首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The presentation of secreted axon guidance factors plays a major role in shaping central nervous system (CNS) connectivity. Recent work suggests that heparan sulfate (HS) regulates guidance factor activity; however, the in vivo axon guidance roles of its carrier proteins (heparan sulfate proteoglycans, or HSPGs) are largely unknown. Here we demonstrate through genetic analysis in vivo that the HSPG Syndecan (Sdc) is critical for the fidelity of Slit repellent signaling at the midline of the Drosophila CNS, consistent with the localization of Sdc to CNS axons. sdc mutants exhibit consistent defects in midline axon guidance, plus potent and specific genetic interactions supporting a model in which HSPGs improve the efficiency of Slit localization and/or signaling. To test this hypothesis, we show that Slit distribution is altered in sdc mutants and that Slit and its receptor bind to Sdc. However, when we compare the function of the transmembrane Sdc to a different class of HSPG that localizes to CNS axons (Dallylike), we find functional redundancy, suggesting that these proteoglycans act as spatially specific carriers of common HS structures that enable growth cones to interact with and perceive Slit as it diffuses away from its source at the CNS midline.  相似文献   

2.
Here we identify a new role for Syndecan (Sdc), the only transmembrane heparan sulphate proteoglycan in Drosophila, in tracheal development. Sdc is required cell autonomously for efficient directed migration and fusion of dorsal branch cells, but not for dorsal branch formation per se. The cytoplasmic domain of Sdc is dispensable, indicating that Sdc does not transduce a signal by itself. Although the branch-specific phenotype of sdc mutants resembles those seen in the absence of Slit/Robo2 signalling, genetic interaction experiments indicate that Sdc also helps to suppress Slit/Robo2 signalling. We conclude that Sdc cell autonomously regulates Slit/Robo2 signalling in tracheal cells to guarantee ordered directional migration and branch fusion.  相似文献   

3.
Axon guidance is influenced by the presence of heparan sulfate (HS) proteoglycans (HSPGs) on the surface of axons and growth cones (Hu, [2001]: Nat Neurosci 4:695-701; Irie et al. [2002]: Development 129:61-70; Inatani et al. [2003]: Science 302:1044-1046; Johnson et al. [2004]: Curr Biol 14:499-504; Steigemann et al. [2004]: Curr Biol 14:225-230). Multiple HSPGs, including Syndecans, Glypicans and Perlecans, carry the same carbohydrate polymer backbones, raising the question of how these molecules display functional specificity during nervous system development. Here we use the Drosophila central nervous system (CNS) as a model to compare the impact of eliminating Syndecan (Sdc) and/or the Glypican Dally-like (Dlp). We show that Dlp and Sdc share a role in promoting accurate patterns of axon fasciculation in the lateral longitudinal neuropil; however, unlike mutations in sdc, which disrupt the ability of the secreted repellent Slit to prevent inappropriate passage of axons across the midline, mutations in dlp show neither midline defects nor genetic interactions with Slit and its Roundabout (Robo) receptors at the midline. Dlp mutants do show genetic interactions with Slit and Robo in lateral fascicle formation. In addition, simultaneous loss of Dlp and Sdc demonstrates an important role for Dlp in midline repulsion, reminiscent of the functional overlap between Robo receptors. A comparison of HSPG distribution reveals a pattern that leaves midline proximal axons with relatively little Dlp. Finally, the loss of Dlp alters Slit distribution distal but not proximal to the midline, suggesting that distinct yet overlapping pattern of HSPG expression provides a spatial system that regulates axon guidance decisions.  相似文献   

4.
Heparan sulfate proteoglycans (HSPGs), a class of glycosaminoglycan-modified proteins, control diverse patterning events via their regulation of growth-factor signaling and morphogen distribution. In C. elegans, zebrafish, and the mouse, heparan sulfate (HS) biosynthesis is required for normal axon guidance, and mutations affecting Syndecan (Sdc), a transmembrane HSPG, disrupt axon guidance in Drosophila embryos. Glypicans, a family of glycosylphosphatidylinositol (GPI)-linked HSPGs, are expressed on axons and growth cones in vertebrates, but their role in axon guidance has not been determined. We demonstrate here that the Drosophila glypican Dally-like protein (Dlp) is required for proper axon guidance and visual-system function. Mosaic studies revealed that Dlp is necessary in both the retina and the brain for different aspects of visual-system assembly. Sdc mutants also showed axon guidance and visual-system defects, some that overlap with dlp and others that are unique. dlp+ transgenes were able to rescue some sdc visual-system phenotypes, but sdc+ transgenes were ineffective in rescuing dlp abnormalities. Together, these findings suggest that in some contexts HS chains provide the biologically critical component, whereas in others the structure of the protein core is also essential.  相似文献   

5.
Comm sorts robo to control axon guidance at the Drosophila midline   总被引:9,自引:0,他引:9  
Axon growth across the Drosophila midline requires Comm to downregulate Robo, the receptor for the midline repellent Slit. We show here that comm is required in neurons, not in midline cells as previously thought, and that it is expressed specifically and transiently in commissural neurons. Comm acts as a sorting receptor for Robo, diverting it from the synthetic to the late endocytic pathway. A conserved cytoplasmic LPSY motif is required for endosomal sorting of Comm in vitro and for Comm to downregulate Robo and promote midline crossing in vivo. Axon traffic at the CNS midline is thus controlled by the intracellular trafficking of the Robo guidance receptor, which in turn depends on the precisely regulated expression of the Comm sorting receptor.  相似文献   

6.
Crossing the midline: roles and regulation of Robo receptors   总被引:12,自引:0,他引:12  
In the Drosophila CNS, the midline repellent Slit acts at short range through its receptor Robo to control midline crossing. Longitudinal axons express high levels of Robo and avoid the midline; commissural axons that cross the midline express only low levels of Robo. Robo levels are in turn regulated by Comm. Here, we show that the Slit receptors Robo2 and Robo3 ensure the fidelity of this crossing decision: rare crossing errors occur in both robo2 and robo3 single mutants. In addition, low levels of either Robo or Robo2 are required to drive commissural axons through the midline: only in robo,robo2 double mutants do axons linger at the midline as they do in slit mutants. Robo2 and Robo3 levels are also tightly regulated, most likely by a mechanism similar to but distinct from the regulation of Robo by Comm.  相似文献   

7.
Simpson JH  Bland KS  Fetter RD  Goodman CS 《Cell》2000,103(7):1019-1032
Slit is secreted by midline glia in Drosophila and functions as a short-range repellent to control midline crossing. Although most Slit stays near the midline, some diffuses laterally, functioning as a long-range chemorepellent. Here we show that a combinatorial code of Robo receptors controls lateral position in the CNS by responding to this presumptive Slit gradient. Medial axons express only Robo, intermediate axons express Robo3 and Robo, while lateral axons express Robo2, Robo3, and Robo. Removal of robo2 or robo3 causes lateral axons to extend medially; ectopic expression of Robo2 or Robo3 on medial axons drives them laterally. Precise topography of longitudinal pathways appears to be controlled by a combination of long-range guidance (the Robo code determining region) and short-range guidance (discrete local cues determining specific location within a region).  相似文献   

8.
In Drosophila, Slit at the midline activates Robo receptors on commissural axons, thereby repelling them out of the midline into distinct longitudinal tracts on the contralateral side of the central nervous system. In the vertebrate spinal cord, Robo1 and Robo2 are expressed by commissural neurons, whereas all three Slit homologs are expressed at the ventral midline. Previous analysis of Slit1;Slit2 double mutant spinal cords failed to reveal a defect in commissural axon guidance. We report here that when all six Slit alleles are removed, many commissural axons fail to leave the midline, while others recross it. In addition, Robo1 and Robo2 single mutants show guidance defects that reveal a role for these two receptors in guiding commissural axons to different positions within the ventral and lateral funiculi. These results demonstrate a key role for Slit/Robo signaling in midline commissural axon guidance in vertebrates.  相似文献   

9.
The CNS of bilateral symmetric organisms is characterized by intensive contralateral axonal connections. Genetic screens in Drosophila have identified only a few genes required for guiding commissural growth cones toward and across the midline. Two evolutionarily conserved signaling molecules, Netrin and Slit, are expressed in the CNS midline cells. Netrin acts primarily as an attractive signaling cue, whereas Slit mediates repulsive functions. Here, we describe a detailed analysis of the Drosophila gene schizo, which is required for commissure formation. schizo leads to a commissural phenotype reminiscent of netrin mutant embryos. Double-mutant analyses indicate that Netrin and Schizo act independently. The schizo mutant phenotype can be suppressed by either expressing netrin in the CNS midline cells or by a reduction of the slit gene dose, indicating that the balance of attractive and repulsive signaling is impaired in schizo mutants. Overexpression of the schizo RNA in the CNS midline using the GAL4/UAS system leads to a slit phenocopy, suggesting that schizo primarily antagonizes Slit signaling. This is further supported by cell type-specific rescue experiments. The schizo gene generates at least two proteins containing a conserved Sec7 and a pleckstrin homology domain (PH) characteristic for guanine nucleotide exchange factors (GEF) acting on ARF GTPases, which are known to regulate endocytosis. In support of the notion that schizo regulates Slit expression via endocytosis, we found that block of endocytosis leads to a schizo-like phenotype. We thus propose that the balance of the two signaling cues Netrin and Slit can be regulated, controlling membrane dynamics.  相似文献   

10.
Slit2-Mediated chemorepulsion and collapse of developing forebrain axons   总被引:15,自引:0,他引:15  
Diffusible chemorepellents play a major role in guiding developing axons toward their correct targets by preventing them from entering or steering them away from certain regions. Genetic studies in Drosophila revealed a novel repulsive guidance system that prevents inappropriate axons from crossing the CNS midline; this repulsive system is mediated by the Roundabout (Robo) receptor and its secreted ligand Slit. In rodents, Robo and Slit are expressed in the spinal cord and Slit can repel spinal motor axons in vitro. Here, we extend these findings into higher brain centers by showing that Robo1 and Robo2, as well as Slit1 and Slit2, are often expressed in complementary patterns in the developing forebrain. Furthermore, we show that human Slit2 can repel olfactory and hippocampal axons and collapse their growth cones.  相似文献   

11.
Simpson JH  Kidd T  Bland KS  Goodman CS 《Neuron》2000,28(3):753-766
Previous studies showed that Roundabout (Robo) in Drosophila is a repulsive axon guidance receptor that binds to Slit, a repellent secreted by midline glia. In robo mutants, growth cones cross and recross the midline, while, in slit mutants, growth cones enter the midline but fail to leave it. This difference suggests that Slit must have more than one receptor controlling midline guidance. In the absence of Robo, some other Slit receptor ensures that growth cones do not stay at the midline, even though they cross and recross it. Here we show that the Drosophila genome encodes three Robo receptors and that Robo and Robo2 have distinct functions, which together control repulsive axon guidance at the midline. The robo,robo2 double mutant is largely identical to slit.  相似文献   

12.
Oxygen delivery in many animals is enabled by the formation of unicellular capillary tubes that penetrate target tissues to facilitate gas exchange. We show that the tortuous outgrowth of tracheal unicellular branches towards their target tissues is controlled by complex local interactions with target cells. Slit, a phylogenetically conserved axonal guidance signal, is expressed in several tracheal targets and is required both for attraction and repulsion of tracheal branches. Robo and Robo2 are expressed in different branches, and are both necessary for the correct orientation of branch outgrowth. At the CNS midline, Slit functions as a repellent for tracheal branches and this function is mediated primarily by Robo. Robo2 is necessary for the tracheal response to the attractive Slit signal and its function is antagonized by Robo. We propose that the attractive and repulsive tracheal responses to Slit are mediated by different combinations of Robo and Robo2 receptors on the cell surface.  相似文献   

13.
Qian L  Liu J  Bodmer R 《Current biology : CB》2005,15(24):2271-2278
Basic aspects of heart morphogenesis involving migration, cell polarization, tissue alignment, and lumen formation may be conserved between Drosophila and humans, but little is known about the mechanisms that orchestrate the assembly of the heart tube in either organism. The extracellular-matrix molecule Slit and its Robo-family receptors are conserved regulators of axonal guidance. Here, we report a novel role of the Drosophila slit, robo, and robo2 genes in heart morphogenesis. Slit and Robo proteins specifically accumulate at the dorsal midline between the bilateral myocardial progenitors forming a linear tube. Manipulation of Slit localization or its overexpression causes disruption in heart tube alignment and assembly, and slit-deficient hearts show disruptions in cell-polarity marker localization within the myocardium. Similar phenotypes are observed when Robo and Robo2 are manipulated. Rescue experiments suggest that Slit is secreted from the myocardial progenitors and that Robo and Robo2 act in myocardial and pericardial cells, respectively. Genetic interactions suggest a cardiac morphogenesis network involving Slit/Robo, cell-polarity proteins, and other membrane-associated proteins. We conclude that Slit and Robo proteins contribute significantly to Drosophila heart morphogenesis by guiding heart cell alignment and adhesion and/or by inhibiting cell mixing between the bilateral compartments of heart cell progenitors and ensuring proper polarity of the myocardial epithelium.  相似文献   

14.
Slit is a large secreted protein that provides important guidance cues in the developing nervous system and in other organs. Signaling by Slit requires two receptors, Robo transmembrane proteins and heparan sulfate (HS) proteoglycans. How HS controls Slit-Robo signaling is unclear. Here we show that the second leucine-rich repeat domain (D2) of Slit, which mediates binding to Robo receptors, also contains a functionally important binding site for heparin, a highly sulfated variant of HS. Heparin markedly enhances the affinity of the Slit-Robo interaction in a solid-phase binding assay. Analytical gel filtration chromatography demonstrates that Slit D2 associates with a soluble Robo fragment and a heparin-derived oligosaccharide to form a ternary complex. Retinal growth cone collapse triggered by Slit D2 requires cell surface HS or exogenously added heparin. Mutation of conserved basic residues in the C-terminal cap region of Slit D2 reduces heparin binding and abolishes biological activity. We conclude that heparin/HS is an integral component of the minimal Slit-Robo signaling complex and serves to stabilize the relatively weak Slit-Robo interaction.  相似文献   

15.
Lee S  Kim S  Nahm M  Kim E  Kim TI  Yoon JH  Lee S 《Molecules and cells》2011,32(5):477-482
Sac1 phosphoinositide (PI) phosphatases are important regulators of PtdIns(4)P turnover at the ER, Golgi, and plasma membrane (PM) and are involved in diverse cellular processes including cytoskeletal organization and vesicular trafficking. Here, we present evidence that Sac1 regulates axon guidance in the embryonic CNS of Drosophila. Sac1 is expressed on three longitudinal axon tracts that are defined by the cell adhesion molecule Fasciclin II (Fas II). Mutations in the sac1 gene cause ectopic midline crossing of Fas II-positive axon tracts. This phenotype is rescued by neuronal expression of wild-type Sac1 but not by a catalytically-inactive mutant. Finally, sac1 displays dosage-sensitive genetic interactions with mutations in the genes that encode the midline repellent Slit and its axonal receptor Robo. Taken together, our results suggest that Sac1-mediated regulation of PIs is critical for Slit/Robo-dependent axon repulsion at the CNS midline.  相似文献   

16.
Slit and Robo control the development of dendrites in Drosophila CNS   总被引:2,自引:0,他引:2  
The molecular mechanisms that generate dendrites in the CNS are poorly understood. The diffusible signal molecule Slit and the neuronally expressed receptor Robo mediate growth cone collapse in vivo. However, in cultured neurons, these molecules promote dendritic development. Here we examine the aCC motoneuron, one of the first CNS neurons to generate dendrites in Drosophila. Slit displays a dynamic concentration topography that prefigures aCC dendrogenesis. Genetic deletion of Slit leads to complete loss of aCC dendrites. Robo is cell-autonomously required in aCC motoneurons to develop dendrites. Our results demonstrate that Slit and Robo control the development of dendrites in the embryonic CNS.  相似文献   

17.
Neural receptor-linked protein tyrosine phosphatases (RPTPs) are required for guidance of motoneuron and photoreceptor growth cones in Drosophila. These phosphatases have not been implicated in growth cone responses to specific guidance cues, however, so it is unknown which aspects of axonal pathfinding are controlled by their activities. Three RPTPs, known as DLAR, DPTP69D, and DPTP99A, have been genetically characterized thus far. Here we report the isolation of mutations in the fourth neural RPTP, DPTP10D. The analysis of double mutant phenotypes shows that DPTP10D and DPTP69D are necessary for repulsion of growth cones from the midline of the embryonic central nervous system. Repulsion is thought to be triggered by binding of the secreted protein Slit, which is expressed by midline glia, to Roundabout (Robo) receptors on growth cones. Robo repulsion is downregulated by the Commissureless (Comm) protein, allowing axons to cross the midline. Here we show that the Rptp mutations genetically interact with robo, slit and comm. The nature of these interactions suggests that DPTP10D and DPTP69D are positive regulators of Slit/Roundabout repulsive signaling. We also show that elimination of all four neural RPTPs converts most noncrossing longitudinal pathways into commissures that cross the midline, indicating that tyrosine phosphorylation controls the manner in which growth cones respond to midline signals.  相似文献   

18.
Roundabout 1 (Robo1) is the cognate receptor for secreted axon guidance molecule, Slits, which function to direct cellular migration during neuronal development and angiogenesis. The Slit2–Robo1 signaling is modulated by heparan sulfate, a sulfated linear polysaccharide that is abundantly expressed on the cell surface and in the extracellular matrix. Biochemical studies have further shown that heparan sulfate binds to both Slit2 and Robo1 facilitating the ligand–receptor interaction. The structural requirements for heparan sulfate interaction with Robo1 remain unknown. In this report, surface plasmon resonance (SPR) spectroscopy was used to examine the interaction between Robo1 and heparin and other GAGs and determined that heparin binds to Robo1 with an affinity of ∼650 nM. SPR solution competition studies with chemically modified heparins further determined that although all sulfo groups on heparin are important for the Robo1–heparin interaction, the N-sulfo and 6-O-sulfo groups are essential for the Robo1–heparin binding. Examination of differently sized heparin oligosaccharides and different GAGs also demonstrated that Robo1 prefers to bind full-length heparin chains and that GAGs with higher sulfation levels show increased Robo1 binding affinities.  相似文献   

19.
Slit is a secreted guidance cue that conveys repellent or attractive signals from target and guidepost cells. In Drosophila, responsive cells express one or more of three Robo receptors. The cardial cells of the developing heart express both Slit and Robo2. This is the first report of coincident expression of a Robo and its ligand. In slit mutants, cardial cell alignment, polarization and uniform migration are disrupted. The heart phenotype of robo2 mutants is similar, with fewer migration defects. In the guidance of neuronal growth cones in Drosophila, there is a phenotypic interaction between slit and robo heterozygotes, and also with genes required for Robo signaling. In contrast, in the heart, slit has little or no phenotypic interaction with Robo-related genes, including Robo2, Nck2, and Disabled. However, there is a strong phenotypic interaction with Integrin genes and their ligands, including Laminin and Collagen, and intracellular messengers, including Talin and ILK. This indicates that Slit participates in adhesion or adhesion signaling during heart development.  相似文献   

20.
The evolutionarily conserved Roundabout (Robo) family of axon guidance receptors control midline crossing of axons in response to the midline repellant ligand Slit in bilaterian animals including insects, nematodes, and vertebrates. Despite this strong evolutionary conservation, it is unclear whether the signaling mechanism(s) downstream of Robo receptors are similarly conserved. To directly compare midline repulsive signaling in Robo family members from different species, here we use a transgenic approach to express the Robo family receptor SAX-3 from the nematode Caenorhabditis elegans in neurons of the fruit fly, Drosophila melanogaster. We examine SAX-3’s ability to repel Drosophila axons from the Slit-expressing midline in gain of function assays, and test SAX-3’s ability to substitute for Drosophila Robo1 during fly embryonic development in genetic rescue experiments. We show that C. elegans SAX-3 is properly translated and localized to neuronal axons when expressed in the Drosophila embryonic CNS, and that SAX-3 can signal midline repulsion in Drosophila embryonic neurons, although not as efficiently as Drosophila Robo1. Using a series of Robo1/SAX-3 chimeras, we show that the SAX-3 cytoplasmic domain can signal midline repulsion to the same extent as Robo1 when combined with the Robo1 ectodomain. We show that SAX-3 is not subject to endosomal sorting by the negative regulator Commissureless (Comm) in Drosophila neurons in vivo, and that peri-membrane and ectodomain sequences are both required for Comm sorting of Drosophila Robo1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号