首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.

Background  

Various software tools are available for the display of pairwise linkage disequilibrium across multiple single nucleotide polymorphisms. The HapMap project also presents these graphics within their website. However, these approaches are limited in their use of data from multiallelic markers and provide limited information in a graphical form.  相似文献   

3.
D Gianola  S Qanbari  H Simianer 《Heredity》2013,111(4):275-285
The analysis of systems involving many loci is important in population and quantitative genetics. An important problem is the study of linkage disequilibrium (LD), a concept relevant in genome-enabled prediction of quantitative traits and in exploration of marker–phenotype associations. This article introduces a new estimator of a LD parameter (ρ2) that is much easier to compute than a maximum likelihood (or Bayesian) estimate of a tetra-choric correlation. We examined the conjecture that the sampling distribution of the estimator of ρ2 could be less frequency dependent than that of the estimator of r2, a widely used metric for assessing LD. This was done via an empirical evaluation of LD in 806 Holstein–Friesian cattle using 771 single-nucleotide polymorphism (SNP) markers and of HapMap III data on 21 991 SNPs (chromosome 3) observed in 88 unrelated individuals from Tuscany. Also, 1600 haplotypes over a region of 1 Mb simulated under the coalescent were used to estimate LD using the two measures. Subsequently, a simulation study compared the new estimator with that of r2 using several scenarios of LD and allelic frequencies. From these studies, it is concluded that ρ2 provides a useful metric for the study of LD as the distribution of its estimator is less frequency dependent than that of the standard estimator of r2.  相似文献   

4.
The genotyping of closely spaced single-nucleotide polymorphism (SNP) markers frequently yields highly correlated data, owing to extensive linkage disequilibrium (LD) between markers. The extent of LD varies widely across the genome and drives the number of frequent haplotypes observed in small regions. Several studies have illustrated the possibility that LD or haplotype data could be used to select a subset of SNPs that optimize the information retained in a genomic region while reducing the genotyping effort and simplifying the analysis. We propose a method based on the spectral decomposition of the matrices of pairwise LD between markers, and we select markers on the basis of their contributions to the total genetic variation. We also modify Clayton's "haplotype tagging SNP" selection method, which utilizes haplotype information. For both methods, we propose sliding window-based algorithms that allow the methods to be applied to large chromosomal regions. Our procedures require genotype information about a small number of individuals for an initial set of SNPs and selection of an optimum subset of SNPs that could be efficiently genotyped on larger numbers of samples while retaining most of the genetic variation in samples. We identify suitable parameter combinations for the procedures, and we show that a sample size of 50-100 individuals achieves consistent results in studies of simulated data sets in linkage equilibrium and LD. When applied to experimental data sets, both procedures were similarly effective at reducing the genotyping requirement while maintaining the genetic information content throughout the regions. We also show that haplotype-association results that Hosking et al. obtained near CYP2D6 were almost identical before and after marker selection.  相似文献   

5.
One hundred fifty-four unrelated French Caucasian subjects were typed for 11 RFLPs at or near the APOA1-C3-A4 gene cluster on the long arm of chromosome 11. All subjects belonged to families having lived in the Toulouse area (in the southwest of France) for over three generations. Allele frequencies for each RFLP were in agreement with previous studies in Caucasian populations for the APOA1/SstI marker. Pairwise linkage disequilibrium was determined. Among the 55 pairs studied, 30 are newly reported. Only three significant nonrandom associations were found: APOA1/MspI-3'APOC3/SstI, APOA1/MspI-3'APOA4/XbaI, and APOA4/DraI-APOA4/XbaI. Extended 11-marker haplotypes were constructed. Haplotype frequencies were estimated by the maximum-likelihood procedure and compared to expected frequencies calculated under the assumption of equilibrium. Among the 37 estimated haplotypes, seven containing at least four nonrandomly associated alleles showed markedly increased frequencies. These results, obtained in a geographically homogeneous population, confirm the existence of disequilibrium in the apolipoprotein cluster, but to a lower extent than previously reported in Caucasian populations, which were geographically more heterogeneous.  相似文献   

6.
Understanding the pattern of linkage disequilibrium (LD) in the human genome is important both for successful implementation of disease-gene mapping approaches and for inferences about human demographic histories. Previous studies have examined LD between loci within single genes or confined genomic regions, which may not be representative of the genome; between loci separated by large distances, where little LD is seen; or in population groups that differ from one study to the next. We measured LD in a large set of locus pairs distributed throughout the genome, with loci within each pair separated by short distances (average 124 bp). Given current models of the history of the human population, nearly all pairs of loci at such short distances would be expected to show complete LD as a consequence of lack of recombination in the short interval. Contrary to this expectation, a significant fraction of pairs showed incomplete LD. A standard model of recombination applied to these data leads to an estimate of effective human population size of 110,000. This estimate is an order of magnitude higher than most estimates based on nucleotide diversity. The most likely explanation of this discrepancy is that gene conversion increases the apparent rate of recombination between nearby loci.  相似文献   

7.
OBJECTIVES: Linkage disequilibrium (LD) between closely spaced SNPs can be accommodated in linkage analysis by specifying the multi-SNP haplotype frequencies, if known. Phased haplotypes in candidate regions can provide gold standard haplotype frequency estimates, and may be of inherent interest as markers. We evaluated the effects of different methods of haplotype frequency estimation, and the use of marker phase information, on linkage analysis of a multi-SNP cluster in a candidate region for Alzheimer's disease (AD). METHODS: We performed parametric linkage analysis of a five-SNP cluster in extended pedigrees to compare the use of: (1) haplotype frequencies estimated by molecular phase determination, maximum likelihood estimation, or by assuming linkage equilibrium (LE); (2) AD families or controls as the frequency source; and (3) unphased or molecularly phased SNP data. RESULTS: There was moderate to strong pairwise LD among the five SNPs. Falsely assuming LE substantially inflated the LOD score, but the method of haplotype frequency estimation and particular sample used made little difference provided that LD was accommodated. Use of phased haplotypes produced a modest increase in the LOD score over unphased SNPs. CONCLUSIONS: Ignoring LD between markers can lead to substantially inflated evidence for linkage in LOD score analysis of extended pedigrees with missing data. Use of marker phase information in linkage analysis may be important in disease studies where the costs of family recruitment and phenotyping greatly exceed the costs of phase determination.  相似文献   

8.
9.
Whole-genome association studies will be a powerful tool to identify genes responsible for common human diseases. A crucial task for association-mapping studies is the evaluation of the relationship between linkage disequilibrium (LD) and physical distance for the genomic region under study. Since it is known that the extent of LD is nonuniformly distributed throughout the human genome, the required marker density has to be determined specifically for the region under study. These regions may be related to isochores and chromosomal bands, as indicated by earlier cytogenetic findings concerning chiasma distribution in meiosis. Therefore we analyzed the neurofibromatosis type 1 (NF1) gene region on chromosome 17q11.2, which is characterized by a nonuniform LD pattern and an L1-to-H2 isochore transition. Long-range LD within the NF1 gene was found to extend over 200 kb (D' = 0.937) in the L1 isochore, whereas, in the neighboring H2 isochore, no LD is apparent between markers spaced by 26 kb (D' = 0.144). Recombination frequencies derived from the LD are at.00019 (high LD) and.01659 (low LD) per megabase, the latter identical to the average value from segregation analysis. The boundary between these regions coincides precisely with a transition in the GC content of the sequences, with low values (37.2%) in the region with long-range LD and high values (51%) in the other. Our results suggest a correlation between the LD pattern and the isochores, at least in the NF1 region. If this correlation can be generalized, the marker densities required for association studies have to be adjusted to the regional GC content and may be chosen according to the isochores.  相似文献   

10.
Most multipoint linkage programs assume linkage equilibrium among the markers being studied. The assumption is appropriate for the study of sparsely spaced markers with intermarker distances exceeding a few centimorgans, because linkage equilibrium is expected over these intervals for almost all populations. However, with recent advancements in high-throughput genotyping technology, much denser markers are available, and linkage disequilibrium (LD) may exist among the markers. Applying linkage analyses that assume linkage equilibrium to dense markers may lead to bias. Here, we demonstrated that, when some or all of the parental genotypes are missing, assuming linkage equilibrium among tightly linked markers where strong LD exists can cause apparent oversharing of multipoint identity by descent (IBD) between sib pairs and false-positive evidence for multipoint model-free linkage analysis of affected sib pair data. LD can also mimic linkage between a disease locus and multiple tightly linked markers, thus causing false-positive evidence of linkage using parametric models, particularly when heterogeneity LOD score approaches are applied. Bias can be eliminated by inclusion of parental genotype data and can be reduced when additional unaffected siblings are included in the analysis.  相似文献   

11.
Recent studies have indicated that the four most common mutations account for 78% of mutant alleles in the glucose-6-phosphatase (G6Pase) gene. A significant fraction of mutant alleles remain unidentified. Thus, informative polymorphic markers are necessary for linkage analysis in carrier testing and prenatal diagnosis in families where mutations can not be identified. The common mutations appear to be ethnic-specific, suggesting that the individual mutations may have a common founder. With the recent discovery of the nucleotide 1176 polymorphism, we have studied whether these mutations are in linkage disequilibrium with the polymorphism. The results of polymerase chain reaction/allele-specific oligonucleotide analysis show that nucleotide 1176 C is in linkage disequilibrium with mutations R83 C and R83H, and with the splicing mutation 727G→T. The 1176 T polymorphism is in linkage disequilibrium with 459insTA. A GT repeat polymorphism has also been found. However, its heterozygosity is low. The 1176 nucleotide polymorphic marker can be used in carrier and prenatal diagnosis of GSD1a families that have unidentified mutations and are informative for this marker. Received: 27 January 1998 / Accepted: 17 April 1998  相似文献   

12.
The COL6A1 and COL6A2 (collagen VI) gene cluster on chromosome 21 is a candidate region for defects leading to congenital heart anomalies in Down's syndrome. We report a variable number of tandem repeats (VNTR) and a restriction fragment length polymorphism (RFLP) in this gene region, detected using a COL6A1 cDNA probe. Linkage disequilibrium relationships were studied among the RFLPs of this gene cluster. The RFLP reported here shows no significant linkage disequilibrium with any others in the region. It has a polymorphism information content value of 0.27, raising the informativity of the locus.  相似文献   

13.
Summary Haplotypes of the insulin receptor gene were resolved in parents from Scandinavian nuclear families by studying the segregation of seven restriction fragment length polymorphisms (RFLPs). Of 97 unrelated parents, 41 had non-insulin-dependent diabetes mellitus (NIDDM). Considerable linkage disequilibrium in the region of the insulin receptor gene was found. Pairwise non-random associations were found between proximate RFLP sites, indicating the absence of recombinational hot spots between these sites. Thus, association studies between DNA polymorphisms at this locus and disease susceptibility genes could well be feasible in this population. Differences in the distribution of insulin receptor haplotypes were examined between NIDDM patients and healthy subjects. However, the differences observed were not statistically significant.  相似文献   

14.
Hereditary hemochromatosis is a recessive disease of iron metabolism widely distributed among people of European descent. Most patients have inherited the causative mutation from a single ancestor. In the course of cloning the hemochromatosis gene, genotypes were generated for these samples at 43 microsatellite repeat markers that span the 6.5-Mb hemochromatosis gene region. The data used to reconstruct the ancestral haplotype across the hemochromatosis gene region are presented in this paper. Portions of the ancestral haplotype were present on 85% of patient chromosomes in this sample and ranged in size from approximately 500 kb to greater than 6.5 Mb. Only one marker, D6S2239, was identical by descent on all of the patient chromosomes containing the ancestral mutation. In contrast, only 3 of the 128 control chromosomes, or 2.3%, carried the ancestral mutation and the surrounding ancestral haplotype. To test new methods for gene finding using linkage disequilibrium we analyzed the genotypic data with a multilocus maximum likelihood method (DISMULT) and a single point method (DISLAMB), both written to analyze data generated from multi-allelic markers. The maximum value from DISLAMB analysis occurred at marker D6S2239, which is less than 20 kb from the hemochromatosis gene HFE, consistent with the haplotype analysis. The peak of the multi-point analysis was 700 kb from HFE, possibly due to the nonuniform recombination rates within this large region. The recombination rate appears to be lower than expected centromeric of the HFE gene. Received: 10 June 1997 / Accepted: 4 December 1997  相似文献   

15.
A panel of glial tumors consisting of 11 low grade gliomas, 9 anaplastic gliomas, and 29 glioblastomas were analyzed for loss of heterozygosity by examining at least one locus for each chromosome. The frequency of allele loss was highest among the glioblastomas, suggesting that genetic alterations accumulate during glial tumor development. The most common genetic alteration detected involved allele losses of chromosome 10 loci; these losses were observed in all glioblastomas and in three of the anaplastic gliomas. In order to delineate which chromosome 10 region or regions were deleted in association with glial tumor development, a deletion mapping analysis was performed, and this revealed the partial loss of chromosome 10 in eight glioblastomas and two of the anaplastic gliomas. Among these cases, three distinct regions of chromosome 10 were indicated as being targeted for deletion: one telomeric region on 10p and both telomeric and centromeric locations on 10q. These data suggest the existence of multiple chromosome 10 tumor suppressor gene loci whose inactivation is involved in the malignant progression of glioma.  相似文献   

16.
Eucalyptus camaldulensis and E. tereticornis are closely related species commonly cultivated for pulp wood in many tropical countries including India. Understanding the genetic structure and linkage disequilibrium (LD) existing in these species is essential for the improvement of industrially important traits. Our goal was to evaluate the use of simple sequence repeat (SSR) loci for species discrimination, population structure and LD analysis in these species. Investigations were carried out with the most common alleles in 93 accessions belonging to these two species using 62 SSR markers through cross amplification. The polymorphic information content (PIC) ranged from 0.44 to 0.93 and 0.36 to 0.93 in E. camaldulensis and E. tereticornis respectively. A clear delineation between the two species was evident based on the analysis of population structure and species-specific alleles. Significant genotypic LD was found in E. camaldulensis, wherein out of 135 significant pairs, 17 pairs showed r(2)≥0.1. Similarly, in E. tereticornis, out of 136 significant pairs, 18 pairs showed r(2)≥0.1. The extent of LD decayed rapidly showing the significance of association analyses in eucalypts with higher resolution markers. The availability of whole genome sequence for E. grandis and the synteny and co-linearity in the genome of eucalypts, will allow genome-wide genotyping using microsatellites or single nucleotide polymorphims.  相似文献   

17.
Analysis of linkage between the gene of autosomal dominant congenital cataract and 10 polymorphic loci localized in 1, 2, 3, 4, 6, 13, 16 chromosomes was performed. Some loci were only informative for this purpose: Mucin located in 1q21, NH24 located in the 2-nd chromosome and Pi located in 1q21 32.17. No linkage was observed for the cataract gene and the loci located in chromosomes 1 and 2. The maximum estimate of likelihood is approx. 0.2 for the cataract gene and the Pi locus located in 14q32.1, though the value of the maximal lod score was only, 0.732.  相似文献   

18.
Refractive error is a highly heritable quantitative trait responsible for considerable morbidity. Following an initial genome-wide linkage study using microsatellite markers, we confirmed evidence for linkage to chromosome 3q26 and then conducted fine-scale association mapping using high-resolution linkage disequilibrium unit (LDU) maps. We used a preliminary discovery marker set across the 30-Mb region with an average SNP density of 1 SNP/15 kb (Map 1). Map 1 was divided into 51 LDU windows and additional SNPs were genotyped for six regions (Map 2) that showed preliminary evidence of multi-marker association using composite likelihood. A total of 575 cases and controls selected from the tails of the trait distribution were genotyped for the discovery sample. Malecot model estimates indicate three loci with putative common functional variants centred on MFN1 (180,566 kb; 95% confidence interval 180,505–180, 655 kb), approximately 156 kb upstream from alternate-splicing SOX2OT (182,595 kb; 95% CI 182,533–182,688 kb) and PSARL (184,386 kb; 95% CI 184,356–184,411 kb), with the loci showing modest to strong evidence of association for the Map 2 discovery samples (p<10−7, p<10−10, and p=0.01, respectively). Using an unselected independent sample of 1,430 individuals, results replicated for the MFN1 (p=0.006), SOX2OT (p=0.0002), and PSARL (p=0.0005) gene regions. MFN1 and PSARL both interact with OPA1 to regulate mitochondrial fusion and the inhibition of mitochondrial-led apoptosis, respectively. That two mitochondrial regulatory processes in the retina are implicated in the aetiology of myopia is surprising and is likely to provide novel insight into the molecular genetic basis of common myopia.  相似文献   

19.
The possibility of using linkage disequilibrium mapping in natural plant populations was assessed. In studying linkage disequilibrium among 137 mapped AFLP markers in four populations of sea beet (Beta vulgaris ssp. maritima (L.) Arcang.) it was shown that tightly linked loci could be detected by screening for associations. It was hypothesized that the short distances spanned by linkage disequilibrium enable markers that are very tightly linked to a target gene to be identified. The hypothesis was tested by whole-genome screening of AFLP markers for association with the gene for the annual growth habit, the B gene, in a sample of 106 sea beets. Despite the dominant nature of AFLP, two markers showing significant linkage disequilibrium with the B gene were detected. The results indicate the potential use of linkage disequilibrium for gene mapping in natural plant populations.  相似文献   

20.
The gene for Batten disease (juvenile-onset neuronal ceroid lipofuscinosis, or Spielmeyer-Sjögren disease), CLN3, maps to 16p11.2-12.1. Four microsatellite markers--D16S288, D16S299, D16S298, and SPN--are in strong linkage disequilibrium with CLN3 in 142 families from 16 different countries. These markers span a candidate region of approximately 2.1 cM. CLN3 is most prevalent in northern European populations and is especially enriched in the isolated Finnish population, with an incidence of 1:21,000. Linkage disequilibrium mapping was applied to further refine the localization of CLN3 in 27 Finnish families by using linkage disequilibrium data and information about the population history of Finland to estimate the distance of the closest markers from CLN3. CLN3 is predicted to lie 8.8 kb (range 6.3-13.8 kb) from D16S298 and 165.4 kb (132.4-218.1 kb) from D16S299. Enrichment of allele "6" at D16S298 (on 96% of Finnish and 92% of European CLN3 chromosomes) provides strong evidence that the same major mutation is responsible for Batten disease in Finland as in most other European countries and that it is therefore not a Finnish mutation. Genealogical studies show that Batten disease is widespread throughout the densely populated regions of Finland. The ancestors of two Finnish patients carrying rare alleles "3" and "5" at D16S298 in heterozygous form originate from the southwestern coast of Finland, and these probably represent other foreign mutations. Analysis of the number and distribution of CLN3 haplotypes from 12 European countries provides evidence that more than one mutation has arisen in Europe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号