首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Phospholipids and cholesterol were assayed in homogenates and microsomal fractions from the cerebral cortex of summer-active, winter-torpid, and winter-active Yakutian ground squirrels (Citellus undulatus). Ultrastructural analysis of both microsomal fraction and intact neurons was performed by serial ultramicrotomy. The levels of sphingomyelin (SM), phosphatidylserine (PS), and phosphatidylethanolamine (PEA) were decreased in homogenates from the cerebral cortex of winter ground squirrels compared with the summer-active animals, while the levels of phosphatidylcholine (PC) and cardiolipin (CL) were increased. The level of cholesterol was decreased in the cerebral cortex of winter-torpid animals compared with both winter-active and summer-active animals, and the level of total phospholipids was decreased in comparison to the summer-active animals. Three-dimensional reconstruction of serial membrane profiles displayed the microsomal fraction to be an interconnected system of cisterns and vesicles, which corresponds to endoplasmic reticulum and dictyosomes (Golgi stacks) of intact neurons. In winter the content of PC was increased in the microsomal fraction, while the contents of lysophosphatidylcholine (LPC), PS, phosphatidylinositol (PI), and SM were decreased. In winter-torpid animals compared with the winter-active ones the contents of total phospholipids, PEA, LPC, and cholesterol were decreased. As for the winter-active ground squirrels, their lipid contents did not differ from those in the summer-active animals, but LPC content was decreased. The changes in microsomal lipid contents in intact pyramidal neurons throughout the hibernation were accompanied by disassembly of dictyosomes and endoplasmic reticulum (ER), including the decomposition of polyribosomes to monosomes. The ultrastructural analysis of nucleoli, ER, and dictyosomes of both winter-active and torpid ground squirrels showed a direct correlation between the increasing contents of both cholesterol and total phospholipids (mainly PEA and LPC) in microsomes and the structural recovery of endoplasmic reticulum, Golgi stacks, and nucleoli in intact pyramidal neurons. A role of seasonal variations in lipid contents of brain cells in their adaptation to low temperature is discussed. We also propose an involvement of cholesterol in the activation of protein-synthesizing function of endoplasmic reticulum and Golgi stacks in intact neurons.  相似文献   

2.
冬眠是动物应对冬季低温和食物匮乏的一种生存策略。达乌尔黄鼠(Spermophilus dauricus)是典型的贮脂类冬眠动物。为研究冬眠动物肾脏的适应机制,本实验采用组织学、血液生化分析及酶联免疫方法检测了夏季活动期(7月)、冬眠期(12月)和早春出眠后(3月)达乌尔黄鼠肾单位形态学及血清肌酐、尿素和抗利尿激素(ADH)的变化,并用qPCR方法检测了肾脏水通道蛋白基因(AQP1、AQP2和AQP3)、ADH受体(V2R)及内皮型一氧化氮合酶基因(eNOS)的表达。结果发现,冬眠期和早春出眠期的达乌尔黄鼠肾小球密度、近曲小管和远曲小管的相对管径、皮质部近曲小管数与远曲小管数比值均低于夏季活动期;冬眠期血清肌酐和尿素浓度高于夏季活动期和早春出眠期,ADH浓度及其受体V2R基因表达低于夏季活动期;冬眠期AQP1基因表达高于早春出眠期,AQP3基因表达低于夏季活动期,AQP2基因表达无显著差异;冬眠期eNOS基因表达低于早春出眠期。这些结果表明冬眠的达乌尔黄鼠表现出较低的肾功能;不同时期的水通道蛋白,eNOS及ADH表现出适应性的功能调节。该实验结果丰富了对冬眠动物肾脏适应机制的认识。  相似文献   

3.
毛敏  杨明  刘新宇 《兽类学报》2022,42(4):420-431
冬眠哺乳动物的肠道微生物会发生季节性变化,同时在冬眠期间动物处于禁食状态,对肠道微生物的多样性和组成也产生影响。本研究通过16S rRNA基因高通量测序分析达乌尔黄鼠育肥阶段 (起始育肥期、快速育肥期、育肥完成期) 和冬眠阶段 (冬眠早期、冬眠晚期、出眠期) 共6个时期盲肠菌群的多样性、组成和功能,并通过冗余分析 (RDA) 探究其生理特征与菌群组成和功能之间的关系,揭示达乌尔黄鼠盲肠菌群的季节性变化。菌群组成的分析显示达乌尔黄鼠盲肠菌群主要由厚壁菌门 (Firmicutes)、拟杆菌门 (Bacteroidetes) 和疣微菌门 (Verrucomicrobia) 组成。与其他时期相比,冬眠早期厚壁菌门的相对丰度减少,拟杆菌门和疣微菌门的相对丰度增加。在Alpha多样性中,起始育肥期、快速育肥期和冬眠早期的Chao1和ACE指数显著低于出眠期,育肥完成期的Simpson指数显著低于快速育肥期 (P < 0.05) 。通过加权和非加权的UniFrac距离矩阵的主坐标分析发现盲肠菌群均显示出了明显的季节性聚类。PICRUSt分析中,丁酸代谢等代谢通路在育肥阶段富集,冬眠阶段集中在氮代谢等相关通路中。RDA分析显示达乌尔黄鼠不同时期的生理特征与其盲肠菌群的组成和功能显著相关。本研究表明,冬眠使达乌尔黄鼠盲肠菌群的多样性和相对丰度发生改变,盲肠菌群组成和功能的变化调节了达乌尔黄鼠的生理代谢,使达乌尔黄鼠适应季节性的环境变化。  相似文献   

4.
The total Ca-ATPase activity in the sarcoplasmic reticulum (SR) membrane fraction isolated from skeletal muscles of winter hibernating ground squirrel Spermophilus undulatus is 2.2-fold lower than in preparations obtained from summer active animals. This is connected in part with 10% decrease of the content of Ca-ATPase protein in SR membranes. However, the enzyme specific activity calculated with correction for its content in SR preparations is still 2-fold lower in hibernating animals. Analysis of the protein composition of SR membranes has shown that in addition to the decrease in Ca-ATPase content in hibernating animals, the amount of SR Ca-release channel (ryanodine receptor) is decreased 2-fold, content of Ca-binding proteins calsequestrin, sarcalumenin, and histidine-rich Ca-binding protein is decreased 3-4-fold, and the amount of proteins with molecular masses 55, 30, and 22 kD is significantly increased. Using the cross-linking agent cupric–phenanthroline, it was shown that in SR membranes of hibernating ground squirrels Ca-ATPase is present in a more aggregated state. The affinity of SR membranes to the hydrophilic fluorescent probe ANS is higher and the degree of excimerization of the hydrophobic probe pyrene is lower (especially for annular lipids) in preparations from hibernating than from summer active animals. The latter indicates an increase in the microviscosity of the lipid environment of Ca-ATPase during hibernation. We suggest that protein aggregation as well as the changes in protein composition and/or in properties of lipid bilayer SR membranes can result in the decrease of enzyme activity during hibernation.  相似文献   

5.
达乌尔黄鼠实验室饲养、繁殖及其冬眠阵   总被引:1,自引:0,他引:1  
为探索实验室条件下达乌尔黄鼠饲养与繁殖的方法及冬眠阵的发生规律,参照野生黄鼠冬眠洞穴的主要生态环境参数,建立人工冬眠屋,采用传统锯末技术记录冬眠阵。结果显示: (1) 处于春季繁殖期的黄鼠应以大鼠饲料为主,辅以少量黄瓜等,夏季活跃期交叉饲喂大鼠饲料与兔饲料,辅以多水的瓜果蔬菜,秋季育肥期以大鼠饲料为主,辅以高脂肪高蛋白的花生、豆类等。(2)雌鼠怀孕期为28 d 左右,哺乳期约一个月,雌鼠每窝产仔4 ~ 8 只,平均5.52 只;初生幼鼠两周内忌换垫料,并避免将异味带入鼠房。(3)黄鼠冬眠期从当年11月下旬至次年3 月上旬,平均93.95 d;冬眠阵睡眠时长平均7. 44 d,阵间激醒时长平均1.36 d,睡眠天数占整个冬眠期的89.9% ;整个冬眠期,黄鼠冬眠阵平均7. 55 个。(4)2009 年秋至2011 年春季,自野外共捕回黄鼠185 只, 存活146 只,存活率78. 9% 。在2006、2009 和2011 年的黄鼠繁殖期,共配对25 对,产仔138 只,成活92 只,成活率为66.7% 。结果表明,野生达乌尔黄鼠可在人工饲养条件下实现繁殖,并可在人工冬眠屋成功冬眠。  相似文献   

6.
Synaptosomes and mitochondria were isolated from the brains of warm-adapted, hibernating, and cold-acclimated golden hamsters (Mesocricetus auratus). Lipid extracts of these subcellular fractions were prepared and assayed for plasmenylethanolamine (ethanolamine plasmalogen) and cholesterol levels. The ganglioside composition of synaptosomes was also determined. Samples from the hibernating animals showed characteristic changes in lipid composition. These changes include decreases in plasmenylethanolamine levels and a shift in the ganglioside composition toward a higher percentage of the more polar gangliosides. Those animals which were exposed to cold and did not hibernate (cold-acclimated) showed no such changes. Fatty acid analyses of synaptosomal and mitochondrial ethanolamine glycerophospholipids demonstrated a similar trend. Samples from hibernators showed decreases in 16:0, 18:0, and 22:6 (n-3), and increases in 16:1, 18:1, and 20:4 (n-6) fatty acids. No changes were detectable in samples from cold-acclimated animals, indicating that hibernating and cold-acclimated hamsters represent chemically distinct populations.  相似文献   

7.
达乌尔黄鼠冬眠期间体温的变化和冬眠模式   总被引:2,自引:0,他引:2  
用植入式半导体温度记录元件iButton 记录了达乌尔黄鼠冬眠季节及其前后的体温,分析了其冬眠模式和体温调节特点。结果显示:1)实验室条件下,达乌尔黄鼠冬眠季节长短的个体差异较大,可以分成深冬眠型、
少冬眠型和不冬眠型三种类型;2)达乌尔黄鼠在冬季表现出深冬眠阵(最低体温Tbm in <20℃ ,冬眠阵的持续时间BD >24 h)、短冬眠阵(Tbmin < 20℃ , BD≤24h)和日眠阵(Tbmin ≥20℃ , BD≤24 h)3 种类型,最低体温分别
为2.54℃ ± 0.35℃ 、10.05℃ ± 1.97℃ 和23.09℃ ± 0.40℃ ,彼此之间差异显著。日眠阵阵间产热阶段的最高体温为38.09℃ ±0.17℃ ,高于深冬眠阵(37.31℃ ±0.15℃ )和短冬眠阵(37.22℃ ±0.31℃ ); 3)深冬眠阵和日
眠阵中最低体温均与环境温度显著相关,冬眠过程中的最低体温为-2.43℃ ;4)深冬眠过程中,多数个体可以短时(≤3 h)耐受- 2℃ ~ 0℃ 的低温,激醒或继续维持深冬眠,无致死效应,但长时间(15 h)或过度低温
(- 5℃ 以下)的条件下,深冬眠的达乌尔黄鼠被激醒(70% )或死亡(30% ),不能持续冬眠; 5)入眠前10 d体温日波动幅度显著增加,高于出眠后的日体温波动,且多数个体入眠前出现体温的“试降”。表明,冬眠前
入眠的准备阶段,动物的体温调节已开始发生变化;冬季日眠的调节机制可能与冬眠不同;短时- 2℃ ~ 0℃ 的体温对深冬眠的达乌尔黄鼠无致死效应。  相似文献   

8.
Hypothermia is commonly used to restrict organ damage during preservation of tissue, but does not offer complete protection. Organ damage after reperfusion/rewarming is amongst others caused by an impairment of vascular properties, particularly endothelium-dependent vasodilatation. We hypothesized that hibernating small animals, which frequently cycle through periods of deep cooling (torpor) and full rewarming (arousal), employ specific mechanisms to preserve vascular function after cooling and reperfusion. Therefore we measured contraction of aortic tissue of hibernating European ground squirrels after 24 h and 7 days of torpor, arousal (1.5 h) and in non-hibernating animals. To assess the role of nitric oxide (NO), experiments were performed in the absence and presence of the NO-synthesis inhibitor, L-NMMA (10(-4) M). Maximum contraction to phenylephrine and angiotensin II was doubled in 7-days torpid animals without a shift in EC50, compared to the other 3 groups. Maximum contraction to KCl was doubled in 7-days torpid animals compared to the arousal group and non-hibernating animals. Relaxation to acetylcholine (ACh) and sodium nitrite in phenylephrine precontracted rings did not differ between groups. In the presence of L-NMMA, the maximum of concentration-response curves for all three vasoconstrictors was increased by about 30% in the arousal group, but unaffected in other groups. L-NMMA completely inhibited ACh-induced relaxation in 24-h torpid animals and non-hibernating animals, but only partially in 7-days torpid animals and in the arousal group. From this we conclude that vascular adaptation proceeds during torpor. Further, increased contractility of aortic tissue during long torpor returns to normal within 1.5 hours of arousal, which is associated with an increased basal NO synthesis. In addition, involvement of NO in agonist-mediated relaxation differs between the various stages of hibernation.Thus, hibernating animals have effectively developed mechanisms to preserve vascular function after cooling and rewarming.  相似文献   

9.
Abstract

Wheel‐running activity of forty antelope ground squirrels, Ammospermophilus leucurus, was monitored for several months in both an outdoor cage and in the laboratory. The squirrels demonstrated a highly diurnal pattern which persisted in “constant conditions.” After removal from the field the initial free‐running period was close to 24 hrs, but typically lengthened in a nearly linear fashion at least for the first few months. There was no evidence of any difference in this trend for squirrels, in D/D, L/L 100 lx, 250 lx or 1200 lx. Eventually, about 90 percent of the squirrels had periods longer than 24 hrs.

The synchronizing capacity of the natural photoperiod was used to “catch the free‐running rhythm” and thereby demonstrate a response curve. Synchronization occurred by a shortening of the period when the time of sunrise was between 125° and 0° (subjective night) and by a lengthening of the period when the time of sunrise was between 0° and 125° (subjective day).

To more thoroughly examine the underlying mechanisms of phase control, phase‐response curves based on sixty one light‐pulse experiments were constructed. Comparisons of curves based on 6‐hr and 15‐min pulses, showed that the integral action of light is important (i.e., the entire pulse is involved in phase shifting). It was found that light pulses not only affected the phase of the rhythm but also the phase. Large phase shifts were usually associated with decreases in free‐running period. Several hypotheses on the controlling mechanisms were advanced.  相似文献   

10.
11.
12.
Free ion concentration of some divalent heavy metal ions such as Mn2+, Co2+, Ni2+, Cd2+ and Zn2+ in the synaptosomal suspension was measured to determine binding with synaptosomes isolated from rat brain cortex. A dual wavelength spectrophotometer was utilized to monitor the absorbance changes of murexide raised by stepwise addition of these ions (as chloride salts). Such titration experiments of the synaptosomal suspension revealed that a part of the added divalent cation such as Mn2+, Co2+ or Ni2+ was almost instantaneously bound to synaptosomes in isotonic NaCl media. Our previous study (Kamino, Uyesaka & Inouye, J. Membrane Biol. 17:13, 1974) demonstrated that raised external K+ resulted in a specific noncompetitive inhibition of synaptosomal Ca-binding. Just like the Ca-binding, Mn-, Co- or Ni-binding was almost completely depressed by high external K+ or ruthenium red when the free concentration of the cations was 10 mum or less, while at higher concentrations the binding was not affected. The present results indicate that tested divalent cations bind with both "Ca-binding sites" and "non-Ca-binding sites" of synaptosomal membrane, the nature of the binding sites of both being quite different: the former is sensitive to high external K+ and to ruthenium red but the latter is not.  相似文献   

13.
Summary Ruthenium red combines with isolated synaptosomes, resulting in strong inhibition of their Ca2+-binding. In isotonic saline media, however, the dye-induced inhibition of Ca2+-binding is significantly greater than that expected for the amount of bound dye and Hill's exponent of the Ca2+-binding decreases to 1 with an increase in the amount of the dye bound. On the other hand in isotonic mannitol-sucrose solution, inhibition of synaptosomal Ca2+-binding brought about by the dye is proportional to the amount of dye bound. Based on these results, the effects of the dye on the co-operative nature of synaptosomal Ca2+-binding is discussed.  相似文献   

14.
Dielectric measurements were performed on the suspensions of synaptosomes isolated from rat brain cortex. The synaptosomes in buffered salt media showed typical dielectric dispersions caused by the presence of a thin limiting membrane of sufficiently low conductivity. An analysis of the dielectric data revealed that the electric conductivity of the synaptosome interior was about 37 % of the external medium conductivity under isotonic conditions and that the dielectric constant for the interior phase was about 35. The membrane capacitance (0.7 ΜF cm−2) remained constant irrespective of nature and concentration of the univalent salts examined. Significant reduction in both the conductivity and the dielectric constant of the internal phase can be explained theoretically provided that some intra-synaptosomal structure (synaptic vesicles and/or small mitochondria) of non-conducting nature occupies about 50 % of the particulate volume, the remainder being in equilibrium with the external salt medium.  相似文献   

15.
Pyruvate dehydrogenase (PDH) is a vital regulatory enzyme that catalyzes the conversion of pyruvate into acetyl-CoA and connects anaerobic glycolysis to aerobic TCA cycle. Post-translational inhibition of PDH activity via three serine phosphorylation sites (pS232, pS293, and pS300) regulate the metabolic flux through the TCA cycle, decrease glucose utilization, and facilitate lipid metabolism during times of nutrient deprivation. As metabolic readjustment is necessary to survive hibernation, the purpose of this study was to explore the post-translational regulation of pyruvate dehydrogenase and the expression levels of four mitochondrial serine/threonine kinases (PDHKs), during torpor-arousal cycles in liver, heart, and skeletal muscle of 13-lined ground squirrels. A combination of Luminex multiplex technology and western immunoblotting were used to measure the protein expression levels of total PDH, three phosphorylation sites, S232, 293, 300, and the expression levels of the corresponding PDH kinases (PDHK1-4) during euthermic control, entrance, late torpor, and interbout arousal. Liver and heart showed strong inhibitory PDH regulation, indicating a possible decrease in glucose utilization and a possible preference for β-oxidation of fatty acids during periods of low temperature and starvation. On the contrary, skeletal muscle showed limited PDH regulation via phosphorylation, possibly due to alternate controls. Phosphorylation of PDH may play an important role in regulating aerobic and anaerobic metabolic responses during hibernation in the 13-lined ground squirrel.  相似文献   

16.
达乌尔黄鼠(Spermophilusdauricus)是国内研究冬眠生理学的主要模式动物,且日益为医学研究所关注。实验室条件下繁殖种群具有明确生活史特征,是相关研究的理想对象,但以往研究中,达乌尔黄鼠实验室条件下繁殖成功率及后代成活率均很低。本研究通过采取丰富饲料种类、雄性出眠后的暖温暂养、“双笼配对”等措施,对实验室条件下越冬达乌尔黄鼠进行配对,从21对动物中成功繁殖出18窝子代,繁殖成功率85.7 %。78只子代饲养至3月龄,仍有67只存活,存活率为85.9 %。通过本实验,得出改进达乌尔黄鼠实验室条件下繁殖的主要措施如下:(1)繁殖期母鼠及发育期幼鼠,除饲喂标准大鼠饲料外,适量添加幼犬粮、胡萝卜,以补充营养;(2)出眠的雄性达乌尔黄鼠放入18℃房间暂养2周,有助于其性腺发育,促进繁殖成功;(3)“双笼配对”能有效地降低外界干扰,减少动物的杀婴行为。    相似文献   

17.
Surface temperatures (Ts) of eight 13-lined ground squirrels and seven yellow-bellied marmots were measured during arousal from hibernation using infrared thermography (IRT) and recorded on videotape. Animals aroused normally in 5 degrees C cold rooms. Body temperatures were recorded during arousal using both cheek pouch and interscapular temperature probes. Warming rate in arousal was exponential. Mean mass specific warming rates show the squirrels warm faster (69.76 degrees C/h/kg) than the marmots (4.49 degrees C/h/kg). Surface temperatures (Ts) for 11 regions were measured every few minutes during arousal. The smaller ground squirrel shows the ability to perfuse distal regions without compromising rise in deep body temperature (Tb). All squirrel Ts's remained low as Tb rose to 18 degrees C, at which point, eyes opened, squirrels became more active and all Ts's rose parallel to Tb. Marmot Ts remained low as Tb rose initially. Each marmot showed a plateau phase where Tb remained constant (mean Tb 20.3+/-1.0 degrees C, duration 9.4+/-4.1 min) during which time all Ts's rose, and then remained relatively constant as Tb again began to rise. An anterior to posterior Ts gradient was evident in the ground squirrel, both body and feet. This gradient was only evident in the feet of the marmots.  相似文献   

18.
Dielectric measurements were performed on the suspensions of synaptosomes isolated from rat brain cortex. The synaptosomes in buffered salt media showed typical dielectric dispersions caused by the presence of a thin limiting membrane of sufficiently low conductivity. An analysis of the dielectric data revealed that the electric conductivity of the synaptosome interior was about 37% of the external medium conductivity under isotonic conditions and that the dielectric constant for the interior phase was about 35. The membrane capacitance (0.7 muF cm-2) remained constant irrespective of nature and concentration of the univalents salts examined. Significant reduction in both the conductivity and the dielectric constant of the internal phase can be explained theoretically proveded that some intra-synaptosomal structural (synaptic vesicles and/or small mitochondria) of non-conducting nature occupies about 50% of the particulate volume, the remainder being in equilibrium with the external salt medium.  相似文献   

19.
J. Neurochem. (2012) 122, 934-940. ABSTRACT: Hibernation is an adaptation to overcome periods of resource limitation often associated with extreme climatic conditions. The hibernation season consists of prolonged bouts of torpor that are interrupted by brief interbout arousals. Physiological mechanisms regulating spontaneous arousals are poorly understood, but may be related to a need for gluconeogenesis or elimination of metabolic wastes. Glutamate is derived from glutamine through the glutamate-glutamine cycle and from glucose via the pyruvate carboxylase pathway when nitrogen balance favors formation of glutamine. This study tests the hypothesis that activation of NMDA-type glutamate receptors (NMDAR) maintains torpor in arctic ground squirrel (arctic ground squirrel (AGS); Urocitellus parryii). Administration of NMDAR antagonists MK-801 (5?mg/kg, i.p.) that crosses the blood-brain barrier and AP5 (5?mg/kg, i.p.) that does not cross the blood-brain barrier induced arousal in AGS. Central administration of MK-801 (0.2, 2, 20 or 200?μg; icv) to hibernating AGS failed to induce arousal. Results suggest that activation of NMDAR at a peripheral or circumventricular site is necessary to maintain prolonged torpor and that a decrease in glutamate at these sites may contribute to spontaneous arousal in AGS.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号