首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
It is shown that the decompression schedules after saturation diving to the depth of 30 m designed to hold the nitrogen supersaturation for the most “slow” tissues at the acceptable levels is significantly shorter than the decompression schedules with zero supersaturation of these tissues with nitrogen and all dissolved gases. Equality of the risk for decompression sickness (DCS) onset during this decompression schedule to the risk of DCS onset under non-stop ascent to the surface after saturation diving to the depth of 6.1 m indicates that the effect of the high ambient pressure decreases the density of gas bubble seeds in tissues and the growth rate of their total volume. The DCS symptoms in the experienced divers under dangerous decompression profiles not appear due to the lower density of gas bubble seeds in their tissues relatively to the average level inherent to the many of humans.  相似文献   

2.
Paradoxical arterializations of venous gas emboli can lead to neurological damage after diving with compressed air. Recently, significant exercise-induced intrapulmonary anatomical shunts have been reported in healthy humans that result in widening of alveolar-to-arterial oxygen gradient. The aim of this study was to examine whether intrapulmonary shunts can be found following strenuous exercise after diving and, if so, whether exercise should be avoided during that period. Eleven healthy, military male divers performed an open-sea dive to 30 m breathing air, remaining at pressure for 30 min. During the bottom phase of the dive, subjects performed mild exercise at approximately 30% of their maximal oxygen uptake. The ascent rate was 9 m/min. Each diver performed graded upright cycle ergometry up to 80% of the maximal oxygen uptake 40 min after the dive. Monitoring of venous gas emboli was performed in both the right and left heart with an ultrasonic scanner every 20 min for 60 min after reaching the surface pressure during supine rest and following two coughs. The diving profile used in this study produced significant amounts of venous bubbles. No evidence of intrapulmonary shunting was found in any subject during either supine resting posture or any exercise grade. Also, short strenuous exercise after the dive did not result in delayed-onset decompression sickness in any subject, but studies with a greater number of participants are needed to confirm whether divers should be allowed to exercise after diving.  相似文献   

3.
The goal of this study was to evaluate annexin V-positive microparticles (MPs) and neutrophil activation in humans following decompression from open-water SCUBA diving with the hypothesis that changes are related to intravascular bubble formation. Sixteen male volunteer divers followed a uniform profile of four daily SCUBA dives to 18 m of sea water for 47 min. Blood was obtained prior to and at 80 min following the first and fourth dives to evaluate the impact of repetitive diving, and intravascular bubbles were quantified by trans-thoracic echocardiography carried out at 20-min intervals for 2 h after each dive. MPs increased by 3.4-fold after each dive, neutrophil activation occurred as assessed by surface expression of myeloperoxidase and the CD18 component of β(2)-integrins, and there was an increased presence of the platelet-derived CD41 protein on the neutrophil surface indicating interactions with platelet membranes. Intravascular bubbles were detected in all divers. Surprisingly, significant inverse correlations were found among postdiving bubble scores and MPs, most consistently at 80 min or more after the dive on the fourth day. There were significant positive correlations between MPs and platelet-neutrophil interactions after the first dive and between platelet-neutrophil interactions and neutrophil activation documented as an elevation in β(2)-integrin expression after the fourth dive. We conclude that MPs- and neutrophil-related events in humans are consistent with findings in an animal decompression model. Whether there are causal relationships among bubbles, MPs, platelet-neutrophil interactions, and neutrophil activation remains obscure and requires additional study.  相似文献   

4.
For some tasks of underwater operation the need for longer dive duration and more working divers necessitates the use of saturation diving techniques with excursions. Saturation diving with excursion has high working efficiency. A collaborative experiment with Chinese Underwater Technology Institute, American National Office of Research Undersea Program and Hamilton Research Ltd. was conducted at our Institute in Shanghai. The main experiment objectives were to assess the longer, deeper repetitive excursions during nitrogen-oxygen saturation situation, oxygen exposure management, nitrox saturation decompression after excursions and performance aspects. Four Chinese professional experienced divers were saturated at 25 msw for 5 days at the hyperbaric facility, where they did 15 air excursions to depths between 50 and 75 msw, for duration up to 240 min. Decompression from excursions to the storage were mostly no-stops, but 5 required stops for 3 to 116 min. Saturation decompression began with the "precursory" ascent following a brief return to 25 msw. Doppler bubble detection showed some bubbles of Spencer Grade II and occasionally III, following excursions and during saturation decompression, especially after muscle flexing. No symptoms of decompression sickness were reported: one diver was more of fatigued on one occasion than other times. Oxygen exposure reached its peak of 3103 Oxygen Toxicity Units on Day 6. The only subjective symptom of oxygen toxicity was mild and transient numb fingertips. No significant change was seen in vital capacity.  相似文献   

5.
Deep sea divers suffer from decompression sickness (DCS) when their rate of ascent to the surface is too rapid. When the ambient pressure drops, inert gas bubbles may form in blood vessels and tissues. The evolution of a gas bubble in a rigid tube filled with slowly moving fluid, intended to simulate a bubble in a blood vessel, is studied by solving a coupled system of fluid-flow and gas transport equations. The governing equations for the fluid motion are solved using two techniques: an analytical method appropriate for small nondeformable spherical bubbles, and the boundary element method for deformable bubbles of arbitrary size, given an applied steady flow rate. A steady convection-diffusion equation is then solved numerically to determine the concentration of gas. The bubble volume, or equivalently the gas mass inside the bubble for a constant bubble pressure, is adjusted over time according to the mass flux at the bubble surface. Using a quasi-steady approximation, the evolution of a gas bubble in a tube is obtained. Results show that convection increases the gas pressure gradient at the bubble surface, hence increasing the rate of bubble evolution. Comparing with the result for a single gas bubble in an infinite tissue, the rate of evolution in a tube is approximately twice as fast. Surface tension is also shown to have a significant effect. These findings may have important implications for our understanding of the mechanisms of inert gas bubbles in the circulation underlying decompression sickness.  相似文献   

6.
Vascular bubble formation after decompression contributes to endothelial injuries which form the basis for the development of decompression sickness (DCS). Nitric oxide (NO) is a powerful vasodilator that contributes to vessel homeostasis. It has been shown that NO-releasing agent may reduce bubble formation and prevent serious decompression sickness. The use of sildenafil, a well-known, phosphodiesterase-5 blocker, which act by potentiating the vasodilatory effect on smooth muscle relaxation, has never been studied in DCS. The purpose of the present study was to evaluate the clinical effects of sildenafil pre-treatment on DCS in a rat model. 67 rats were subjected to a simulated dive at 90 msw for 45 min before staged decompression. The experimental group received 10 mg/kg of sildenafil one hour before exposure (n = 35) while controls were not treated (n = 32). Clinical assessment took place over a period of 30 min after surfacing. At the end, blood samples were collected for blood cells counts and the level of circulating bubbles in the right cavities was quantified. There were significantly more manifestations of DCS in the sildenafil group than in the controls (34.3% vs 6.25%, respectively, p = 0.012). Platelet count was more reduced in treated rats than in controls (−21.7% vs −7%, respectively, p = 0.029), whereas bubble grades did not differ between groups. We concluded that pre-treatment with sildenafil promotes the onset and severity of neurological DCS. When considering the use of phosphodiesterase-5 blockers in the context of diving, careful discussion with physician should be recommended.  相似文献   

7.
It is accepted that gas bubbles grow from preexisting gas nuclei in tissue. The possibility of eliminating gas nuclei may be of benefit in preventing decompression sickness. In the present study, we examined the hypothesis that hyperbaric oxygen may replace the resident gas in the nuclei with oxygen and, because of its metabolic role, eliminate the nuclei themselves. After pretreatment with oxygen, prawns were 98% saturated with nitrogen before explosive decompression at 30 m/min. Ten transparent prawns were exposed to four experimental profiles in a crossover design: 1) 10-min compression to 203 kPa with air; 2) 10-min compression with oxygen; 3) 10-min compression with oxygen to 203 kPa followed by 12 min air at 203 kPa; and 4) 10 min in normobaric oxygen followed by compression to 203 kPa with air. Bubbles were measured after explosive decompression. We found that pretreatment with hyperbaric oxygen (profile C) significantly reduces the number of bubbles and bubble volume. We suggest that hyperbaric oxygen eliminates bubble nuclei in the prawn.  相似文献   

8.
The simulated dive experiments were conducted at the high altitude of 4500 meters and 5000 meters, for the requirement of diving operation in the lakes at the altitude of 4442 meters for the construction of large-scale hydroelectric power station. The high & low pressure chamber-complex was used, and 15 professional divers participated in the experiment. The divers were stayed at the altitude of 4500 and 5000 meters for 7-9 days. Totally 85 persons-times of dives to the depths of 30-50 meters were operated; they stayed under the water for 30-90 minutes while processing physical activities. During the experiment, we studied the pressurization procedure, decompression table, and physiological functions of the divers. The results indicate that, although the relative pressure differences between the surface and underwater was larger at high altitude than at sea level, the appropriate prolongation of the compression time was able to prevent the difficulty in pressure regulation for the divers to avoid the injury of middle ear. Four tables of the decompression A, B, C and D was calculated with Haldane's theory, and the speed of decompression increased in the order from A to D. The safest procedure was C, and there was no decompression sickness and bubbles in body of the divers. The methods of decompression included underwater stage decompression, surface decompression, oxygen-breathing decompression, and repetitive diving decompression. The surface decompression was the most suitable method for the high altitude, as it could greatly decrease the time in the cold water for the divers. The power spectrum analysis of EEG (electroencephalogram) indicated that, when the divers were exposed to the altitude of 5000 meters, the delta activity in EEG increased, alpha and beta activity decreased. And the delta activity decreased, the alpha and beta activity increased while diving during a dry condition. According to the diving and decompression procedure studied under simulated conditions, 272 person-times of diving training and underwater operations were processed in a high altitude hydroelectric power station at the altitude of 4442 meters, including photographing, video-recording, measuring, and drilling. There were no signs and symptoms of decompression sickness and bubbles.  相似文献   

9.
Intravascular bubble formation and symptoms of decompression sickness have been reported during repetitive deep breath-hold diving. Therefore we examined the pattern of blood N2 kinetics during and after repetitive breath-hold diving. To study muscle N2 uptake and release, we measured brachial venous N2 partial pressure (PN2) in nine professional Korean breath-hold divers (ama) during a 3-h diving shift at approximately 4 m seawater depth and up to 4 h after diving. PN2 was determined with the manometric Van Slyke method. Diving time and depth were recorded using a backpack computer-assisted dive longer that allowed calculating the surface-to-depth time ratio to derive the effective depth. With the assumption that forearm muscle N2 kinetics follow the general Haldanian principles of compression and decompression, i.e., forearm muscle is a single compartment with a uniform tissue PN2 equal to venous PN2, PN2 data were fitted to monoexponential functions of time. In the early phase of the diving shift, PN2 rapidly increased to 640 Torr (half time = 6 min) and then slowly declined to baseline levels (half time = 36 min) after the work shift. Peak PN2 levels approximated the alveolar PN2 derived from the effective depth. We conclude that forearm muscle N2 kinetics are well described by a Haldanian single-compartment model. Decompression sickness is theoretically possible in the ama; it did not occur because the absolute PN2 remained low due to the shallow working depth of the ama we studied.  相似文献   

10.
Bubbles that grow during decompression are believed to originate from preexisting gas micronuclei. We showed that pretreatment of prawns with 203 kPa oxygen before nitrogen loading reduced the number of bubbles that evolved on decompression, presumably owing to the alteration or elimination of gas micronuclei (Arieli Y, Arieli R, and Marx A. J Appl Physiol 92: 2596-2599, 2002). The present study examines the optimal pretreatment for this assumed crushing of gas micronuclei. Transparent prawns were subjected to various exposure times (0, 5, 10, 15, and 20 min) at an oxygen pressure of 203 kPa and to 5 min at different oxygen pressures (PO2 values of 101, 151, 203, 405, 608, and 810 kPa), before nitrogen loading at 203 kPa followed by explosive decompression. After the decompression, bubble density and total gas volume were measured with a light microscope equipped with a video camera. Five minutes at a PO2 of 405 kPa yielded maximal reduction of bubble density and total gas volume by 52 and 71%, respectively. It has been reported that 2-3 h of hyperbaric oxygen at bottom pressure was required to protect saturation divers decompressed on oxygen against decompression sickness. If there is a shorter pretreatment that is applicable to humans, this will be of great advantage in diving and escape from submarines.  相似文献   

11.
p6rly detection of bubbles may provide clues to the mechanism of their formation, and a knowledge of their extent during a decompression may allow the prevention of decompression sickness. We have used ultrasound imaging to study bubble formation in peripheral tissues. The results suggest that: (a) a threshold supersaturation for bubble formation exists; (b) the earliest bubbles are intravascular; (c) before signs of decompression sickness a substantial accumulation of stationary bubbles occurs. Despite the success of Doppler methods in detecting moving bubbles after decompressions normally considered safe, recent studies have shown that the correlation between number of bubbles detected and symptoms of decompression sickness is often poor. We have used a time integral of the ultrasound images, which avoids laborious image analysis, to follow the extent of both moving and stationary bubbles. Human trials involving a wide variety of decompressions suggest that correct prediction of symptoms is possible.  相似文献   

12.
Cerebral gas embolism is a serious consequence of diving. It is associated with decompression sickness and is assumed to cause severe neurological dysfunction. A mathematical model previously developed to calculate embolism absorption time based on in vivo bubble geometry is used in which various conditions of hyperbaric therapy are considered. Effects of varying external pressure and inert gas concentrations in the breathing mixtures, according to US Navy and Royal Navy diving treatment tables, are predicted. Recompression alone is calculated to reduce absorption times of a 50-nl bubble by up to 98% over the untreated case. Lowering the inhaled inert gas concentration from 67.5% to 50% reduces absorption time by 37% at a given pressure. Bubbles formed after diving and decompression with He are calculated to absorb up to 73% faster than bubbles created after diving and decompression with air, regardless of the recompression gas breathed. This model is a useful alternative to impractical clinical trials in assessing which initial step in hyperbaric therapy is most effective in eliminating cerebral gas embolisms should they occur.  相似文献   

13.
The fate of bubbles formed in tissues during decompression to altitude after diving or due to accidental loss of cabin pressure during flight has only been indirectly inferred from theoretical modeling and clinical observations with noninvasive bubble-measuring techniques of intravascular bubbles. In this report we visually followed the in vivo resolution of micro-air bubbles injected into adipose tissue of anesthetized rats decompressed from 101.3 kPa to and held at 71 kPa corresponding to approximately 2.750 m above sea level, while the rats breathed air, oxygen, heliox (50:50), or heliox (80:20). During air breathing, bubbles initially grew for 30-80 min, after which they remained stable or began to shrink slowly. Oxygen breathing caused an initial growth of all bubbles for 15-85 min, after which they shrank until they disappeared from view. Bubble growth was significantly greater during breathing of oxygen compared with air and heliox breathing mixtures. During heliox (50:50) breathing, bubbles initially grew for 5-30 min, from which point they shrank until they disappeared from view. After a shift to heliox (80:20) breathing, some bubbles grew slightly for 20-30 min, then shrank until they disappeared from view. Bubble disappearance was significantly faster during breathing of oxygen and heliox mixtures compared with air. In conclusion, the present results show that oxygen breathing at 71 kPa promotes bubble growth in lipid tissue, and it is possible that breathing of heliox may be beneficial in treating decompression sickness during flight.  相似文献   

14.
In 1983 NUTEC, together with two diving companies, completed two dives with 12 divers (6 in each dive) to pressures equivalent to 350 m s.w., one dive lasted for 17 d, and the other, 24 d. The purpose of the dives was to demonstrate that the diving companies were prepared for diving to 300 m depth in the North Sea. No major medical or physiological problems arose during the dives, although all divers had minor symptoms of high pressure nervous syndrome during compressions. During decompression three decompression sickness incidents occurred, which involved pain only, and all were successfully treated. All divers went through comprehensive medical physiological examinations before and after the dives. No significant changes from values measured before diving have been found in the six divers who have so far been examined after diving, except that five of them were considerably more sensitive to CO2 after the dive than before. Several problems arose in connection with the divers' breathing equipment, thermal protection and communication, which need to be improved.  相似文献   

15.
Recent advances in submarine rescue systems have allowed a transfer under pressure of crew members being rescued from a disabled submarine. The choice of a safe decompression procedure for pressurised rescuees has been previously discussed, but no schedule has been validated when the internal submarine pressure is significantly increased i.e. exceeding 2.8 bar absolute pressure. This study tested a saturation decompression procedure from hyperbaric exposures up to 6 bar, the maximum operating pressure of the NATO submarine rescue system. The objective was to investigate the incidence of decompression sickness (DCS) and clinical and spirometric indices of pulmonary oxygen toxicity. Two groups were exposed to a Nitrogen-Oxygen atmosphere (pO2 = 0.5 bar) at either 5 bar (N = 14) or 6 bar (N = 12) for 12 h followed by 56 h 40 min resp. 60 h of decompression. When chamber pressure reached 2.5 bar, the subjects breathed oxygen intermittently, otherwise compressed air. Repeated clinical examinations, ultrasound monitoring of venous gas embolism and spirometry were performed during decompression. During exposures to 5 bar, 3 subjects had minor subjective symptoms i.e. sensation of joint discomfort, regressing spontaneously, and after surfacing 2 subjects also experienced joint discomfort disappearing without treatment. Only 3 subjects had detectable intravascular bubbles during decompression (low grades). No bubbles were detected after surfacing. About 40% of subjects felt chest tightness when inspiring deeply during the initial phase of decompression. Precordial burning sensations were reported during oxygen periods. During decompression, vital capacity decreased by about 8% and forced expiratory flow rates decreased significantly. After surfacing, changes in the peripheral airways were still noticed; Lung Diffusion for carbon monoxide was slightly reduced by 1% while vital capacity was normalized. The procedure did not result in serious symptoms of DCS or pulmonary oxygen toxicity and may be considered for use when the internal submarine pressure is significantly increased.  相似文献   

16.
Bubbles in supersaturated tissues and blood occur in beaked whales stranded near sonar exercises, and post-mortem in dolphins bycaught at depth and then hauled to the surface. To evaluate live dolphins for bubbles, liver, kidneys, eyes and blubber-muscle interface of live-stranded and capture-release dolphins were scanned with B-mode ultrasound. Gas was identified in kidneys of 21 of 22 live-stranded dolphins and in the hepatic portal vasculature of 2 of 22. Nine then died or were euthanized and bubble presence corroborated by computer tomography and necropsy, 13 were released of which all but two did not re-strand. Bubbles were not detected in 20 live wild dolphins examined during health assessments in shallow water. Off-gassing of supersaturated blood and tissues was the most probable origin for the gas bubbles. In contrast to marine mammals repeatedly diving in the wild, stranded animals are unable to recompress by diving, and thus may retain bubbles. Since the majority of beached dolphins released did not re-strand it also suggests that minor bubble formation is tolerated and will not lead to clinically significant decompression sickness.  相似文献   

17.
The fate of bubbles formed in tissues during the ascent from a real or simulated air dive and subjected to therapeutic recompression has only been indirectly inferred from theoretical modeling and clinical observations. We visually followed the resolution of micro air bubbles injected into adipose tissue, spinal white matter, muscle, and tendon of anesthetized rats recompressed to and held at 284 kPa while rats breathed air, oxygen, heliox 80:20, or heliox 50:50. The rats underwent a prolonged hyperbaric air exposure before bubble injection and recompression. In all tissues, bubbles disappeared faster during breathing of oxygen or heliox mixtures than during air breathing. In some of the experiments, oxygen breathing caused a transient growth of the bubbles. In spinal white matter, heliox 50:50 or oxygen breathing resulted in significantly faster bubble resolution than did heliox 80:20 breathing. In conclusion, air bubbles in lipid and aqueous tissues shrink and disappear faster during recompression during breathing of heliox mixtures or oxygen compared with air breathing. The clinical implication of these findings might be that heliox 50:50 is the mixture of choice for the treatment of decompression sickness.  相似文献   

18.

Objective

To study the effect of percutaneous patent foramen ovale (PFO) closure in divers with a history of decompression sickness (DCS).

Study design

(1) Retrospective study of patient records and (2) telephonic follow-up. Patients with unexplained decompression sickness, who were referred to a cardiologist with a focus on diving medicine between 2000 and 2017, were included in the study

Results

A total of 62 divers with DCS were included. In all cases transoesophageal echocardiography (TEE) was performed, showing 29 PFOs and 6 atrial septum defects (ASDs) in total n?=?35 (56%). The highest prevalence was found in divers with cutaneous and vestibular DCS. At follow-up (mean follow-up duration 6.8 years), 21 PFOs/ASDs were closed using a percutaneous procedure. One diver was lost to follow-up. One diver quit diving. The remaining divers were able to resume unrestricted diving; there was no recurrence of major DCS. Of the divers with an open PFO or ASD, 14 were included of whom 7 are currently diving. All (except one diver with a small PFO) divers are using a conservative diving profile to reduce nitrogen load and the appearance of venous nitrogen bubbles. There was no recurrence of major DCS in this group.

Conclusion

Percutaneous PFO closure may be an effective and safe treatment for divers who have suffered a major DCS to return to unrestricted diving. Alternatively, conservative treatment seems safe when divers refrain from unrestricted diving and use a conservative technique in order to reduce nitrogen load.
  相似文献   

19.
Decompression sickness (DCS; 'the bends') is a disease associated with gas uptake at pressure. The basic pathology and cause are relatively well known to human divers. Breath-hold diving marine mammals were thought to be relatively immune to DCS owing to multiple anatomical, physiological and behavioural adaptations that reduce nitrogen gas (N(2)) loading during dives. However, recent observations have shown that gas bubbles may form and tissue injury may occur in marine mammals under certain circumstances. Gas kinetic models based on measured time-depth profiles further suggest the potential occurrence of high blood and tissue N(2) tensions. We review evidence for gas-bubble incidence in marine mammal tissues and discuss the theory behind gas loading and bubble formation. We suggest that diving mammals vary their physiological responses according to multiple stressors, and that the perspective on marine mammal diving physiology should change from simply minimizing N(2) loading to management of the N(2) load. This suggests several avenues for further study, ranging from the effects of gas bubbles at molecular, cellular and organ function levels, to comparative studies relating the presence/absence of gas bubbles to diving behaviour. Technological advances in imaging and remote instrumentation are likely to advance this field in coming years.  相似文献   

20.
The fact that impaired endothelial-dependent vasodilatation after scuba diving often occurs without visible changes in the endothelial layer implies its biochemical origin. Since Lewis x (CD15) and sialyl-Lewis x (CD15s) are granulocyte and monocyte carbohydrate antigens recognized as ligands by endothelial selectins, we assumed that they could be sensitive markers for impaired vasodilatation following diving. Using flow cytometry, we determined the CD15 and CD15s peripheral blood mononuclear cells of eight divers, 30 mins before and 50 mins after a single dive to 54 m for 20 mins bottom time. The number of gas bubbles in the right heart was monitored by ultrasound. Gas bubbles were seen in all eight divers, with the average number of bubbles/cm(2) 1.9 +/- 1.9. The proportion of CD15 + monocytes increased 2-fold after the dive as well as the subpopulation of monocytes highly expressing CD15s. The absolute number of monocytes was slightly, but not significantly, increased after the dive, whereas the absolute number of granulocytes was markedly elevated (up to 61%). There were no significant correlations between bubble formation and CD15 + monocyte expression (r = - 0.56; P = 0.17), as well as with monocytes highly expressing CD15s (r = 0.43; P = 0.29). This study suggests that biochemical changes induced by scuba diving primarily activate existing monocytes rather than increase the number of monocytes at a time of acute arterial endothelial dysfunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号