首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In Aspergillus niger, a cyanide (CN)- and antimycin A-insensitive and salicylhydroxamic acid (SHAM)-sensitive respiratory pathway exists besides the cytochrome pathway and is catalyzed by the alternative oxidase (AOX). In this study, A. niger WU-2223L, a citric acid-producing strain, was cultivated in a medium containing 120 g/l of glucose, which is the concentration usually needed for citric acid production, and the effects of 2% (v/v) methanol, an inducer of citric acid, 2 microM antimycin A, and 1 mM SHAM on AOX activities and citric acid production were investigated. The AOX activity, measured as duroquinol oxidase, was localized in the purified mitochondria regardless of the presence of any additives. When WU-2223L was cultivated with antimycin A or methanol, both citric acid production and citric acid productivity, shown as the ratio of production per mycelial dry weight, increased with the increase of both the activity of AOX and the rate of CN-insensitive and SHAM-sensitive respiration. On the other hand, when WU-2223L was cultivated with SHAM, an inhibitor of AOX, the CN-insensitive and SHAM-sensitive respiration was not detected and the citric acid production and the productivity drastically decreased, although mycelial growth was not affected. These results clearly indicated that the CN-insensitive and SHAM-sensitive respiration catalyzed by AOX, localized in the mitochondria, contributed to citric acid production by A. niger.  相似文献   

2.
Candida albicans contains a cryptic cyanide and antimycin A insensitive respiratory system. This alternate oxidase was found (i) at all growth rates from =0.05 to 0.26 in a chemostat culture and (ii) in both mycelial and yeast forms of the organism. Neither chloramphenicol nor cycloheximide prevented the expression of the alternate oxidase. Salicyl-hydroxamic acid was a potent inhibitor of the cyanide insensitive respiration. The respiration of mitochondria grown in the presence of antimycin A was not inhibited by cyanide or antimycin A but was inhibited by salicylhydroxamic acid.Abbreviations KCN potassium cyanide - SHAM salicyl hydroxamic acid  相似文献   

3.
Cyanide-resistant respiration (CRR) is a widespread metabolic pathway among yeasts, that involves a mitochondrial alternative oxidase sensitive to salicylhydroxamic acid (SHAM). The physiological role of this pathway has been obscure. We used the yeasts Debaryomyces hansenii and Pichia membranifaciens to elucidate the involvement of CRR in energy conversion. In both yeasts the adenosine triphosphate (ATP) content was still high in the presence of antimycin A or SHAM, but decreased to low levels when both inhibitors were present simultaneously, indicating that CRR was involved in ATP formation. Also the mitochondrial membrane potential (Delta Psi(m)), monitored by fluorescent dyes, was relatively high in the presence of antimycin A and decreased upon addition of SHAM. In both yeasts the presence of complex I was confirmed by the inhibition of oxygen consumption in isolated mitochondria by rotenone. Comparing in the literature the occurrence of CRR and of complex I among yeasts, we found that CRR and complex I were simultaneously present in 12 out of 13 yeasts, whereas in six out of eight yeasts in which CRR was absent, complex I was also absent. Since three phosphorylating sites are active in the main respiratory chain and only one in CRR, we propose a role for this pathway in the fine adjustment of energy provision to the cell.  相似文献   

4.
The regulatory effect of different concentrations of dissolved oxygen on the production of fusicoccins by the fungus Fusicoccum amygdali Del. was studied. The maximum output of total fusicoccins was obtained by using a profiled dissolved oxygen tension (DOT) regime, in which the DOT was maintained at 15–20% during the biomass growth phase and at 5–8% during the fusicoccins production phase. In comparison with the profiled regime, the maintenance of DOT at 15–20% during the whole fermentation shortened the fusicoccins production phase. The fermentation performance at a low DOT (5–8%) inhibited both the accumulation of biomass and the production of fusicoccins. At high DOT (40–50%), an accelerated accumulation of the biomass with an expressed autolysis of mycelia took place, and the production of fusicoccins was lowered. The qualitative composition of individual fusicoccins varied substantially at different DOTs. Fusicoccins, A, C, D, J, H, 16-O-demethyl-J, detretpentenylfusicoccin and some minor fusicoccin metabolites were found in the fermentation broth using the method of liquid secondary ion mass spectrometry. It was established that the profiled DOT regime (15–20% to 5–8%) provided both the maximum concentration of fusicoccins and an enhanced accumulation of the main metabolite – fusicoccin A (FC A). The performance of the fermentation at a DOT of 15–20% decreased the content of FC A by 2–6% in comparison with the profiled DOT regime, and increased the content of fusicoccin C to 14–20% of the total fusicoccins. Fermentation at DOT of 5–8% was characterized by the highest content of the precursors of FC A, the less oxidized fusicoccins H and J, the contents of which were in range 7–12% and 16–17% of total fusicoccins, respectively.  相似文献   

5.
Steady-state oxygen kinetics of Trypanosoma mega reveal the presence of 3 oxidases. These include an oxidase which is sensitive to salicylhydroxamic acid (SHAM) but insensitive to sodium azide. This oxidase could be the L-alpha glycerophosphate oxidase present in bloodstream trypanosomes. In addition, and oxidase is present wthich is azide-sensitive but SHAM-insensitive. This oxidase is inhibited by CO and is probably cytochrome aa3. A 3rd oxidase is insensitive to both azide and SHAM but is inhibited by CO and is possibly cytochrome o. Reciprocal plots of T. mega reveal the presence of 2 oxidases that are inhibited by CO. These results are discussed in the light of previous evidence suggesting the presence of several oxidases and a branched electron transport system in T. mega.  相似文献   

6.
The addition of antimycin A during the logarithmic phase of growth of heterotrophic Euglena gracilis cultures (in lactate or glucose medium) was immediately followed by decreased respiration and a cessation of grwoth. Induced cyanideresistent respiration appeared 5 h after the addition of the inhibitor then the cells started to grow again and could be cultured in the presence of antimycin A. Thus the cells exhibited a cyanide-and antimycin-resistant respiration which was, in addition, sensitive to salicylhydroxamic acid and propylgallate. Antimycin-adapted Euglena and control cells were compared for their biomass production and protein synthesis. The difference in growth yield between control and antimycin-adapted cells was not as high as would be expected if only the first phosphorylation site of the normal respiratory chain was active in the presence of antimycin A. Furthermore, the ability to incorporate labelled valine into proteins, under resting-cell conditions, was not changed. Strong correlations were established between the effects of respiratory effectors on O2 consumption and valine incorporation. These results suggest that sufficient energy for protein synthesis and growth is provided by the operation of the cyanide-resistant respiratory pathway in antimycin-adapted Euglena.Abbreviations DNP dinitrophenol - PG propylgallate - SHAM salicylhydroxamic acid  相似文献   

7.
A method for the photometric measurement of dehydrogenase activities with the redox dye phenazine methosulphate at a fixed biomass concentration was applied for the investigation of idiophasic product synthesis. It was found that in citric acid fermentation by Yarrowia lipolytica which is characterized by a well defined separation into tropho-and idiophase the magnitude of product synthesis rates corresponds to the level of dehydrogenase activity at the end of the trophophase. In cellulase production by Trichoderma reesei the tropho-and idiophase are not well defined but a rise of dehydrogenase activity in the course of the idiophase is likely to correspond to an increase of the cellulase formating rate. The significance of the relation of dehydrogenase activity to production rates for monitoring industrial fermentations is discussed.  相似文献   

8.
The relevance of free radical generation and oxidative stress with regard to aflatoxin production was examined by comparing the oxygen requirement and antioxidant status of a toxigenic strain of Aspergillus parasiticus with that of a nontoxigenic strain at early (trophophase) and late logarithmic (idiophase) growth phases. In comparison to the nontoxigenic strain, wherein the oxygen requirements were relatively unaltered at various growth phases, the toxigenic strain exhibited greater oxygen requirements at trophophase coinciding with onset of aflatoxin production. The activities of antioxidant enzymes such as xanthine oxidase, superoxide dismutase, and glutathione peroxidase and the mycelial contents of thiobarbituric acid-reactive substances as well as of reduced glutathione were all enhanced during the progression of toxigenic strain from trophophase to idiophase. The combined results suggest that aflatoxin production by the toxigenic strain may be a consequence of increased oxidative stress leading to enhanced lipid peroxidation and free radical generation.  相似文献   

9.
The present work was focused on finding a relationship between reactive oxygen species (ROS) and lovastatin biosynthesis (secondary metabolism) in Aspergillus terreus. In addition, an effort was made to find differences in accumulation and control of ROS in submerged (SmF) and solid-state fermentation (SSF), which could help explain higher metabolite production in the latter. sod1 expression, ROS content, and redox balance kinetics were measured during SmF and SSF. Results showed that A. terreus sod1 gene (oxidative stress defence enzyme) was intensely expressed during rapid growth phase (trophophase) of lovastatin fermentations. This high expression decreased abruptly, just before the onset of production (idiophase). However, ROS measurements detected high concentrations only in idiophase, suggesting a link between ROS and lovastatin biosynthesis. Apparently sod1 down regulation promotes the rise of ROS during idiophase. This oxidative state in idiophase was further supported by a high redox balance observed in trophophase that changed to a low value in idiophase (around six-fold lower). The patterns of ROS accumulation, sod1 expression, and redox balance behaviour were similar in SmF and SSF. However, sod1 expression and ROS concentration (ten-fold), were higher in SmF. Our results indicate a link between ROS and lovastatin biosynthesis. Also, showed differences of physiology in SSF that yield lower but more steady ROS concentrations, which could be associated to higher lovastatin production.  相似文献   

10.
Electron transport has been assayed and compared in two isolates (M and F) of the free-living (model) nematode Aphelenchus avenae. Of the substrates tested only alpha-glycerophosphate and succinate were utilised to any significant extent by both isolates. Comparative data on respiratory rates, respiratory control ratios and ADP:O ratios for various substrates are given. Succinate oxidation by isolate-F mitochondria was ca 80-90% sensitive to antimycin A while that of isolate M was almost completely refractory to antimycin A. The response to other electron transport inhibitors suggests the operation of (a) azide/cyanide sensitive, (b) azide/salicylhydroxamic acid (SHAM) insensitive but carbon monoxide sensitive and (c) SHAM-sensitive terminal oxidases to varying degrees in the mitochondria of these two isolates of A. avenae.  相似文献   

11.
Dekkera intermedia and Brettanomyces custersii were shown to have a respiratory pathway resistant to cyanide, antimycin A, and azide. This respiration remained sensitive to salicylhydroxamic acid (SHAM). The "cyanide-resistant" respiration was induced mainly at the end of the growth phase and could reach 50% of total respiratory capacity. The mitochondrial "petite colony" mutation had no effect on this oxidation pathway. The presence of this respiration pathway in these strains constitutes a compensation mechanism for the reducing activity of acetaldehyde dehydrogenase. This alternate pathway would thus be a fundamental element of the Custer effect, a characteristic feature of these strains.  相似文献   

12.
The plastoquinone pool during dark adaptation is reduced by endogenous reductants and oxidized at the expense of molecular oxygen. We report here on the redox state of plastoquinone in darkness, using as an indicator the chlorophyll fluorescence kinetics of whole cells of a Chlamydomonas reinhardtii mutant strain lacking the cytochrome b(6)f complex. When algae were equilibrated with a mixture of air and argon at 1.45% air, plastoquinol oxidation was inhibited whereas mitochondrial respiration was not. Consequently, mitochondrial oxidases cannot be responsible for the oxygen consumption linked to plastoquinol oxidation. Plastoquinol oxidation in darkness turned out to be sensitive to n-propyl gallate (PG) and insensitive to salicylhydroxamic acid (SHAM), whereas mitochondrial respiration was sensitive to SHAM and PG. Thus, both PG treatment and partial anaerobiosis allow to draw a distinction between an inhibition of plastoquinol oxidation and an inhibition of mitochondrial respiration, indicating the presence of a plastoquinol:oxygen oxidoreductase. The possible identification of this oxidase with an oxidase involved in carotenoid biosynthesis is discussed in view of various experimental data.  相似文献   

13.
Sporobolomyces ruberrimus is insensitive to antimycin A which is a respiratory inhibitor of the cytochrome system, as cyanide is. When this red yeast was cultured in the presence of antimycin A, the growth curve showed the same pattern as that of the normal culture in the absence of it, but the growth mass was only about 70% of that of the normal culture. The antimycin A-insensitive and cyanide-insensitive respiration of Sp. ruberrimus was inhibited by pyrocatechol and salicylhydroxamic acid. Sporobolomyces red yeasts have two characteristic terminal oxidase systems; one is a cytochrome oxidase system and the other is a cyanide- and antimycin A-insensitive oxidase system. The proportions of the two respiratory systems differed among the species and strains of Sporobolomyces red yeasts examined.  相似文献   

14.
Glucose-supported O2 uptake in the filarial nematode Brugia pahangi was partially inhibited by antimycin A (30-40%), with the remaining activity being sensitive to o-hydroxydiphenyl or salicylhydroxamic acid (SHAM). The production of CO2 by B. pahangi in the presence of D-glucose was stimulated by O2; the stimulation of CO2; the stimulation of CO2 production was sensitive to antimycin A. The O2 dependencies of respiration showed that the apparent O2 affinity for B. pahangi was diminished in the presence of antimycin A; O2 thresholds for inhibition of respiration were observed which showed that the alternative electron transport pathway was less sensitive to inhibition at elevated O2 concentrations. H2O2 production and its excretion could be detected in whole B. pahangi; higher rates were observed in the presence of the uncoupler carbonyl cyanide m-chlorophenylhydrazone. The effects of inhibitors on H2O2 production suggest two sites of H2O2 production, one associated with the classical antimycin A-sensitive pathway, the other with the alternative respiratory pathway. The similarity in the O2 dependencies of H2O2 production and respiration may indicate that H2O2 production is involved in O2-mediated toxicity. Succinate and malate respiring sub-mitochondrial particles of B. pahangi produced O2.- radicals at a site on the antimycin A-sensitive respiratory pathway. Inhibition of the alternative electron pathway by SHAM was unusual; sub-millimolar concentrations markedly stimulated respiration, H2O2 production and O2.- production by 30, 20 and 25%, respectively, whereas higher concentrations (greater than 2.5 mM) inhibited respiration by 75% and H2O2 and O2.- production by up to 85%.  相似文献   

15.
16.
The presence of an alternative oxidase (AOX) in Polytomella sp., a colorless relative of Chlamydomonas reinhardtii, was explored. Oxygen uptake in Polytomella sp. mitochondria was inhibited by KCN (94%) or antimycin (96%), and the remaining cyanide-resistant respiration was not blocked by the AOX inhibitors salicylhydroxamic acid (SHAM) or n-propylgallate. No stimulation of an AOX activity was found upon addition of either pyruvate, alpha-ketoglutarate, or AMP, or by treatment with DTT. An antibody raised against C. reinhardtii AOX did not recognized any polypeptide band of Polytomella sp. mitochondria in Western blots. Also, PCR experiments and Southern blot analysis failed to identify an Aox gene in this colorless alga. Finally, KCN exposure of cell cultures failed to stimulate an AOX activity. Nevertheless, KCN exposure of Polytomella sp. cells induced diminished mitochondrial respiration (20%) and apparent changes in cytochrome c oxidase affinity towards cyanide. KCN-adapted cells exhibited a significant increase of a-type cytochromes, suggesting accumulation of inactive forms of cytochrome c oxidase. Another effect of KCN exposure was the reduction of the protein/fatty acid ratio of mitochondrial membranes, which may affect the observed respiratory activity. We conclude that Polytomella lacks a plant-like AOX, and that its corresponding gene was probably lost during the divergence of this colorless genus from its close photosynthetic relatives.  相似文献   

17.
The present study suggests the importance of reactive oxygen species (ROS) and antioxidant metabolites as biochemical signals during the beneficial interactions of mitochondrial metabolism with photosynthetic carbon assimilation at saturating light and optimal CO2. Changes in steady-state photosynthesis of pea mesophyll protoplasts monitored in the presence of antimycin A [AA, inhibitor of cytochrome oxidase (COX) pathway] and salicylhydroxamic acid [SHAM, inhibitor of alternative oxidase (AOX) pathway] were correlated with total cellular ROS and its scavenging system. Along with superoxide dismutase (SOD) and catalase (CAT), responses of enzymatic components—ascorbate peroxidase (APX), monodehydroascorbate reductase (MDAR), glutathione reductase (GR) and non-enzymatic redox components of ascorbate–glutathione (Asc–GSH) cycle, which play a significant role in scavenging cellular ROS, were examined in the presence of mitochondrial inhibitors. Both AA and SHAM caused marked reduction in photosynthetic carbon assimilation with concomitant rise in total cellular ROS. Restriction of electron transport through COX or AOX pathway had differential effect on ROS generating (SOD), ROS scavenging (CAT and APX) and antioxidant (Asc and GSH) regenerating (MDAR and GR) enzymes. Further, restriction of mitochondrial electron transport decreased redox ratios of both Asc and GSH. However, while decrease in redox ratio of Asc was more prominent in the presence of SHAM in light compared with dark, decrease in redox ratio of GSH was similar in both dark and light. These results suggest that the maintenance of cellular ROS at optimal levels is a prerequisite to sustain high photosynthetic rates which in turn is regulated by respiratory capacities of COX and AOX pathways.  相似文献   

18.
The respiratory O2 consumption of vegetative, non-necrotic, Lewis lung carcinoma cells was found to be very low compared with that of non-tumor tissues and was highly resistant to cyanide. However, the resistant rate was inhibited by salicylhydroxamic acid (SHAM) in either isolated cells or tissue fragments. In addition, this compound did not affect their cytochrome-c oxidase activity. The results support the existence of an alternative oxidase system that significantly contributes to oxygen uptake in Lewis carcinoma cells. To our knowledge, this is the first report showing significant SHAM-sensitivity of tumor respiration and perhaps of higher animal cell respiration.  相似文献   

19.
After a general review of the proposed mechanisms and physiological roles of the alternative respiratory pathways found in various organisms, the studies are focussed on the amylolytic yeast Schwaniomyces castellii. In addition to the cytochrome chain, the wild type presents two alternative pathways insensitive to antimycin A. One is salicylhydroxamic acid (SHAM)-sensitive and azide-insensitive; the other is SHAM-insensitive and sensitive to high azide concentration. Conditions for mutagenesis and screening are described, which allow isolation of mutants deficient in cytochromes a+a3 and/or b in this yeast previously classified as petite negative. The relative proportions of the alternative respiratory pathways are compared in the wild type and mutant strains following inhibition by SHAM and azide at optimal concentration as determined by iso-inhibition curves. The growth of the cytochrome deficient mutants on citrate, a non-fermentable carbon source, and the ability of the wild type to grow on citrate+antimycin A, after a lag of about 10 h, indicate an involvement of the alternative pathway(s) in energy production. Rotenone sensitivity of respiration and ATP level confirm the presence of a functional phosphorylation site 1. The role of each alternative respiratory pathway in energy production is discussed.  相似文献   

20.
SYNOPSIS. Steady-state oxygen kinetics of Trypanosoma mega reveal the presence of 3 oxidases. These include an oxidase which is sensitive to salicylhydroxamic acid (SHAM) but insensitive to sodium azide. This oxidase could be the L-α glycerophosphate oxidase present in bloodstream trypanosomes. In addition, an oxidase is present which is azide-sensitive but SHAM-insensitive. This oxidase is inhibited by CO and is probably cytochrome aa3. A 3rd oxidase is insensitive to both azide and SHAM but is inhibited by CO and is possibly cytochrome o. Reciprocal plots of T. mega reveal the presence of 2 oxidases that are inhibited by CO. These results are discussed in the light of previous evidence suggesting the presence of several oxidases and a branched electron transport system in T. mega.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号