首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several forest understorey achlorophyllous plants, termed mycoheterotrophs (MHs), obtain C from their mycorrhizal fungi. The latter in turn form ectomycorrhizas with trees, the ultimate C source of the entire system. A similar nutritional strategy occurs in some green forest orchids, phylogenetically close to MH species, that gain their C via a combination of MH and photosynthesis (mixotrophy). In orchid evolution, mixotrophy evolved in shaded habitats and preceded MH nutrition. By generalizing and applying this to Ericaceae, we hypothesized that green forest species phylogenetically close to MHs are mixotrophic. Using stable C isotope analysis with fungi, autotrophic, mixotrophic and MH plants as comparisons, we found the first quantitative evidence for substantial fungi-mediated mixotrophy in the Pyroleae, common ericaceous shrubs from boreal forests close to the MH Monotropoideae. Orthilia secunda, Pyrola chlorantha, Pyrola rotundifolia and Chimaphila umbellata acquired between 10.3 and 67.5% of their C from fungi. High N and 15N contents also suggest that Pyroleae nutrition partly rely on fungi. Examination of root fungal internal transcribed spacer sequences at one site revealed that 39 species of mostly endophytic or ectomycorrhizal fungi, including abundant Tricholoma spp., were associated with O. secunda, P. chlorantha and C. umbellata. These fungi, particularly ectomycorrhizal associates, could thus link mixotrophic Pyroleae spp. to surrounding trees, allowing the C flows deduced from isotopic evidence. These data suggest that we need to reconsider ecological roles of understorey plants, which could influence the dynamics and composition of forest communities.  相似文献   

2.
Mycoheterotrophic plants obtain organic carbon from associated mycorrhizal fungi, fully or partially. Angiosperms with this form of nutrition possess exceptionally small ‘dust seeds’ which after germination develop ‘seedlings’ that remain subterranean for several years, fully dependent on fungi for supply of carbon. Mycoheterotrophs which as adults have photosynthesis thus develop from full to partial mycoheterotrophy, or autotrophy, during ontogeny. Mycoheterotrophic plants may represent a gradient of variation in a parasitism–mutualism continuum, both among and within species. Previous studies on plant–fungal associations in mycoheterotrophs have focused on either germination or the adult life stages of the plant. Much less is known about the fungal associations during development of the subterranean seedlings. We investigated germination and seedling development and the diversity of fungi associated with germinating seeds and subterranean seedlings (juveniles) in five Monotropoideae (Ericaceae) species, the full mycoheterotroph Monotropa hypopitys and the putatively partial mycoheterotrophs Pyrola chlorantha, P. rotundifolia, Moneses uniflora and Chimaphila umbellata. Seedlings retrieved from seed sowing experiments in the field were used to examine diversity of fungal associates, using pyrosequencing analysis of ITS2 region for fungal identification. The investigated species varied with regard to germination, seedling development and diversity of associated fungi during juvenile ontogeny. Results suggest that fungal host specificity increases during juvenile ontogeny, most pronounced in the fully mycoheterotrophic species, but a narrowing of fungal associates was found also in two partially mycoheterotrophic species. We suggest that variation in specificity of associated fungi during seedling ontogeny in mycoheterotrophs represents ongoing evolution along a parasitism–mutualism continuum.  相似文献   

3.
? Premise of the study: Mixotrophy is a strategy whereby plants acquire carbon both through photosynthesis and heterotrophic exploitation of mycorrhizal fungi. In Euro-American Pyroleae species studied hitherto, heterotrophy levels vary according to species, sites of study, and possibly light conditions. We investigated mycorrhizal association and mixotrophy in the Asiatic forest species Pyrola japonica, and their plasticity under different light conditions. ? Methods: Pyrola japonica was sampled bimonthly in sunny and shaded conditions from a deciduous broadleaf forest. We microscopically assessed the rate of fungal colonization and sequenced the ITS to identify the mycorrhizal fungi. We measured (13)C and (15)N isotopic abundances in P. japonica as compared with neighboring autotrophic and mycoheterotrophic plants, to evaluate P. japonica's heterotrophy level. ? Key results: Pyrola japonica formed arbutoid mycorrhizas devoid of fungal mantles, with intracellular hyphal coils and a Hartig net. It tended to be more colonized by mycorrhizal fungi in spring and summer. Most associated fungi belonged to ectomycorrhizal taxa, and 84% of identified fungi were Russula spp. Rate of mycorrhizal colonization and Russula frequency tended to be higher in shaded conditions. Both δ(13)C and δ(15)N values of P. japonica were significantly higher in autotrophic plants, showing that about half of the carbon on average was received from mycorrhizal fungi. Both isotopic values negatively correlated with light availability, suggesting higher heterotrophy levels in shaded conditions. ? Conclusions: The mixotrophic P. japonica undergoes changes in mycorrhizal symbionts and carbon nutrition according to light availability. Our results suggest that during Pyroleae evolution, a tendency to increased heterotrophy emerged in the Pyrola/Orthilia clade.  相似文献   

4.
Plants that produce dust seeds can recruit fungi to meet their earliest requirements for carbon and other nutrients. This germination strategy, termed initial mycoheterotrophy, has been well investigated among the orchid family, but there are numerous other plant lineages that have independently evolved mycoheterotrophic germination strategies. One of these lineages is the tribe Pyroleae (Ericaceae). While the fungi associated with mature plants in Pyroleae have been fairly well documented, their mycobionts at the germination and seedling stages are largely unknown. Here, we use an in situ seed baiting experiment along with molecular fingerprinting techniques and phylogenetic tests to identify the fungi associated with seedlings of two Pyroleae species, Pyrola chlorantha and Orthilia secunda. Our results indicate that similar to adult plants, Pyroleae seedlings can associate with a suite of ectomycorrhizal fungi. Some seedlings harboured single mycobionts, while others may have been inhabited by multiple fungi. The dominant seedling mycobiont of both Pyroleae species was a fungus of unknown trophic status in the order Sebacinales. This taxon was also the only one shared among seedlings of both investigated Pyroleae species. We discuss these results juxtaposed to orchids and one additional Pyrola species in the context of ontogenetic shifts in fungal host specificity for mycoheterotrophic nutrition.  相似文献   

5.
Monotropastrum humile is nearly lacking in chlorophyll and obtains its nutrients, including carbon sources, from associated mycorrhizal fungi. We analyzed the mycorrhizal fungal affinity and species diversity of M. humile var. humile mycorrhizae to clarify how the plant population survives in Japanese forest ecosystems. We classified 78 samples of adult M. humile var. humile individuals from Hokkaido, Honshu, and Kyusyu Islands into 37 root mycorrhizal morphotypes. Of these, we identified 24 types as Russula or Lactarius fungal taxa in the Russulaceae, Basidiomycetes, but we could not identify the remaining 13 types as to their genus in the Basidiomycetes. The number of fungal species on M. humile var. humile was the highest in the plant subfamily. The diversity of fungal species revealed its increased trends in natural forests at the stand level, fagaceous vegetation, and cool-temperate climate. The most frequently observed fungus colonized mainly samples collected from sub-alpine forests; the second most frequently observed fungus colonized samples collected from sub-alpine to warm-temperate forests. These results suggest that Japanese M. humile populations are associated with specific but diverse fungi that are common ectomycorrhizal symbionts of various forest canopy trees, indicating a tripartite mycorrhizal relationship in the forest ecosystem.  相似文献   

6.
Mycoheterotrophic species (i.e., achlorophyllous plants obtaining carbon from their mycorrhizal fungi) arose many times in evolution of the Neottieae, an orchid tribe growing in forests. Moreover, chlorophyllous Neottieae species show naturally occurring achlorophyllous individuals. We investigated the fungal associates of such a member of the Neottieae, Epipactis microphylla, to understand whether their mycorrhizal fungi predispose the Neottieae to mycoheterotrophy. Root symbionts were identified by sequencing the fungal ITS of 18 individuals from three orchid populations, including achlorophyllous and young, subterranean individuals. No rhizoctonias (the usual orchid symbionts) were recovered, but 78% of investigated root pieces were colonized by Tuber spp. Other Pezizales and some Basidiomycetes were also found. Using electron microscopy, we demonstrated for the first time that ascomycetes, especially truffles, form typical orchid mycorrhizae. All identified fungi (but one) belonged to taxa forming ectomycorrhizae on tree roots, and four of them were even shown to colonize surrounding trees. This is reminiscent of mycoheterotrophic orchid species that also associate with ectomycorrhizal fungi, although with higher specificity. Subterranean and achlorophyllous E. microphylla individuals thus likely rely on tree photosynthates, and a partial mycoheterotrophy in individuals plants can be predicted. We hypothesize that replacement of rhizoctonias by ectomycorrhizal symbionts in Neottieae entails a predisposition to achlorophylly.  相似文献   

7.
As carnivorous plants acquire substantial amounts of nutrients from the digestion of their prey, mycorrhizal associations are considered to be redundant; however, fungal root endophytes have rarely been examined. As endophytic fungi can have profound impacts on plant communities, we aim to determine the extent of fungal root colonisation of the carnivorous plant Drosera rotundifolia at two points in the growing season (spring and summer). We have used a culture-dependent method to isolate fungal endophytes and diagnostic polymerase chain reaction methods to determine arbuscular mycorrhizal fungi colonisation. All of the roots sampled contained culturable fungal root endophytes; additionally, we have provided molecular evidence that they also host arbuscular mycorrhizal fungi. Colonisation showed seasonal differences: Roots in the spring were colonised by Articulospora tetracladia, two isolates of uncultured ectomycorrhizal fungi, an unidentified species of fungal endophyte and Trichoderma viride, which was present in every plant sampled. In contrast, roots in the summer were colonised by Alatospora acuminata, an uncultured ectomycorrhizal fungus, Penicillium pinophilum and an uncultured fungal clone. Although the functional roles of fungal endophytes of D. rotundifolia are unknown, colonisation may (a) confer abiotic stress tolerance, (b) facilitate the acquisition of scarce nutrients particularly at the beginning of the growing season or (c) play a role in nutrient signalling between root and shoot.  相似文献   

8.
The main objectives of this study were (1) to describe the diversity of mycorrhizal fungal communities associated with Uapaca bojeri, an endemic Euphorbiaceae of Madagascar, and (2) to determine the potential benefits of inoculation with mycorrhizal fungi [ectomycorrhizal and/or arbuscular mycorrhizal (AM) fungi] on the growth of this tree species and on the functional diversity of soil microflora. Ninety-four sporophores were collected from three survey sites. They were identified as belonging to the ectomycorrhizal genera Afroboletus, Amanita, Boletus, Cantharellus, Lactarius, Leccinum, Rubinoboletus, Scleroderma, Tricholoma, and Xerocomus. Russula was the most frequent ectomycorrhizal genus recorded under U. bojeri. AM structures (vesicles and hyphae) were detected from the roots in all surveyed sites. In addition, this study showed that this tree species is highly dependent on both types of mycorrhiza, and controlled ectomycorrhization of this Uapaca species strongly influences soil microbial catabolic diversity. These results showed that the complex symbiotic status of U. bojeri could be managed to optimize its development in degraded areas. The use of selected mycorrhizal fungi such the Scleroderma Sc1 isolate in nursery conditions could be of great interest as (1) this fungal strain is very competitive against native symbiotic microflora, and (2) the fungal inoculation improves the catabolic potentialities of the soil microflora.  相似文献   

9.
Mycorrhizal symbiosis often displays low specificity, except for mycoheterotrophic plants that obtain carbon from their mycorrhizal fungi and often have higher specificity to certain fungal taxa. Partially mycoheterotrophic (or mixotrophic, MX) plant species tend to have a larger diversity of fungal partners, e.g., in the genus Pyrola (Monotropoideae, Ericaceae). Preliminary evidence however showed that the Japanese Pyrola japonica has preference for russulacean fungi based on direct sequencing of the fungal internal transcribed spacer (ITS) region from a single site. The present study challenges this conclusion using (1) sampling of P. japonica in different Japanese regions and forest types and (2) fungal identification by ITS cloning. Plants were sampled from eight sites in three regions, in one of which the fungal community on tree ectomycorrhizal (ECM) tips surrounding P. japonica was also analyzed. In all, 1512 clone sequences were obtained successfully from 35 P. japonica plants and 137 sequences from ECM communities. These sequences were collectively divided into 74 molecular operational taxonomic units (MOTUs) (51 and 33 MOTUs, respectively). MOTUs from P. japonica involved 36 ECM taxa (96 % of all clones), and 17 of these were Russula spp. (76.2 % of all clones), which colonized 33 of the 35 sampled plants. The MOTU composition significantly differed between P. japonica and ECM tips, although shared species represented 26.3 % of the ECM tips community in abundance. This suggests that P. japonica has a preference for russulacean fungi.  相似文献   

10.
? We investigated the fungal symbionts and carbon nutrition of a Japanese forest photosynthetic orchid, Platanthera minor, whose ecology suggests a mixotrophic syndrome, that is, a mycorrhizal association with ectomycorrhiza (ECM)-forming fungi and partial exploitation of fungal carbon. ? We performed molecular identification of symbionts by PCR amplifications of the fungal ribosomal DNA on hyphal coils extracted from P. minor roots. We tested for a (13)C and (15)N enrichment characteristic of mixotrophic plants. We also tested the ectomycorrhizal abilities of orchid symbionts using a new protocol of direct inoculation of hyphal coils onto roots of Pinus densiflora seedlings. ? In phylogenetic analyses, most isolated fungi were close to ECM-forming Ceratobasidiaceae clades previously detected from a few fully heterotrophic orchids or environmental ectomycorrhiza surveys. The direct inoculation of fungal coils of these fungi resulted in ectomycorrhiza formation on P. densiflora seedlings. Stable isotope analyses indicated mixotrophic nutrition of P. minor, with fungal carbon contributing from 50% to 65%. ? This is the first evidence of photosynthetic orchids associated with ectomycorrhizal Ceratobasidiaceae taxa, confirming the evolution of mixotrophy in the Orchideae orchid tribe, and of ectomycorrhizal abilities in the Ceratobasidiaceae. Our new ectomycorrhiza formation technique may enhance the study of unculturable orchid mycorrhizal fungi.  相似文献   

11.
In terrestrial ecosystems, plant roots are colonized by various clades of mycorrhizal and endophytic fungi. Focused on the root systems of an oak‐dominated temperate forest in Japan, we used 454 pyrosequencing to explore how phylogenetically diverse fungi constitute an ecological community of multiple ecotypes. In total, 345 operational taxonomic units (OTUs) of fungi were found from 159 terminal‐root samples from 12 plant species occurring in the forest. Due to the dominance of an oak species (Quercus serrata), diverse ectomycorrhizal clades such as Russula, Lactarius, Cortinarius, Tomentella, Amanita, Boletus, and Cenococcum were observed. Unexpectedly, the root‐associated fungal community was dominated by root‐endophytic ascomycetes in Helotiales, Chaetothyriales, and Rhytismatales. Overall, 55.3% of root samples were colonized by both the commonly observed ascomycetes and ectomycorrhizal fungi; 75.0% of the root samples of the dominant Q. serrata were so cocolonized. Overall, this study revealed that root‐associated fungal communities of oak‐dominated temperate forests were dominated not only by ectomycorrhizal fungi but also by diverse root endophytes and that potential ecological interactions between the two ecotypes may be important to understand the complex assembly processes of belowground fungal communities.  相似文献   

12.
 Although Pinus pinea L. is an important forest species in the Mediterranean region, few reports exist on its ectomycorrhizal associates. Sixty isolates, obtained from fungal sporocarps collected in mixed forests of P. pinea in Catalonia (northeastern Spain), were tested for ectomycorrhiza formation on containerized P. pinea seedlings when applied as mycelial inoculum produced in peat-vermiculite. A total of 17 isolates, in 8 genera (Amanita, Hebeloma, Laccaria, Lactarius, Pisolithus, Rhizopogon, Scleroderma and Suillus), formed ectomycorrhizas and the percentages of mycorrhizal short roots varied among isolates and species from 13% to 89%. Some of these fungi are cited for the first time in association with P. pinea. The results indicate further fungal candidates for controlled inoculation of P. pinea seedlings in the nursery. Accepted: 29 October 1998  相似文献   

13.
Plant dependence on fungal carbon (mycoheterotrophy) evolved repeatedly. In orchids, it is connected with a mycorrhizal shift from rhizoctonia to ectomycorrhizal fungi and a high natural 13C and 15N abundance. Some green relatives of mycoheterotrophic species show identical trends, but most of these remain unstudied, blurring our understanding of evolution to mycoheterotrophy. We analysed mycorrhizal associations and 13C and 15N biomass content in two green species, Neottia ovata and N. cordata (tribe Neottieae), from a genus comprising green and nongreen (mycoheterotrophic) species. Our study covered 41 European sites, including different meadow and forest habitats and orchid developmental stages. Fungal ITS barcoding and electron microscopy showed that both Neottia species associated mainly with nonectomycorrhizal Sebacinales Clade B, a group of rhizoctonia symbionts of green orchids, regardless of the habitat or growth stage. Few additional rhizoctonias from Ceratobasidiaceae and Tulasnellaceae, and ectomycorrhizal fungi were detected. Isotope abundances did not detect carbon gain from the ectomycorrhizal fungi, suggesting a usual nutrition of rhizoctonia‐associated green orchids. Considering associations of related partially or fully mycoheterotrophic species such as Neottia camtschatea or N. nidus‐avis with ectomycorrhizal Sebacinales Clade A, we propose that the genus Neottia displays a mycorrhizal preference for Sebacinales and that the association with nonectomycorrhizal Sebacinales Clade B is likely ancestral. Such a change in preference for mycorrhizal associates differing in ecology within the same fungal taxon is rare among orchids. Moreover, the existence of rhizoctonia‐associated Neottia spp. challenges the shift to ectomycorrhizal fungi as an ancestral pre‐adaptation to mycoheterotrophy in the whole Neottieae.  相似文献   

14.
The plant intermediate wintergreen (Pyrola media, Ericaceae) is in need of conservation action in Scotland. Although widespread, it is locally distributed in dwarf shrub heath and more commonly in Scots pine (Pinus sylvestris) woodlands. A recent study on the mycorrhizal status of Pyrola suggested that they associate with a restricted range of ectomycorrhizal (ECM) fungi. Here, we examined the hypothesis that specialisation by P. media for fungi usually associated with Scots pine is a factor in promoting its occurrence in this habitat. The fungal community associated with the roots of P. media growing in a Scots pine forest was determined by morphotyping, polymerase chain reaction, cloning and sequencing. Molecular identification found 49 taxa representing ecto- and ericoid mycorrhizal fungi, dark septate endophytes, saprotrophs, and fungi of unknown trophic status. The majority of the taxa (67.4%) were Basidiomycota, with 24.4% known to be ECM fungi specific to Pinus sp. or conifers. However, a wide range of other mycorrhizal fungi with varying degrees of host specificity were also found, including taxa usually associated with deciduous hosts. In conclusion, the broad range of mycorrhizal fungi recovered from the roots of P. media suggests that specialization is not a major factor in determining its distribution.  相似文献   

15.
Sebacinales are common mycorrhizal associates of Ericaceae   总被引:3,自引:1,他引:2  
Previous reports of sequences of Sebacinales (basal Hymenomycetes) from ericoid mycorrhizas raised the question as to whether Sebacinales are common mycorrhizal associates of Ericaceae, which are usually considered to associate with ascomycetes. Here, we sampled 239 mycorrhizas from 36 ericoid mycorrhizal species across the world (Vaccinioideae and Ericoideae) and 361 mycorrhizas from four species of basal Ericaceae lineages (Arbutoideae and Monotropoideae) that do not form ericoid mycorrhizas, but ectendomycorrhizas. Sebacinales were detected using sebacinoid-specific primers for nuclear 28S ribosomal DNA, and some samples were investigated by transmission electron microscopy (TEM). Diverging Sebacinales sequences were recovered from 76 ericoid mycorrhizas, all belonging to Sebacinales clade B. Indeed, some intracellular hyphal coils had ultrastructural TEM features expected for Sebacinales, and occurred in living cells. Sebacinales belonging to clade A were found on 13 investigated roots of the basal Ericaceae, and TEM revealed typical ectendomycorrhizal structures. Basal Ericaceae lineages thus form ectendomycorrhizas with clade A Sebacinales, a clade that also harbours ectomycorrhizal fungi. This further supports the proposition that Ericaceae ectendomycorrhizas involve ectomycorrhizal fungal taxa. When ericoid mycorrhizas evolved secondarily in Ericaceae, a shift of mycobionts occurred to ascomycetes and clade B Sebacinales, hitherto not described as ericoid mycorrhizal fungi.  相似文献   

16.
Plant–mycorrhizal fungal interactions are ubiquitous in forest ecosystems. While ectomycorrhizal plants and their fungi generally dominate temperate forests, arbuscular mycorrhizal symbiosis is common in the tropics. In subtropical regions, however, ectomycorrhizal and arbuscular mycorrhizal plants co-occur at comparable abundances in single forests, presumably generating complex community structures of root-associated fungi. To reveal root-associated fungal community structure in a mixed forest of ectomycorrhizal and arbuscular mycorrhizal plants, we conducted a massively-parallel pyrosequencing analysis, targeting fungi in the roots of 36 plant species that co-occur in a subtropical forest. In total, 580 fungal operational taxonomic units were detected, of which 132 and 58 were probably ectomycorrhizal and arbuscular mycorrhizal, respectively. As expected, the composition of fungal symbionts differed between fagaceous (ectomycorrhizal) and non-fagaceous (possibly arbuscular mycorrhizal) plants. However, non-fagaceous plants were associated with not only arbuscular mycorrhizal fungi but also several clades of ectomycorrhizal (e.g., Russula) and root-endophytic ascomycete fungi. Many of the ectomycorrhizal and root-endophytic fungi were detected from both fagaceous and non-fagaceous plants in the community. Interestingly, ectomycorrhizal and arbuscular mycorrhizal fungi were concurrently detected from tiny root fragments of non-fagaceous plants. The plant–fungal associations in the forest were spatially structured, and non-fagaceous plant roots hosted ectomycorrhizal fungi more often in the proximity of ectomycorrhizal plant roots. Overall, this study suggests that belowground plant–fungal symbiosis in subtropical forests is complex in that it includes “non-typical” plant–fungal combinations (e.g., ectomycorrhizal fungi on possibly arbuscular mycorrhizal plants) that do not fall within the conventional classification of mycorrhizal symbioses, and in that associations with multiple functional (or phylogenetic) groups of fungi are ubiquitous among plants. Moreover, ectomycorrhizal fungal symbionts of fagaceous plants may “invade” the roots of neighboring non-fagaceous plants, potentially influencing the interactions between non-fagaceous plants and their arbuscular-mycorrhizal fungal symbionts at a fine spatial scale.  相似文献   

17.
Dust seeds that germinate by obtaining nutrients from symbiotic fungi have evolved independently in orchids and 11 other plant lineages. The fungi involved in this 'mycoheterotrophic' germination have been identified in some orchids and non-photosynthetic Ericaceae, and proved identical to mycorrhizal fungi of adult plants. We investigated a third lineage, the Pyroleae, chlorophyllous Ericaceae species whose partial mycoheterotrophy at adulthood has recently attracted much attention. We observed experimental Pyrola asarifolia germination at four Japanese sites and investigated the germination pattern and symbiotic fungi, which we compared to mycorrhizal fungi of adult plants. Adult P. asarifolia, like other Pyroleae, associated with diverse fungal species that were a subset of those mycorrhizal on surrounding trees. Conversely, seedlings specifically associated with a lineage of Sebacinales clade B (endophytic Basidiomycetes) revealed an intriguing evolutionary convergence with orchids, some of which also germinate with Sebacinales clade B. Congruently, seedlings clustered spatially together, but not with adults. This unexpected transition in specificity and ecology of partners could support the developmental transition from full to partial mycoheterotrophy, but probably challenges survival and distribution during development. We discuss the physiological and ecological traits that predisposed to the repeated recruitment of Sebacinales clade B for dust seed germination.  相似文献   

18.
Soil fungi play a crucial role in ecosystem functioning and there is increasing evidence that exotic plants invading forests can affect soil fungal communities. We examined potential effects of the invasive plant Impatiens glandulifera on hyphal biomass of ectomycorrhizal fungi, their genetic diversity and the diversity of other soil fungi in deciduous forests in Switzerland. We compared invaded patches with patches where I. glandulifera had been removed, by establishing pairs of 3-m long transect lines at the edge of seven areas of either type. Along the transects we assessed the length of ectomycorrhizal fungal hyphae using the ‘ingrowth mesh bag method’, and used terminal restriction fragment length polymorphism (T-RFLP) analysis to examine fungal genetic diversity. The invasive plant reduced fungal hyphal biomass by 30–80%: the reduction was largest in the centre of the patch. I. glandulifera did not alter fungal richness, but affected the composition of fungal communities. This is probably the result of a decrease of mycorrhizal fungi, coupled with an increase of saprotrophic fungi. Our findings demonstrate the adverse impacts of an annual invasive plant species on both fungal hyphal biomass and the composition of soil fungal communities. This may negatively affect forest nutrient and carbon cycling, soil stability and the functionality of the fungal community, with major consequences for forest ecosystem functioning.  相似文献   

19.
One hundred and thirty-eight scat (faecal) samples from 17 mammal species native to forests of northeastern Queensland were examined for the presence of spores of both ectomycorrhizal and arbuscular mycorrhizal fungi. Spores of mycorrhizal fungi were found in 57 percent of scat samples representing 12 animal species (Aepyprymnus rufescens, Antechinus godmani, Bettongia tropica, Hypsiprymnodon moschatus, Isoodon macrourus, Melomys ceruinipes, Perameles nasuta, Rattus fuscipes, R. tunneyi, Thylogale stigmatica, Trichourur uulperula, Uromys caudimaculatus). Spores were absent in scats of Antechinus stuartii, Dasyurus hallucatus, Dendrolagus lumholtzi, Petaurus australis and Mesembriomys gouldii. Spores of ectomycorrhizal fungi occurred in 38 percent of scats, and all but one of these samples were from Eucalyptus-dominated sclerophyll forests. Based on the frequency and abundance of spores in scats, five mammals were considered active consumers of hypogeous mycorrhizal sporocarps in sclerophyll forests (A. rufescens, B. tropica, I. macrourus, P. nasuta, and U. caudimaculatus). Individual scats of these animals generally contained a range of distinctive spore types. Spores of arbuscular mycorrhizal fungi were found in low abundance in almost 40 percent of scat samples collected, from both sclerophyll forest and rainforest habitats. We suggest that the majoriry of these spores were acquired incidentally through ingestion of soil during foraging activities on the forest floor. Glasshouse inoculation experiments in which seedlings of Eucalyptus grandis and Sorghum bicolor were inoculated with scat material from several species of mammal demonstrated that the spores of ectomycorrhizal and arbuscular mycorrhizal fungi retained some viability and colonized the roots of host-plant seedlings. Insufficient information is known of the ecology of mycorrhizal fungi in Australia's tropical forests to speculate as to the implications of these findings for forest conservation and rehabilitation.  相似文献   

20.
Mycorrhizas are the chief organ for plant mineral nutrient acquisition. In temperate, mixed forests, ash roots (Fraxinus excelsior) are colonized by arbuscular mycorrhizal fungi (AM) and beech roots (Fagus sylvatica) by ectomycorrhizal fungi (EcM). Knowledge on the functions of different mycorrhizal species that coexist in the same environment is scarce. The concentrations of nutrient elements in plant and fungal cells can inform on nutrient accessibility and interspecific differences of mycorrhizal life forms. Here, we hypothesized that mycorrhizal fungal species exhibit interspecific differences in mineral nutrient concentrations and that the differences correlate with the mineral nutrient concentrations of their associated root cells. Abundant mycorrhizal fungal species of mature beech and ash trees in a long-term undisturbed forest ecosystem were the EcM Lactarius subdulcis, Clavulina cristata and Cenococcum geophilum and the AM Glomus sp. Mineral nutrient subcellular localization and quantities of the mycorrhizas were analysed after non-aqueous sample preparation by electron dispersive X-ray transmission electron microscopy. Cenococcum geophilum contained the highest sulphur, Clavulina cristata the highest calcium levels, and Glomus, in which cations and P were generally high, exhibited the highest potassium levels. Lactarius subdulcis-associated root cells contained the highest phosphorus levels. The root cell concentrations of K, Mg and P were unrelated to those of the associated fungal structures, whereas S and Ca showed significant correlations between fungal and plant concentrations of those elements. Our results support profound interspecific differences for mineral nutrient acquisition among mycorrhizas formed by different fungal taxa. The lack of correlation between some plant and fungal nutrient element concentrations may reflect different retention of mineral nutrients in the fungal part of the symbiosis. High mineral concentrations, especially of potassium, in Glomus sp. suggest that the well-known influence of tree species on chemical soil properties may be related to their mycorrhizal associates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号