow-growing rhizobia showed significantly higher nitrate-reduction than theR. fredii in the nodules.  相似文献   

19.
The effects of 24-epibrassinolide (24-epiBL) on seedling growth, antioxidative system, lipid peroxidation, proline and soluble protein content were investigated in seedlings of the salt-sensitive rice cultivar IR-28. Seedling growth of rice plants was improved by 24-epiBL treatment under salt stress conditions. When seedlings treated with 24-epiBL were subjected to 120 mM NaCl stress, the activities of superoxide dismutase (EC 1.15.1.1), catalase (EC 1.11.1.6) and glutathione reductase (EC 1.6.4.2) did not show significant difference, whereas the activity of ascorbate peroxidase (EC 1.11.1.11) significantly increased. Increased activity of peroxidase (EC 1.11.1.7) under NaCl stress showed remarkable decrease in the 24-epiBL+NaCl-applied group. Lipid peroxidation level significantly increased under salt stress but decreased with 24-epiBL application revealing that less oxidative damage occurred in this group (24-epiBL+NaCl). In addition, increased proline content in the NaCl-applied group was decreased by 24-epiBL application in the 24-epiBL+NaCl-applied group. Soluble protein content was increased by 24-epiBL application even under NaCl stress, being also higher than control conditions (no 24-epiBL or NaCl treatment). 24-epiBL treatment considerably alleviated oxidative damage that occurred under NaCl-stressed conditions and improved seedling growth in part under salt stress in sensitive IR-28 seedlings.  相似文献   

20.
Ni胁迫对不同基因型谷子幼苗生长及氮素代谢的影响   总被引:1,自引:0,他引:1  
崔秀秀  张义贤 《生态学报》2015,35(10):3244-3251
采用盆栽土培法,研究了不同浓度Ni2+(0、25、50、100、150、200 mg/kg)对4种基因型谷子(13-36、B-7、晋谷51号、晋谷52号)幼苗生长,Ni2+富集与转运能力,叶片中硝态氮、氨态氮、可溶性蛋白质、脯氨酸含量及氮代谢相关酶硝酸还原酶(NR)、谷氨酰胺合成酶(GS)、谷氨酸合酶(GOGAT)、谷氨酸脱氢酶(GDH)活性的影响。结果表明:Ni2+胁迫下,4种基因型谷子幼苗的根长、苗长、生物量随Ni2+浓度增加逐渐降低,体内Ni2+含量逐渐增加,与对照组差异显著(P0.05)。在所试浓度范围内,4种基因型谷子幼苗叶片中的硝态氮含量、NR、GS、GOGAT活性表现为低浓度(25—50mg/kg)增高和高浓度(50—200 mg/kg)降低,而GDH活性在Ni2+浓度为100mg/kg以上时下降,氨态氮含量在50—150 mg/kg处理组中为对照的1.14—3.02倍。不同浓度Ni2+处理后,4种基因型谷子幼苗叶片中的脯氨酸含量均有不同程度的提高,而可溶性蛋白质含量呈明显下降趋势。实验结果证明,Ni2+胁迫抑制了谷子幼苗对硝态氮的吸收,降低了叶片中NR、GS、GOGAT活性,影响了氨的同化作用,使谷子幼苗的氮素代谢发生紊乱,不同基因型谷子对Ni2+胁迫的毒性效应存在差异。4种基因型谷子对Ni2+的耐性顺序为13-36B-7晋谷51晋谷52。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号