首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work investigates whether purine metabolism and release is related to cardioprotection with hyperkalemia and hypothermia. Langendorff guinea-pig hearts were used to either monitor metabolism during ischemia or to measure functional recovery, myocardial injury and release of purine during reperfusion. Hearts underwent 30 min ischemia using one of the following protocols: control (normothermic buffer), hyperkalaemia (high-potassium buffer), hypothermia (20°C) and hyperkalemia + hypothermia. At the end of 30 min ischemia, hyperkalemia was associated with similar metabolic changes (rise in purine and lactate and fall in adenine nucleotides) to control group. Accumulation of purine was due to a rise in inosine, xanthine and hypoxanthine and was largely prevented by hypothermia and hyperkalemia + hypothermia. Upon reperfusion, there was a time-dependent release of all purine, lactate and AMP. A fast (peak in less than 20 sec) release of inosine, xanthine, hypoxanthine and lactate was highest in control followed by hyperkalemia then hypothermia and little release in hyperkalemia + hypothermia. Adenosine and AMP release was slow (peak at 3 min), only significant in control and was likely to be due to sarcolemmal disruption as the profile followed lactate dehydrogenase release. Recovery (left ventricular developed pressure) was 63% control, 82% hyperkalemia, 77% hypothermia and 98% for hyperkalemia + hypothermia. The loss of purine during reperfusion but not their production during ischemia is related to cardioprotection with hyperkalemia. The possibility that the consequences of hyperkalemia modulate a sodium-dependent purine efflux, is discussed. The reduced loss of purine in hypothermia or in hyperkalemia + hypothermia is likely to be due to a lower metabolic activity during ischemia.  相似文献   

2.
Endogenous glycogen stores are essential to maintain cell functions during myocardial ischemia.. Fasting and L-glutamate improve left ventricular function after an ischemic episode. We studied their effects on myocardial glycogen depletion during ischemia and on left ventricular function and glycogen resynthesis during reperfusion. We allocated 185 Wistar rats to 4 groups: 1) Control, 2) Fasting, 16-20 hours (Fast) 3) L-glutamate supplementation [100 mM] (Glt) or 4) Fasting + L-glutamate supplementation [100 mM]. n = 8-10 in each group. Hearts were mounted in an isolated perfused rat hearts model for 20 min stabilisation, 10/20/30 min ischemia and 60 min reperfusion. At each time point hearts were frozen in liquid nitrogen (-196 degrees C) within 2 seconds and myocardial contents of glycogen, lactate, alanine and glutamate were determined. Left ventricular pressure was measured continuously. Fasting and L-glutamate supplementation improved LV function after ischemia (Fast: p < 0.05, Glt: p < 0.01) and delayed myocardial glycogen depletion (Fast: p < 0.05, Glt: p < 0.01) compared to control. Decreased lactate accumulation and increased alanine content during ischemia were found in fasted (lactate: p < 0.05, alanine: p < 0.05) and L-glutamate supplemented (lactate: p < 0.01, alanine: p < 0.01) hearts compared to control. We did not find any additive effects of fasting and L-glutamate supplementation. In conclusion fasting and L-glutamate supplementation improve left ventricular function during reperfusion and delay myocardial glycogen depletion during ischemia. There were no additive effects of Fasting and L-glutamate supplementation. These finding suggest common metabolic pathways underlying the effects of L-glutamate supplementation and fasting.  相似文献   

3.
Nicotinic acid (niacin) has been shown to decrease myocyte injury. Because interventions that lower the cytosolic NADH/NAD(+) ratio improve glycolysis and limit infarct size, we hypothesized that 1) niacin, as a precursor of NAD(+), would lower the NADH/NAD(+) ratio, increase glycolysis, and limit ischemic injury and 2) these cardioprotective benefits of niacin would be limited in conditions that block lactate removal. Isolated rat hearts were perfused without (Ctl) or with 1 microM niacin (Nia) and subjected to 30 min of low-flow ischemia (10% of baseline flow, LF) and reperfusion. To examine the effects of limiting lactate efflux, experiments were performed with 1) Ctl and Nia groups subjected to zero-flow ischemia and 2) the Nia group treated with the lactate-H(+) cotransport inhibitor alpha-cyano-4-hydroxycinnamate under LF conditions. Measured variables included ATP, pH, cardiac function, tissue lactate-to-pyruvate ratio (reflecting NADH/NAD(+)), lactate efflux rate, and creatine kinase release. The lactate-to-pyruvate ratio was reduced by more than twofold in Nia-LF hearts during baseline and ischemic conditions (P < 0.001 and P < 0.01, respectively), with concurrent lower creatine kinase release than Ctl hearts (P < 0.05). Nia-LF hearts had significantly greater lactate release during ischemia (P < 0.05 vs. Ctl hearts) as well as higher functional recovery and a relative preservation of high-energy phosphates. Inhibiting lactate efflux with alpha-cyano-4-hydroxycinnamate and blocking lactate washout with zero flow negated some of the beneficial effects of niacin. During LF, niacin lowered the cytosolic redox state and increased lactate efflux, consistent with redox regulation of glycolysis. Niacin significantly improved functional and metabolic parameters under these conditions, providing additional rationale for use of niacin as a therapeutic agent in patients with ischemic heart disease.  相似文献   

4.
Excitatory amino acid release and neurotoxicity in the ischemic brain may be reduced by endogenously released adenosine which can modulate both glutamate or aspartate release and depress neuronal excitability. The present study reports on the patterns of release of glutamate and aspartate; the inhibitory amino acids GABA and glycine; and of the purine catabolites adenosine and inosine from the rat parietal cerebral cortex during 20 and 60 min periods of middle cerebral artery (MCA) occlusion followed by reperfusion. Aspartate and glutamate efflux into cortical superfusates rose steadily during the period of ischemia and tended to increase even further during the subsequent 40 min of reperfusion. GABA release rose during ischemia and declined during reperfusion, whereas glycine efflux was relatively unchanged during both ischemia and reperfusion. Adenosine levels in cortical superfusates rose rapidly at the onset of ischemia and then declined even though MCA occlusion was continued. Recovery to pre-occulusion levels was rapid following reperfusion. Inosine efflux also increased rapidly, but its decline during reperfusion was slower than that of adenosine.  相似文献   

5.
We tested the hypothesis that glycogen levels at the beginning of ischemia affect lactate production during ischemia and postischemic contractile function.Isolated working rat hearts were perfused at physiological workload with bicarbonate buffer containing glucose (10 mmol/L). Hearts were subjected to four different preconditioning protocols, and cardiac function was assessed on reperfusion. Ischemic preconditioning was induced by either one cycle of 5 min ischemia followed by 5, 10, or 20 min of reperfusion (PC5/5, PC5/10, PC5/20), or three cycles of 5 min ischemia followed by 5 min of reperfusion (PC3 × 5/5). All hearts were subjected to 15 min total, global ischemia, followed by 30 min of reperfusion. We measured lactate release, timed the return of aortic flow, compared postischemic to preischemic power, and determined tissue metabolites at selected time points.Compared with preischemic function, cardiac power during reperfusion improved in groups PC5/10 and PC5/20, but was not different from control in groups PC5/5 and PC3 × 5/5. There was no correlation between preischemic glycogen levels and recovery of function during reperfusion. There was also no correlation between glycogen breakdown (or resynthesis) and recovery of function. Lactate accumulation during ischemia was lowest in group PC5/20 and highest in the group with three cycles of preconditioning (PC3 × 5/5). Lactate release during reperfusion was significantly higher in the groups with low recovery of power than in the groups with high recovery of power.In glucose-perfused rat heart recovery of function is independent from both pre- and postischemic myocardial glycogen content over a wide range of glycogen levels. The ability to utilize lactate during reperfusion is an indicator for postischemic return of contractile function.  相似文献   

6.
The objective of this study was to determine whether Kupffer cells contribute to parenchymal and endothelial cell damage induced by ischemia-reperfusion in perfused rat livers. Parenchymal and endothelial cell injury were determined by measuring activities of lactate dehydrogenase (LDH) and purine nucleoside phosphorylase (PNP), respectively, in the effluent perfusate of livers subjected to 60 min of low flow ischemia followed by 30 min of reperfusion. Upon reperfusion, LDH and PNP activities increased significantly within the first 10 min of reperfusion and remained elevated over control values throughout the duration of reperfusion. Pretreatment with gadolinium chloride, an inhibitor of Kupffer cell function, significantly decreased LDH and PNP efflux during reperfusion by approximately 60% and 50%, respectively. When Kupffer cells were stimulated by vitamin A pretreatment, PNP efflux was doubled during reperfusion. Vitamin E pretreatment attenuated LDH and PNP release by approximately 70% during reperfusion compared to enzyme release in untreated livers. Moreover, the water-soluble antioxidants superoxide dismutase and desferrioxamine reduced reperfusion injury, whereas catalase had no effect on enzyme release. These results demonstrate that superoxide anions released from Kupffer cells are involved in oxidative damage to endothelial cells as well as hepatocytes during the early stages of hepatic reperfusion.  相似文献   

7.
The objective of this study was to determine whether Kupffer cells contribute to parenchymal and endothelial cell damage induced by ischemia-reperfusion in perfused rat livers. Parenchymal and endothelial cell injury were determined by measuring activities of lactate dehydrogenase (LDH) and purine nucleoside phosphorylase (PNP), respectively, in the effluent perfusate of livers subjected to 60 min of low flow ischemia followed by 30 min of reperfusion. Upon reperfusion, LDH and PNP activities increased significantly within the first 10 min of reperfusion and remained elevated over control values throughout the duration of reperfusion. Pretreatment with gadolinium chloride, an inhibitor of Kupffer cell function, significantly decreased LDH and PNP efflux during reperfusion by approximately 60% and 50%, respectively. When Kupffer cells were stimulated by vitamin A pretreatment, PNP efflux was doubled during reperfusion. Vitamin E pretreatment attenuated LDH and PNP release by approximately 70% during reperfusion compared to enzyme release in untreated livers. Moreover, the water-soluble antioxidants superoxide dismutase and desferrioxamine reduced reperfusion injury, whereas catalase had no effect on enzyme release. These results demonstrate that superoxide anions released from Kupffer cells are involved in oxidative damage to endothelial cells as well as hepatocytes during the early stages of hepatic reperfusion.  相似文献   

8.
Release of the excitotoxic amino acid, glutamate, into the extracellular space during ischemia/reperfusion contributes to neuronal injury and death. To gain insights into the signal transduction pathways involved in glutamate release we examined the time course of changes in enzyme levels and activities of cPLA2, PKC and ERKs in the rat cerebral cortex after four vessel (4VO) ischemia followed by reperfusion. Measurement both by enzymatic assay and Western blot analysis showed significant increases in the activity and protein levels of cPLA2 during 10–20 min of ischemia. Activity remained elevated at 10 min and 20 min of reperfusion, whereas cPLA levels had returned to base line levels after 20 min of reperfusion. PKC activity increased significantly in the particulate, but not in the cytosolic, fractions both during ischemia and reperfusion. Increases in PKC levels were recorded in the particulate fraction during ischemia and reperfusion, and in the cytosolic fraction during ischemia. Western blot analysis with a phosphospecific antibody for characterization of MAPK (ERKs) activation revealed significantly increased phosphorylation of ERK1, and ERK2 in the particulate fraction, of ERK2 in the cytosolic fraction, during ischemia and of both enzymes in the particulate and cytosolic fractions after 10 min of reperfusion. The relevance of the results to glutamate release is discussed.  相似文献   

9.
AIM OF THE STUDY: To determine the effects of two-staged ischemic preconditioning on myocardial noradrenaline in prolonged ischemia and reperfusion. METHODS: Thirty-two male Wistar rats anesthetised with urethane randomly divided into 2 groups: group 1 (ischemic preconditioning group, n = 16), and group 2 (control, n = 16). Myocardial interstitial noradrenaline levels were measured using a microdialysis technique. Ischemic preconditioning was elicited by two episodes: 5 min of ischemia and 10 min of reperfusion. The intermittent occlusions were followed by prolonged occlusion (60 min) and reperfusion (60 min). RESULTS: An increase in interstitial noradrenaline was observed in 10 min of prolonged ischemia in group 2, and in 20 min in group 1. After 20 min of myocardial ischemia there was a significant difference between groups (p < 0.05) in interstitial noradrenaline levels. In control group, it was 60% higher. In reperfusion, noradrenaline levels decreased markedly in group 1. CONCLUSION: We suggest that ischemic preconditioning by two episodes: 5-min ischemia and 10-min reperfusion prevents excessive noradrenaline interstitial accumulation, perhaps, through protection of physiological uptake I carrier.  相似文献   

10.
A timed profile of glutathione oxidation and reactive nitrogen species during reperfusion after cerebral ischemia in rat was obtained. Dialysate was collected every 25 min from a microdialysis probe inserted into the cerebral cortex before and after cerebral ischemia. NO2 , NO3 , and reduced and oxidized glutathione (GSH, GSSG) were detected by high-performance liquid chromatography. GSH and GSSG increased and reached a peak: 3408 ± 1710% (mean ± SE) at 25 min of reperfusion (P < 0.0001) and 329 ± 104% at 50 min of reperfusion (P = 0.06), respectively. Oxidation ratio decreased from 0.82 ± 0.04 to 0.42 ± 0.07 (P < 0.0001) at 25 min of reperfusion. NO3 levels significantly decreased (68.3 ± 9.1%) (P < 0.01) during ischemia and remained lower than the control value during reperfusion. NO2 levels did not significantly change. These data suggest that GSH releases during early phase of reperfusion and that its rapid oxidation contributes to prevent an increase in reactive nitrogen species.  相似文献   

11.
We tested the hypothesis that down-regulated hearts, as observed during low-flow ischemia, adapt better to low O2 supply than non-down-regulated, or hypoxic, hearts. To address the link between down-regulation and endogenous ischemic protection, we compared myocardial tolerance to ischemia and hypoxia of increasing duration. To that end, we exposed buffer-perfused rat hearts to either low-flow ischemia or hypoxia (same O2 shortage) for 20, 40 or 60 min (n = 8/group), followed by reperfusion or reoxygenation (20 min, full O2 supply). At the end of the O2 shortage, the rate·pressure product was less in ischemic than hypoxic hearts (p < 0.0001). The recovery of the rate·pressure product after reperfusion or reoxygenation was not different for t = 20 min, but was better in ischemic than hypoxic hearts for t = 40 and 60 min (p < 0.02 and p < 0.0002, respectively). The end-diastolic pressure remained unchanged during low-flow ischemia (0.024 ± 0.013 mmHg·min–1), but increased significantly during hypoxia (0.334 ± 0.079 mmHg·min–1). We conclude that, while the duration of hypoxia progressively impaired the rate·pressure product and the end-diastolic pressure, hearts were insensitive of the duration of low-flow ischemia, thereby providing evidence that myocardial down-regulation protects hearts from injury. Excessive ATP catabolism during ischemia in non-down-regulated hearts impaired myocardial recovery regardless of vascular, blood-related and neuro-hormonal factors. These observations support the view that protection is mediated by the maintenance of the ATP pool.  相似文献   

12.
p38 MAP kinase activation is known to be deleterious not only to mitochondria but also to contractile function. Therefore, p38 MAP kinase inhibition therapy represents a promising approach in preventing reperfusion injury in the heart. However, reversal of p38 MAP kinase-mediated contractile dysfunction may disrupt the fragile sarcolemma of ischemic-reperfused myocytes. We, therefore, hypothesized that the beneficial effect of p38 MAP kinase inhibition during reperfusion can be enhanced when contractility is simultaneously blocked. Isolated and perfused rat hearts were paced at 330 rpm and subjected to 20 min of ischemia followed by reperfusion. p38 MAP kinase was activated after ischemia and early during reperfusion (<30 min). Treatment with the p38 MAP kinase inhibitor SB-203580 (10 microM) for 30 min during reperfusion, but not the c-Jun NH(2)-terminal kinase inhibitor SP-600125 (10 microM), improved contractility but increased creatine kinase release and infarct size. Cotreatment with SB-203580 and the contractile blocker 2,3-butanedione monoxime (BDM, 20 mM) or the ultra-short-acting beta-blocker esmorol (0.15 mM) for the first 30 min during reperfusion significantly reduced creatine kinase release and infarct size. In vitro mitochondrial ATP generation and myocardial ATP content were significantly increased in the heart cotreated with SB-203580 and BDM during reperfusion. Dystrophin was translocated from the sarcolemma during ischemia and reperfusion. SB-203580 increased accumulation of Evans blue dye in myocytes depleted of sarcolemmal dystrophin during reperfusion, whereas cotreatment with BDM facilitated restoration of sarcolemmal dystrophin and mitigated sarcolemmal damage after withdrawal of BDM. These results suggest that treatment with SB-203580 during reperfusion aggravates myocyte necrosis but concomitant blockade of contractile force unmasks cardioprotective effects of SB-203580.  相似文献   

13.
The activities of rat hepatic subcellular antioxidant enzymes were studied during hepatic ischemia/reperfusion. Ischemia was induced for 30 min (reversible ischemia) or 60 min (irreversible ischemia). Ischemia was followed by 2 or 24 h of reperfusion. Hepatocyte peroxisomal catalase enzyme activity decreased during 60 min of ischemia and declined further during reperfusion. Peroxisomes of normal density (d = 1.225 gram/ml) were observed in control tissues. However, 60 min of ischemia also produced a second peak of catalase specific activity in subcellular fractions corresponding to newly formed low density immature peroxisomes (d = 1.12 gram/ml). The second peak was also detectable after 30 min of ischemia followed by reperfusion for 2 or 24 h. Mitochondrial and microsomal fractions responded differently. MnSOD activity in mitochondria and microsomal fractions increased significantly (p < 0.05) after 30 min of ischemia, but decreased below control values following 60 min of ischemia and remained lower during reperfusion at 2 and 24 h in both organelle fractions. Conversely, mitochondrial and microsomal glutathione peroxidase (GPx) activity increased significantly (p < 0.001) after 60 min of ischemia and was sustained during 24 h of reperfusion. In the cytosolic fraction, a significant increase in CuZnSOD activity was noted following reperfusion in animals subjected to 30 min of ischemia, but 60 min of ischemia and 24 h of reperfusion resulted in decreased CuZnSOD activity. These studies suggest that the antioxidant enzymes of various subcellular compartments respond to ischemia/reperfusion in an organelle or compartment specific manner and that the regulation of antioxidant enzyme activity in peroxisomes may differ from that in mitochondria and microsomes. The compartmentalized changes in hepatic antioxidant enzyme activity may be crucial determinant of cell survival and function during ischemia/reperfusion. Finally, a progressive decline in the level of hepatic reduced glutathione (GSH) and concomitant increase in serum glutamate pyruvate transaminase (SGPT) activity also suggest that greater tissue damage and impairment of intracellular antioxidant activity occur with longer ischemia periods, and during reperfusion.  相似文献   

14.
To investigate cardiac stunning, we recorded intracellular [Ca(2+)], contractions, and electrical activity in isolated guinea pig ventricular myocytes exposed to simulated ischemia and reperfusion. After equilibration, ischemia was simulated by exposing myocytes to hypoxia, acidosis, hyperkalemia, hypercapnia, lactate accumulation, and substrate deprivation for 30 min at 37 degrees C. Reperfusion was simulated by exposure to Tyrode solution. Field-stimulated myocytes exhibited stunning upon reperfusion. By 10 min of reperfusion, contraction amplitude decreased to 43.0 +/- 5.5% of preischemic values (n = 15, P < 0.05), although action potential configuration and sarcoplasmic reticulum Ca(2+) stores, assessed with caffeine, were normal. Diastolic [Ca(2+)] and Ca(2+) transients (fura 2) were also normal in stunned myocytes. In voltage-clamped cells, peak L-type Ca(2+) current was reduced to 47.4 +/- 4.5% of preischemic values at 10 min of reperfusion (n = 21, P < 0.05). Contractions elicited by Ca(2+)-induced Ca(2+) release and the voltage-sensitive release mechanism were both depressed in reperfusion. Our observations suggest that stunning is associated with reduced L-type Ca(2+) current but that alterations in Ca(2+) homeostasis and release are not directly responsible for stunning.  相似文献   

15.
Previously, we have demonstrated the role of nucleoside transport and purine release in post-ischemic reperfusion injury (myocardial stunning) in several canine models of ischemia. Since rabbits are deficient of xanthine oxidase, it is not known whether selective blockade of purine release is beneficial in a rabbit model of coronary artery occlusion and reperfusion (stunning). Therefore, we determined the hemodynamic and metabolic correlates in response to myocardial stunning in the presence or absence of selective nucleoside transport blocker (p-nitrobenzylthioinosine, NBMPR) and adenosine deaminase inhibitor (erythro-9-(2-hydroxy-3-nonyl)adenine, EHNA).Sixty adult anaesthetized rabbits were surgically prepared for hemodynamic measurements. After stabilization period, the left anterior descending coronary artery was occluded for 15 min and reperfused for 30 min. Transmural myocardial biopsies were obtained from the ischemic LAD area and from the non-ischemic posterior (circumflex, CFX) segment of the myocardium.Rabbits (n = 60) were randomly assigned to either the control or the EHNA/NBMPR-treated group (n = 30 each). Each group was further divided to either functional or metabolic groups (n = 15 each subgroup). Each animal received intravenously 30 ml of either a vehicle solution or 100 M EHNA and 25 M NBMPR 10 min before ischemia.Although administration of EHNA/NBMPR did not affect the heart rate, it did cause mild hypotension (about 20-30%). Fifteen minutes of LAD occlusion resulted in significant ATP depletion and concomitant accumulation of nucleosides in both groups (p < 0.05 vs. baseline and non-ischemic CFX segment). AMP was higher in the LAD compared to the CFX segment. Significant accumulation of adenosine was observed in the treated group compared to the control group.It is concluded that EHNA/NBMPR induced site specific entrapment of adenosine of nucleoside transport in the rabbit heart, in vivo.  相似文献   

16.
In recent years, increasing amount of information has indicated that in some tissues the main damage due to oxidative stress does not occur during reperfusion but during the ischemic episode of the ischemia/reperfusion event. In this respect, serious doubts were also expressed about the origin of the increased amounts of free radicals which were believed to form and reported to appear in the perfusate during the first minutes of reperfusion. Moreover, speculative explanations were only available for a second increase in lipid peroxidation which was reported to occur after postischemic reperfusions exceeding 60 min. For this reasons, the present paper reports the results of investigation of ischemia/reperfusion injury to the cervical (CE) and thoracolumbal (ThL) segments of the spinal cord (SP) after an acute 25 min occlusion of the abdominal aorta, followed by 60-120 min reperfusion of the ischemic areas in rabbits. In CE and ThL segments of the SP, the ischemia induced: 1) a decrease in activities of superoxide dismutase (SOD), from 57.35+/-6.36 to 45.27+/-5.45 U x mg(-1) x min(-1) (S.E.M., 20.92%), p < 0.01, and from 58.36+/-5.45 to 33.00+/-4.55 U x mg(-1) x min(-1) (S.E.M., 43.46%), p < 0.001; 2) a significant decrease in gamma-glutamyl transpeptidase (gamma-GTP), from 114.66+/-1.45 to 99.88+/-4.4 micromol p-nitroaniline x mg(-1) x h(-1) (S.E.M. 12.89 %), p < 0.05 and from 112.24+/-1.20 to 95.09+/-2.40 micromol p-nitroaniline x mg(-1) x h(-1) (S.E.M., 16.26%), p < 0.05; 3) a considerable depression in Na,K-ATPase activity, from 7.14+/-0.58 to 5.08+/-0.32 micromol Pi x mg(-1) x h(-1) (S.E.M., 28.86%), p < 0.01, and from 7.23+/-0.11 to 5.09+/-0.31 micromol Pi x mg(-1) x h(-1) (S.E.M., 30.00%), p < 0.01. The Na,K-ATPase activity became decreased by ischemia and remained depressed significantly (all p < 0.01) throughout the experiment. After 60 min of reperfusion, SOD activity in the CE segment and that of gamma-GTP in the CE as well as ThL segments recovered, even slightly surpassing the control values, wheras SOD activity in the ThL segment became stabilized again close to its post-ischemic value. Prolonged, reperfusion for 120 min resulted in a further increase in gamma-GTP activity in the CE and ThL segments (to 132.79 and 132.30%, p < 0.01), and this was accompanied by a slight (p > 0.05) elevation in the content of conjugated dienes as well as by a new wave of depression of the SOD activity (p < 0.05) in both the CE and the ThL segment. From our results it could be concluded that all considerable damage to the spinal cord occurred during the ischemic period. In the period of reperfusion reparative changes started to predominate. This is in accordance with the recent discoveries indicating that, when coupled with an increase in tissue gamma-GTP activity, the post-ischemic reparative changes comprise a replenishment of the cell glutathione pool. This process is accompanied with a gradual increase in H2O2 production that results in repeatead inhibition of the SOD activity and a tendency to conjugated dienes formation.  相似文献   

17.
The purpose of this study was to investigate the hypothesis that a single, extended session of heavy exercise would be effective in inducing adaptations in energy metabolism during exercise in the absence of increases in oxidative potential. Ten healthy males [maximal aerobic power (VO(2 peak)) = 43.4 +/- 2.2 (SE) ml x kg(-1) x min(-1)] participated in a 16-h training session involving cycling for 6 min each hour at approximately 90% of maximal oxygen consumption. Measurements of metabolic changes were made on tissue extracted from the vastus lateralis during a two-stage standardized submaximal cycle protocol before (Pre) and 36-48 h after (Post) the training session. At Pre, creatine phosphate (PCr) declined (P < 0.05) by 32% from 0 to 3 min and then remained stable until 20 min of exercise at 60% VO(2 peak) before declining (P < 0.05) by a further 35% during 20 min of exercise at 75% VO(2 peak). Muscle lactate (mmol/kg dry wt) progressively increased (P < 0.05) from 4.59 +/- 0.64 at 0 min to 17.8 +/- 2.7 and 30.9 +/- 5.3 at 3 and 40 min, respectively, whereas muscle glycogen (mmol glucosyl units/kg dry wt) declined (P < 0.05) from a rest value of 360 +/- 24 to 276 +/- 31 and 178 +/- 36 at similar time points. During exercise after the training session, PCr and glycogen were not as depressed (P < 0.05), and increases in muscle lactate were blunted (P < 0.05). All of these changes occurred in the absence of increases in oxidative potential as measured by the maximal activities of citrate synthase and malate dehydrogenase. These findings are consistent with other studies, namely, that muscle metabolic adaptations to regular exercise are an early adaptive event that occurs before increases in oxidative potential.  相似文献   

18.
The effects of total ischemia and subsequent reperfusion on the formation of anaerobic metabolism products and their release into myocardial effluent were studied in isolated guinea pig hearts. During 30-min ischemia myocardial ATP and phosphocreatine decreased to 34 and 15% of the initial levels, respectively; this was accompanied by alanine formation and approximately stoichiometric glutamate loss. The increase in malate in ischemic myocardium corresponded to the anaplerotic flux aspartate----oxaloacetate----malate; the succinate production being commensurable to alpha-ketoglutarate formation in the alanine aminotransferase reaction. The release of lactate, alanine, succinate, creatine and pyruvate trace amounts into the myocardial effluent was observed during an early phase of the reperfusion using 1H-NMR. The rates of metabolite release reduced as follows: lactate much greater than alanine greater than succinate greater than creatine. By the 30th min of the reperfusion the decrease in these metabolites tissue contents was accompanied by the recovery of ATP and phosphocreatine levels up to 65 and 90% of the initial ones, respectively. The data obtained demonstrate that the formation and the release of succinate, alanine and creatine from the heart as well as of lactate may indicate profound disturbances in energy metabolism.  相似文献   

19.
Isolated Langendorff-perfused rat hearts, after 30 min of preperfusion, were submitted to increasing times of global normothermic ischemia (1, 2, 5, 10, 20 and 30 min) or to the same times of ischemia followed by 30 min of reperfusion. Analysis of malondialdehyde, ascorbic acid, oxypurines, nucleosides, nicotinic coen-zymes and high-energy phosphates was carried out by HPLC on neutralized perchloric acid extracts of freeze-clamped tissues. In addition, maximum rate of intra-ventricular pressure development and cardiac output of malondialdehyde, lactate dehydrogenase, oxypurines and nucleosides were monitored during both preperfusion and reperfusion. Besides decreasing energy metabolites and nicotinic coenzyme pool, prolonged ischemia produced oxidation of significant amounts of hypoxanthine and xanthine to uric acid and generation of detectable levels of malondialdehyde (0.002 μmollg dry weight). After oxygen and substrate readmission, tissue and perfusate malondialdehyde increased only if previous ischemia was longer than 5 min, while lactate dehydrogenase was detected in perfusate of reperfused hearts following 10, 20, and 30 min of ischemia. Highest values of tissue malondialdehyde and total malondialdehyde output were recorded in reperfused hearts subjected to 30 min of ischemia (0.043 μmol/g dry weight and 0.069 μmol/ 30 min/g dry weight, respectively). Since tissue malondialdehyde was observed without detectable lactate dehydrogenase release in perfusate, it might be stated that malondialdehyde generation (i.e., lipid peroxidation) temporally preceded lactate dehydrogenase release (i.e., tissue necrosis). In reperfused hearts, evaluation of myocardial energy state and of mechanical recovery allowed us to determine times of ischemia beyond which reperfusion did not positively affect these metabolic and functional parameters. Main findings are that, under these experimental conditions, lipid peroxidation might be the cause and not the consequence of tissue necrosis and that duration of ischemia might be the factor deciding effectiveness of reperfusion.  相似文献   

20.
The effects of allopurinol (AP) on functional and metabolic recovery of the isolated rat heart after global ischemia were studied. Hearts were subjected to aerobic perfusion (30 min), cardioplegic infusion (5 min), normothermic ischemia (37 min), and reperfusion (50 min) which was started with secondary cardioplegic infusion (10 min). AP was injected into rats (44 mg/kg body wt ip 2 h before heart excision) and added to cardioplegic solution (2 mM) prior and after ischemia. AP treatment significantly improved postischemic recovery of the function and reduced the leakage of lactate dehydrogenase from reperfused hearts. These beneficial effects were accompanied by a better preservation of tissue content of ATP, the total adenine nucleotides, phosphocreatine, and the total creatine at the end of reperfusion. Inhibition of xanthine oxidase by AP substantially decreased pre- and postischemic release of xanthine and uric acid and increased postischemic release of hypoxanthine into the coronary effluent. Despite this, AP treated hearts did not exhibit a reduction in hydroxyl radical adduct formation in the effluents at reperfusion assessed by the spin-trap measurements. The results suggest that AP may protect the heart from ischemia/reperfusion injury due to enhanced energy provision rather than by prevention of oxygen-derived free radical formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号