首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although apoptosis-dependent involution of malignant tumors is associated with a number of non-surgical treatments including chemotherapy, most solid tumors, including gastric cancers, respond poorly to these therapies. In the hope of overcoming the resistance mechanism against non-surgical therapies, we studied the apoptosis-resistance mechanism in cells of gastric cancers as a model system. During the course of our study on apoptotic machinery in human gastric cancer cell lines, we previously found a rapid and efficient induction of apoptosis by sorbitol. In the present study, we demonstrated that the down-regulation of PKC activity in response to sorbitol is a major factor in the induction of apoptotic cell death in gastric cancer cells.  相似文献   

2.
Overcoming apoptosis resistance to chemotherapy and radiation may lead to a reduction in gastric cancer death. We hypothesize that the apoptotic machinery in gastric cancer cells is dependent upon specific cellular conditions. In the course of our study of the expression of apoptosis-related genes in human gastric cancer cell lines, we have identified a cDNA clone which predicts an alternative form of caspase-9. The caspase-9 variant, which we designated as caspase-9 beta, retained a truncated structure of native caspase-9 without its catalytic domain and was expressed in seven cell lines from human gastric cancer. Among the cell lines examined, MKN-28 cells, which exhibited the most resistance against apoptotic stimuli, expressed the highest level of caspase-9 beta. The induction of apoptosis by staurosporine or actinomycin D was markedly suppressed in caspase-9 beta-transfected HeLa cells. These results are consistent with our hypothesis that the caspase-9 beta may be an endogenous dominant-negative molecule which attenuates apoptotic activity in human gastric cancer cells.  相似文献   

3.
We examined chemosensitivity to 5-fluorouracil (5-FU) in four human gastric cancer cell lines, by analyzing the expression of p53 and its related genes. Treatment with 1mM 5-FU induced variable degrees of apoptosis in the cultured cells. The apoptotic indices 72 h after treatment were approximately 14% in MKN-74 (wild-type p53 gene), 12% in MKN-45 (wild-type), 3% in MKN-28 (mutated) and 0.5% in KATO-III cells (deleted), respectively. On the other hand, 50 M 5-FU had little effect on the induction of apoptosis in MKN-74 cells, the value being approximately 2% after 72 h. Induction of P53 expression was noted 3 h after initiating the treatment, followed by the induction of P21/Waf1 after 6 h in both MKN-74 and MKN-45 cells. The same expression mode was noted in MKN-74 treated with 50 M 5-FU. Conversely, the level of P53 expression was constant in MKN-28 cells and absent in KATO-III cells, in which P21/Waf1 had never been induced. The Bax/Bcl-2 expression ratio was gradually elevated for up to 72 h in MKN-74 and MKN-45 cells treated with 1mM 5-FU; in contrast, it was unchanged in MKN-28 and KATO-III cells, and MKN-74 treated with 50 M 5-FU. These results might indicate that (1) 1mM 5-FU induces apoptosis in cultured gastric cancer cells carrying the wild-type p53 gene, but not those carrying the mutated type or a gene deletion, and (2) the elevated Bax/Bcl-2 expression ratio plays a more crucial role than the higher expression of P21/Waf1 in the induction of p53- gene dependent apoptosis.  相似文献   

4.
A variety of human cancer cells are resistant to Fas ligand and anti-Fas antibody induced apoptosis. Previously, we reported that human gastric carcinoma cell lines were resistant to the anti-Fas antibody, CH-11, without interferon-gamma pretreatment in vitro. Cyclooxygenase (COX)-2 is known to be expressed in many human malignancies, and is correlated with tumor progression and resistance to apoptosis. This study examined whether NS398, a COX-2 inhibitor, inhibited cell proliferation and increased Fas-mediated apoptosis in human gastric carcinoma cell lines. Treatment of NS398 inhibited cell proliferation in MKN-45, which expressed the highest level of COX-2 among seven human gastric carcinoma cell lines, in a dose- and time-dependent manner, in contrast to less prominent effects in KATO-III, which expresses no COX-2. Although the treatment of CH-11 induced apoptosis in both cells, the simultaneous treatment of NS398 and CH-11 remarkably induced apoptosis, as confirmed by Hoechst 33258 staining and the terminal deoxynucleotidyl transferase- mediated dUTP-digoxigenin nick-end labeling (TUNEL) method in MKN-45. Flow cytometric analysis also revealed the increased pre-G1 fraction by the simultaneous treatment. The treatment of NS398 induced upregulation of Bad and PTEN, and downregulation of phosphorylated Akt (Thr308). These findings suggest that COX-2 might inhibit Fas-mediated apoptosis in human gastric carcinoma cell lines, especially MKN-45, by modulating PTEN and Akt.  相似文献   

5.
目的:探讨G蛋白偶联胆汁酸受体1(G-protein coupled bile acid receptor 1,GPBAR1/TGR5)对胃癌细胞增殖、迁移和侵袭的影响。方法:免疫组织化学染色方法(Immunohistochemistry,IHC)检测胃癌及癌旁组织芯片中TGR5表达情况;qRT-PCR及Western blot检测胃癌细胞系中TGR5表达水平;小干扰RNA处理AGS、MKN-45胃癌细胞后构建TGR5敲减细胞系,慢病毒载体转染胃癌SGC-7901细胞构建TGR5过表达细胞系;CCK-8实验、平板克隆形成实验、裸鼠皮下移植瘤实验检测TGR5对细胞增殖的影响;流式细胞仪检测TGR5对细胞周期及凋亡的影响;Tanswell实验检测TGR5对胃癌细胞迁移及侵袭的影响;Western blot检测上皮间充质转化(Epithelial-mesenchymal transition,EMT)相关分子β-连环蛋白(β-catenin)、锌脂蛋白转录因子(Snail)、E盒结合锌指蛋白(Zinc finger E-box binding homeobox 1,ZEB)1在AGS、MKN-45及SGC-7901胃癌细胞中的表达。结果:TGR5在胃癌及癌旁组织中均有表达,胃癌组织TGR5高表达率(41.0%)显著高于癌旁组织(9.5%),伴肠化生癌旁组织TGR5高表达率(50%)显著高于不伴肠化生的癌旁组织(0%),胃癌组织TGR5表达与肿瘤大小相关。TGR5在正常人胃上皮永生化细胞株GES-1及各胃癌细胞系中均有表达。TGR5表达敲低的AGS和MKN-45细胞增殖能力减弱、凋亡率显著升高、侵袭和迁移能力显著降低。过表达TGR5的SGC-7901细胞增殖能力增强、克隆形成能力提高、凋亡率明显减低、侵袭和迁移能力显著升高。此外,TGR5过表达显著上调了间质细胞标志物β-catenin、Snail、ZEB1的表达水平。结论:TGR5能够增强胃癌细胞增殖及迁移能力,并抑制细胞凋亡。TGR5可能通过EMT途径介导胃癌细胞转移。  相似文献   

6.
Breast cancer is one of the most common cancers amongst women in North America. Many current anti-cancer treatments, including ionizing radiation, induce apoptosis via DNA damage. Unfortunately, such treatments are non-selective to cancer cells and produce similar toxicity in normal cells. We have reported selective induction of apoptosis in cancer cells by the natural compound pancratistatin (PST). Recently, a novel PST analogue, a C-1 acetoxymethyl derivative of 7-deoxypancratistatin (JCTH-4), was produced by de novo synthesis and it exhibits comparable selective apoptosis inducing activity in several cancer cell lines. Recently, autophagy has been implicated in malignancies as both pro-survival and pro-death mechanisms in response to chemotherapy. Tamoxifen (TAM) has invariably demonstrated induction of pro-survival autophagy in numerous cancers. In this study, the efficacy of JCTH-4 alone and in combination with TAM to induce cell death in human breast cancer (MCF7) and neuroblastoma (SH-SY5Y) cells was evaluated. TAM alone induced autophagy, but insignificant cell death whereas JCTH-4 alone caused significant induction of apoptosis with some induction of autophagy. Interestingly, the combinatory treatment yielded a drastic increase in apoptotic and autophagic induction. We monitored time-dependent morphological changes in MCF7 cells undergoing TAM-induced autophagy, JCTH-4-induced apoptosis and autophagy, and accelerated cell death with combinatorial treatment using time-lapse microscopy. We have demonstrated these compounds to induce apoptosis/autophagy by mitochondrial targeting in these cancer cells. Importantly, these treatments did not affect the survival of noncancerous human fibroblasts. Thus, these results indicate that JCTH-4 in combination with TAM could be used as a safe and very potent anti-cancer therapy against breast cancer and neuroblastoma cells.  相似文献   

7.
Previously, we established HEp2 cell lines which express the US3 protein kinase of herpes simplex virus type 2 upon induction with IPTG. Using these cells, we examined whether expression of US3 is sufficient to protect cells from apoptotic cell death induced by sorbitol. Cells expressing US3 showed significantly reduced nuclear fragmentation in the degree that DNA fragmentation and caspase-3 activation were suppressed. It is known that stressors such as osmotic shock and UV irradiation induce the activation of the JNK (c-Jun N-terminal kinase), which can lead to apoptotic cell death. Expression of US3 resulted in the suppression of sorbitol-induced phosphorylation of JNK and MKK4/SEK1, suggesting that the suppression of apoptotic cell death was due to the attenuation of JNK activity.  相似文献   

8.
9.
The majority of gastric cancers express high levels of human telomerase template RNA (hTR) that is essential for cellular survival. In this study, we examined whether antisense hTR (ahTR) had a growth inhibitory effect on three gastric cancer cell lines, MKN-1, MKN-28, and TMK-1, through transfection via an ahTR expression vector. Both the ahTR transfected MKN-1 and TMK-1 cells changed morphologically into multinucleate giant cells, and subsequently underwent cell death. Conversely, the ahTR transfected MKN-28 cells survived over 50 PDs in spite of telomere shortening. Surprisingly, high levels of telomerase activity were observed in the telomere-reduced cells. Furthermore, the expression of mRNAs for p21/Waf1/Cip1/Sdi1, IRF-1 and IFN inducible 6-16 was higher in the telomere-reduced cells than in the parental cells. These results suggest overall that the ahTR expression may bring about telomere shorting, leading to cell death or cellular senescence in gastric cancer cells.  相似文献   

10.
Background: The application of chimeric antigen receptor (CAR) NK cells in solid tumors is hindered by lack of tumor-specific targets and inefficient CAR NK cell efficacy. It has been reported that mesothelin (MSLN) may be an ideal immunotherapy target for gastric cancer. However, the feasibility of using anti-MSLN CAR NK cells to treat gastric cancer remains to be studied.Methods: MSLN expression in primary human gastric cancer, normal tissues and cell lines were detected. MSLN and CD19 targeted CAR NK-92 (MSLN- and CD19-CAR NK) cells were constructed, purified and verified. N87, MKN-28, AGS and Huh-7 cells expressing the GFP and luciferase genes were transduced. Cell- and patient-derived xenograft (PDX) were established via NSG mice. The ability of MSLN-CAR NK cells to kill MSLN-positive gastric cancer cells were evaluated in vitro and in vivo.Results: MSLN-CAR NK cells can specifically kill MSLN-positive gastric cancer cells (N87, MKN-28 and AGS), rather than MSLN negative cell (Huh-7), in vitro. Moreover, compared with parental NK-92 cells and CD19-CAR NK cells, stronger cytokine secretions were secreted in MSLN-CAR NK cells cocultured with N87, MKN-28 and AGS. Furthermore, MSLN-CAR NK cells can effectively eliminate gastric cancer cells in both subcutaneous and intraperitoneal tumor models. They could also significantly prolong the survival of intraperitoneally tumor-bearing mice. More importantly, the potent antitumor effect and considerable NK cell infiltration were observed in the patient-derived xenograft treated with MSLN-CAR NK cells, which further warranted the therapeutic effects of MSLN-CAR NK cells to treat gastric cancer.Conclusion: These results demonstrate that MSLN-CAR NK cells possess strong antitumor activity and represent a promising therapeutic approach to gastric cancer.  相似文献   

11.
12.
13.
Background and purposeGastric cancer is one of the major malignancies worldwide. Epiberberine (EPI) is a major alkaloid from Coptis chinensis Franch and the antitumor property of EPI remains poorly understood.MethodThe inhibition on gastric cancer cells was observed by MTT assays and colony formation experiments. The apoptosis, cell cycle, and reactive oxygen species (ROS) and mitochondrial membrane potential (ΔΨm) in gastric cancer cells were analyzed by Flow cytometry. The anti-tumor effect of EPI was evaluated with the MKN-45-beraring nude mice, and the potential mechanisms were explored by RNA-seq, qPCR, siRNA silencing and western blotting.ResultsEPI inhibited the proliferation of human gastric cancer cell lines MKN-45 (harboring wild-type p53) and HGC-27 (harboring mutant p53) in a dose dependent manner. EPI induced the apoptosis and cell cycle arrest in these two cell lines, of which MKN-45 cells are more sensitive to EPI than HGC-27 cells. Further experiments indicated that EPI induced the accumulation of ROS and decreased of ΔΨm in MKN-45 cells. The significant differentially expressed genes obtained by RNA-seq were distinctly enriched in the p53 signaling pathway. The apoptosis induced by EPI in MKN-45 cells would be effectively inhibited with the treatment of p53 siRNA and p53 inhibitor PFT-α. Western blotting demonstrated that EPI diminished the expression of Bcl-2 and XIAP, and increased those of p53, Bax, p21, p27, Cytochrome C and Cleaved-caspase 3. Animal experiments confirmed that EPI significantly alleviated tumor growth in MKN-45 xenograft mice via p53/Bax pathway.ConclusionsThese data indicated that EPI could be a novel anti-tumor candidate against MKN-45-related gastric cancer via targeting p53-dependent mitochondria-associated pathway.  相似文献   

14.
The induction of apoptotic cell death is a significant mechanism of tumor cells under the influence of radio-/chemotherapy, and resistance to these treatments has been linked to some cancer cell lines with a low propensity for apoptosis. The present study aimed to investigate the enhanced effects and mechanisms in apoptosis and the cycle distribution of HL-60 cells, a human leukemia cell line lacking a functional p53 protein, after combination treatment with arsenic trioxide (ATO) and irradiation (IR). Our results indicated that combined treatment led to increased cytotoxicity and apoptotic cell death in HL-60 cells, which was correlated with the activation of cdc-2 and increased expression of cyclin B, the induction of intracellular reactive oxygen species (ROS) generation, the loss of mitochondria membrane potential, and the activation of caspase-3. The combined treatment of HL-60 cells pre-treated with Z-VAD or NAC resulted in a significant reduction in apoptotic cells. In addition, activation of JNK and p38 MAPK may be involved in combined treatment-mediated apoptosis. The data suggest that a combination of IR and ATO could be a potential therapeutic strategy against p53-deficient leukemia cells.  相似文献   

15.
The present study reported that the ubiquitin ligase Cbl-b was up-regulated during anthracycline-induced apoptosis in two cell lines, RBL-2H3 leukemia cells and MGC803 gastric cancer cells. Overexpression of Cbl-b strongly promoted the cytotoxic and apoptosis-inducing effects of anthracyclines, while a dominant negative (DN) Cbl-b mutation abolished these effects in both cell lines. Further investigation revealed that mitochondrial depolarization was enhanced by Cbl-b and decreased by Cbl-b (DN) in RBL-2H3 cells. Moreover, overexpression of Cbl-b significantly suppressed ERK activation, and Cbl-b (DN) strongly enhanced both ERK and Akt activation. Altogether, these results indicate that Cbl-b sensitized both leukemia and gastric cancer cells to anthracyclines by activating the mitochondrial apoptotic pathway and modulating the ERK and Akt survival pathways.  相似文献   

16.
For gastric cancers, the antineoplastic activity of cannabinoids has been investigated in only a few reports and knowledge regarding the mechanisms involved is limited. We have reported previously that treatment of gastric cancer cells with a cannabinoid agonist significantly decreased cell proliferation and induced apoptosis. Here, we evaluated the effects of cannabinoids on various cellular mediators involved in cell cycle arrest in gastric cancer cells. AGS and MKN-1 cell lines were used as human gastric cancer cells and WIN 55,212-2 as a cannabinoid agonist. Cell cycles were analyzed by flow cytometry and western blotting. Treatment with WIN 55,212-2 arrested the cell cycle in the G0/G1 phase. WIN 55,212-2 also upregulated phospho-ERK1/2, induced Kip1/p27 and Cip1/WAF1/p21 expression, decreased cyclin D1 and cyclin E expression, decreased Cdk 2, Cdk 4, and Cdk 6 expression levels, and decreased phospho-Rb and E2F-1 expression. ERK inhibitor decreased the proportion of G0/G1 phase which was induced by WIN 55,212-2. Inhibition of pAKT led to cell cycle arrest in gastric cancer cells. Cell cycle arrest preceded apoptotic response. Thus, this cannabinoid agonist can reduce gastric cancer cell proliferation via G1 phase cell cycle arrest, which is mediated via activation of the MAPK pathway and inhibition of pAKT.  相似文献   

17.
When the gastric mucosa is exposed to various irritants, apoptosis and subsequent gastric mucosal lesion can result in vivo. We here show that gastric irritants induced apoptosis in gastric mucosal cells in primary culture and examined its molecular mechanism. Ethanol, hydrogen peroxide, and hydrochloric acid all induced, in a dose-dependent manner, cell death, apoptotic DNA fragmentation, and chromatin condensation, suggesting that each of these gastric irritants induced apoptosis in vitro. Since each of these irritants decreased the mitochondrial membrane potential and stimulated the release of cytochrome c from mitochondria, gastric irritant-induced apoptosis seems to be mediated by mitochondrial dysfunction. Caspase-3, caspase-8, and caspase-9-like activities were all activated simultaneously by each of these irritants and the activation was concomitantly with cell death and apoptotic DNA fragmentation. Furthermore, pre-treatment of gastric mucosal cells with an inhibitor of caspase-8 suppressed the onset of cell death as well as the stimulation of caspase-3- and caspase-9-like activities caused by each of these gastric irritants. Based on these results, we consider that caspase-8, an initiator caspase, plays an important role in gastric irritant-induced apoptosis.  相似文献   

18.
Gastric cancer has become the third most common cancer around the world. In patients with gastric cancer, the 5-year survival rate is still low. However, the mechanism underlying gastric cancer remains largely unknown. As a glycolytic enzyme, enolase 1 (ENO1) is widely expressed in most tissues. The functions of ENO1 have been reported in various types of cancer. Here in this study, we identified that ENO1 promoted the growth of gastric cancer cells through diverse mechanisms. Our immunohistochemical, bioinformatic and Western blot data showed that ENO1 was significantly overexpressed in human gastric cancer cell lines and tissues. The survival analysis revealed that ENO1 overexpression predicted poor survival in the patients suffering gastric cancer. Knockdown of ENO1 expression repressed the rate of proliferation and capacity of colony formation in two human gastric cancer cell lines (MGC-803 and MKN-45). In addition, knockdown of the expression of ENO1 led to the arrest of the cell cycle at the G1 phase and promoted the apoptosis of MKN-45 and MGC-803 cells. The further microarray and bioinformatic analysis revealed that ENO1 regulated the expression of diverse genes, many of which are involved in the progress of cancer. Taken together, our data demonstrated that ENO1 was an oncogene-like factor and might serve as a promising target for the treatment of human gastric cancer.  相似文献   

19.
Tryptanthrin is a natural product which has been reported to have several medicinal properties. In this study, we tried to investigate the detailed molecular mechanism of its bromo analogue (TBr), a potent cytotoxic agent in the induction of cancer cell death. It was found that TBr primarily targets STAT3 and ERK signaling during the induction of apoptosis in several human leukemia cell lines. In HL-60 cells, TBr treatment caused early down regulation of p-STAT3 with concomitant up regulation of p-ERK which led to the activation of intrinsic and extrinsic pathways of apoptosis. The mechanism of TBr mediated inhibition of p-STAT3 was found to be due to the activation of ubiquitin dependent degradation of tyrosine 705 and serine 727 p-STAT3. As IL-6 is the main driver of the STAT3 pathway, the effect of TBr on cell death was subdued when treated in the combination with IL-6 in HL60 cells. Interestingly, PD98059 significantly reduced the apoptotic effects of TBr, thus showing the direct involvement of p-ERK in TBr mediated cell death. It was further shown that apoptotic protein Bax silencing in HL-60 cells resists TBr mediated ERK dependent apoptosis. In summary, for the first time we report the mechanism of TBr mediated cell death in human leukemia cell lines by targeting STAT3 and ERK pathways.  相似文献   

20.
Molecular iodine (I2) is known to inhibit the induction and promotion of N-methyl-n-nitrosourea-induced mammary carcinogenesis, to regress 7,12-dimethylbenz(a)anthracene-induced breast tumors in rat, and has also been shown to have beneficial effects in fibrocystic human breast disease. Cytotoxicity of iodine on cultured human breast cancer cell lines, namely MCF-7, MDA-MB-231, MDA-MB-453, ZR-75-1, and T-47D, is reported in this communication. Iodine induced apoptosis in all of the cell lines tested, except MDA-MB-231, shown by sub-G1 peak analysis using flow cytometry. Iodine inhibited proliferation of normal human peripheral blood mononuclear cells; however, it did not induce apoptosis in these cells. The iodine-induced apoptotic mechanism was studied in MCF-7 cells. DNA fragmentation analysis confirmed internucleosomal DNA degradation. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling established that iodine induced apoptosis in a time- and dose-dependent manner in MCF-7 cells. Iodine-induced apoptosis was independent of caspases. Iodine dissipated mitochondrial membrane potential, exhibited antioxidant activity, and caused depletion in total cellular thiol content. Western blot results showed a decrease in Bcl-2 and up-regulation of Bax. Immunofluorescence studies confirmed the activation and mitochondrial membrane localization of Bax. Ectopic Bcl-2 overexpression did not rescue iodine-induced cell death. Iodine treatment induces the translocation of apoptosis-inducing factor from mitochondria to the nucleus, and treatment of N-acetyl-L-cysteine prior to iodine exposure restored basal thiol content, ROS levels, and completely inhibited nuclear translocation of apoptosis-inducing factor and subsequently cell death, indicating that thiol depletion may play an important role in iodine-induced cell death. These results demonstrate that iodine treatment activates a caspase-independent and mitochondria-mediated apoptotic pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号